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Abstract

We demonstrate the existence of a broad class of real numbers which are not el-
ements of any number field: those in the neighborhood of infinity. After considering
the reals and the affinely extended reals, we prove that numbers in the neighborhood
of infinity are ordinary real numbers. As an application in complex analysis, we show
that the Riemann zeta function has infinitely many non-trivial zeros off the critical line
for every application in quantum field theory.

§1 Real Numbers

Definition 1.1 A real number x ∈ R is a cut in the real number line.

Definition 1.2 The real numbers are defined in interval notation as

R ≡ (−∞,∞) ,

where the linear interval (−∞,∞) is an infinite line.

Definition 1.3 A cut in a line x ∈ R separates one line into two pieces as

R \ x = (−∞, x) ∪ (x,∞) .

Remark 1.4 A number is a cut in a line. A line is defined a priori. All
lines can be cut so all lines are number lines. A given line is the real line by
definition. A real number separates the real number line into a set of “larger”
real numbers and a set of “smaller” real numbers.

Definition 1.5 Call real numbers in the neighborhood of the origin x ∈ R0.
Define them such that

x ∈ R0 ⇐⇒ x ∈ R , and − n < x < n ,

for some n ∈ N.

Definition 1.6 Call real numbers in the neighborhood of infinity x ∈ R∞.
Define them as all real numbers except for real numbers in the neighborhood
of the origin:

R∞ ≡ R \ R0 .
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Remark 1.7 The main result of this paper demonstrates that R∞ is not an
empty set.

Definition 1.8 For x ∈ R and n, k ∈ N, we have the property

lim
x→0±

1

x
= diverges , and lim

n→∞

n∑
k=1

k = diverges .

§2 Affinely Extended Real Numbers

Definition 2.1 Define two affinely extended real numbers ±∞ such that for
x ∈ R and n, k ∈ N

lim
x→0±

1

x
= ±∞ , and lim

n→∞

n∑
k=1

k =∞ .

Definition 2.2 The set of all affinely extended real numbers is

R ≡ R ∪ {±∞} .

Definition 2.3 The affinely extended real numbers are defined in interval
notation as

R ≡ [−∞,∞] .

Definition 2.4 An affinely extended real number x ∈ R is ±∞ or it is a cut
in the affinely extended real number line.

Definition 2.5 In R, ±∞ are such that the limit of any monotonic sequence
of real numbers which diverges in R is equal to ∞ or −∞.

Theorem 2.6 If x ∈ R and x 6= ±∞ then x ∈ R.

Proof. Proof follows from Definition 2.2. l

Definition 2.7 Infinity is such that

∞−∞ = undefined , and
∞
∞

= undefined .

Definition 2.8 Infinity does not have the distributive property of multiplica-
tion. For two non-zero real numbers a and b we have

∞ ·
(
b+ a

)
=∞ .
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To the contrary, we write for two orthogonal unit vectors ê1 and ê2

∞ ·
(
ê1 + ê2

)
= undefined .

Remark 2.9 In Definition 2.8 the former case gives the appearance of a dis-
tributive property because we can sum b + a and then use the multiplicative
absorptive property of ∞ to obtain a simplified result but we cannot do so
in the latter case which is only mentioned in anticipation of the expression
∞ ·

(
x+ iy

)
which appears in Section 5.

§3 Modified Infinity

Definition 3.1 Additive absorption is a property of ±∞ such that non-zero
numbers are additive identities of ±∞. The additive absorptive property is

±∞± x = ±∞∓ x = ±∞ , for x ∈ R0 , x 6= 0 .

Definition 3.2 Let the symbol ∞̂ be called modified infinity and endow it
with every property of ∞ except additive absorption.

Definition 3.3 Infinity and modified infinity both describe the same affinely
extended real number

±∞̂ = ±∞ =⇒ R ≡ [−∞̂, ∞̂] .

Definition 3.4 The hat which differentiates modified infinity±∞̂ from canon-
ical infinity ±∞ is inserted and removed by choice except in the case where it
invokes a contradiction and must be removed by definition. If a contradiction
is obtained via non-absorptivity then the hat must be removed to alleviate the
contradiction.

Remark 3.5 When the ±∞ symbols appear as ±∞̂, consider the hat to be
an instruction to delay the additive absorption of ±∞ indefinitely or until such
delay causes a contradiction. The instruction to “delay additive absorption”
should be understood to mean that additive absorption is not a property of
±∞̂ but that the additive absorptive property can be trivially implemented
after an ad hoc decision to remove the hat by choice or after its removal is
required by definition.

Example 3.6 An example of a statement in which the hat does not invoke a
contradiction and may be left in place is

x = ∞̂ − b .
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Example 3.7 An example of a statement in which the hat invokes a contra-
diction and may not be left in place is given by two sequences

xn =
n∑
k=1

k , and yn = c0 +
n∑
k=1

k ,

where n ∈ N and c0 is some non-zero real number. Since ∞ and ∞̂ are the
same number we can use Definitions 2.1 and 3.2 to write

lim
n→∞

xn =∞ = ∞̂ , and lim
n→∞

yn =∞ = ∞̂ .

We may also write, however,

lim
n→∞

yn = lim
n→∞

c0 + lim
n→∞

xn = c0 + ∞̂ .

This delivers an equality
∞̂ = c0 + ∞̂ ,

which contradicts the delayed additive absorption of ∞̂. At this point, we
must cease to delay additive absorption by removing the hat. Then

∞ = c0 +∞ ,

demonstrates the usual additive absorptive property of infinity and there is no
contradiction.

Definition 3.8 ∞̂ is such that for any non-zero b ∈ R0

±∞̂+ b = b± ∞̂
±∞̂ − b = −b± ∞̂

±∞̂+
(
− b
)

= ±∞̂ − b
±∞̂+ b = ±∞̂ −

(
− b
)

−
(
± ∞̂

)
= ∓∞̂

±∞̂ · b = b · ±∞̂ =

{
±∞̂ if b > 0

∓∞̂ if b < 0

±∞̂
b

=

{
±∞̂ if b > 0

∓∞̂ if b < 0

b

± ∞̂
= 0 .

Definition 3.9 ∞̂ is such that

±∞̂+ 0 = 0± ∞̂ = ±∞̂ − 0 = undefined
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±∞̂ · 0 = 0 · ±∞̂ = undefined

±∞̂
0

= undefined

0

± ∞̂
= 0 .

Remark 3.10 We will revisit the lack of an additive identity in Example 4.13.

Definition 3.11 ±∞ has all the properties assigned to ±∞̂ in Definitions 3.8
and 3.9 plus the additive absorptive operation of Definition 3.1.

§4 Real Numbers in the Neighborhood of Infinity

Definition 4.1 Let R̂ be the set of all numbers of the form

x = ±
(
∞̂ − b

)
, where b ∈ R0 , b > 0 .

Definition 4.2 The ordering of R̂ numbers is such that

±
(
∞̂ − b

)
= ±

(
∞̂ − a

)
⇐⇒ a = b(

∞̂ − b
)
>
(
∞̂ − a

)
⇐⇒ a > b

−
(
∞̂ − b

)
> −

(
∞̂ − a

)
⇐⇒ a < b(

∞̂ − b
)
> −

(
∞̂ − a

)
∀ b, a ∈ R0(

∞̂ − b
)
> x ∀ b, x ∈ R0

−
(
∞̂ − b

)
< x ∀ b, x ∈ R0(

∞̂ − b
)
<∞ ∀ b ∈ R0

−
(
∞̂ − b

)
> −∞ ∀ b ∈ R0 .

Theorem 4.3 All numbers x ∈ R̂ are cuts in the affinely extended real number
line, i.e.: they are affinely extended real numbers.

Proof. By Definition 2.4, an affinely extended real number is a cut in or end-
point of the affinely extended real number line. Definition 1.3 requires that a
cut separates one line into two pieces. Observe that

R \ (∞̂ − b) ≡ [−∞, ∞̂ − b) ∪ (∞̂ − b,∞]

R \
(
− ∞̂+ b

)
≡ [−∞,−∞̂+ b) ∪ (−∞̂+ b,∞] .

All numbers x ∈ R̂ conform to the definition of affinely extended real num-
bers. l
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Main Theorem 4.4 All numbers x ∈ R̂ are real numbers.

Proof. If a number is an affinely extended real number x ∈ R and x 6= ±∞
then by Theorem 2.6 we have x ∈ R. In the absence of additive absorption

±
(
∞̂ − b

)
6= ±∞̂ = ±∞ ,

because it is the definition of R̂ that b 6= 0. Also note that

R/(∞̂ − b) ≡ (−∞, ∞̂ − b) ∪ (∞̂ − b,∞) .

All numbers x ∈ R̂ satisfy Definition 1.1. l

Theorem 4.5 All numbers x ∈ R̂ are real numbers in the neighborhood of
infinity x ∈ R∞.

Proof. We have shown in Main Theorem 4.4 that

R̂ ⊂ R ,

so we will satisfy Definition 1.6 if we show that

R̂ ∩ R0 ≡ ∅ .

Definition 1.5 requires that elements of R0 satisfy

−n < x < n ,

so assume
−n < ±

(
∞̂ − b

)
< n .

Since b ∈ R0 we know it has an additive inverse. Add or subtract b to obtain

−n+ b < ∞̂ < n+ b , and − n− b < −∞̂ < n− b .

We obtain a contradiction as ∞ cannot be less than the sum of two finite
numbers and −∞ cannot be greater than the difference of two finite numbers.

All R̂ numbers satisfy the definition of R∞. l

Remark 4.6 The remaining definitions in the section define the arithmetic

operations for R̂ numbers. The purpose in defining these operations is to

supplement the canonical operations for R0 and∞ ∼ ∞̂. Every R̂ number can
be decomposed and its pieces manipulated separately but the main purpose

of defining special operations for R̂ is to define new operations for expressions
which are undefined under the arithmetic operations of R0 and ∞ alone or
whose structure vanishes under additive absorption.
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Definition 4.7 The arithmetic operations of R̂ numbers with R0 numbers are

−
(
∞̂ − b

)
= −∞̂+ b

−
(
− ∞̂+ b

)
= ∞̂ − b

±
(
∞̂ − b

)
+ x = x±

(
∞̂ − b

)
=

{
±∞̂ ∓

(
b− x

)
if b 6= x

±∞̂ if b = x

±
(
∞̂ − b

)
· x = x · ±

(
∞̂ − b

)
=

{
±
(
∞̂ − xb

)
if x 6= 0

undefined if x = 0

±
(
∞̂ − b

)
x

=

±∞̂ ∓
b

x
if x 6= 0

undefined if x = 0

x

±
(
∞̂ − b

) = 0 .

Theorem 4.8 The quotient of a number x ∈ R0 divided by a number y ∈ R̂
is identically zero.

Proof. Let z be any non-zero real number such that

x

y
= z .

Since ||x|| < ||y||, we have ||z|| < 1 which implies z ∈ R0. All R0 numbers
have a multiplicative inverse. We find, therefore, that

x

zy
= 1 ⇐⇒ x = zy .

The hat on ∞̂ only suppresses additive absorption so

zy = z · ±
(
∞̂ − b

)
= ±

(
∞̂ − zb

)
.

This delivers a contradiction because it requires that x is a real number in the
neighborhood of infinity while we have already defined it to be a real number
in the neighborhood of the origin. Therefore, the only possible numerical value
for x/y is 0. l

Definition 4.9 The arithmetic operations of R̂ numbers with R̂ numbers are

±
(
∞̂ − b

)
±
(
∞̂ − a

)
= ±∞̂ ∓

(
b+ a

)
±
(
∞̂ − b

)
∓
(
∞̂ − a

)
= ±

(
a− b

)(
∞̂ − b

)(
∞̂ − a

)
= undefined
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∞̂ − b
∞̂ − a

= undefined .

Theorem 4.10 Products of the form R̂ · R̂ are undefined.

Proof. Assume ∞̂ has the distributive property of multiplication so that(
∞̂ − b

)(
∞̂ − a

)
= ∞̂ − ∞̂ − ∞̂+ ba .

By different groupings of the terms, we obtain contradictory values:

∞̂ − ∞̂ − ∞̂+ ba = ∞̂ −
[
∞̂+

(
∞̂ − ba

)]
= ∞̂ −

(
∞̂ − ba

)
= ba ,

and

−∞̂+ ∞̂ − ∞̂+ ba = −∞̂+
[
∞̂ −

(
∞̂ − ba

)]
= −∞̂+ ba .

While these two values do not agree, the latter has the added problem of being
negative number. If we assumed(

∞̂ − b
)(
∞̂ − a

)
= ba , then

1(
∞̂ − b

)(
∞̂ − a

) =
1

ab
,

in contradiction to

1(
∞̂ − b

)(
∞̂ − a

) =

(
1

∞̂ − b

)(
1

∞̂ − a

)
= 0 . l

Theorem 4.11 Quotients of the form R̂/R̂ are undefined.

Proof. Observe that

∞̂ − b
∞̂ − a

=
∞̂
∞̂ − a

− b

∞̂ − a
.

Insert the multiplicative identity into the first term so that

∞̂ · 1
∞̂ − a

= ∞̂ ·
(

1

∞̂ − a

)
= ∞̂ · 0 = undefined . l

Remark 4.12 Although(
∞̂ − b

)
−
(
∞̂ − a

)
= a− b ,

implies the existence of an additive inverse for every R̂ number, this does not
imply an additive inverse for ∞ because the case of a = b = 0 is ruled out by

the definition of R̂.
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Example 4.13 Definition 3.9 states that infinity does not have an additive
identity element. An example motivating this condition is given by the limit

lim
x→∞

(
x2 − x

)
=∞

lim
x→∞

(
x2 − x

)
= lim

x→∞
x2 − lim

x→∞
x =∞−∞ .

which is usually used to demonstrate the lack of an additive inverse for ∞. If
infinity is bestowed with an additive inverse then we obtain a contradiction
∞ = 0. The expression ∞ −∞ is thus undefined. If we added the hats to
infinity then we could insert the additive identity to write

∞ = ∞̂ − ∞̂ = ∞̂ − ∞̂+ 0 = ∞̂ − ∞̂+ 1− 1 =
(
∞̂ − 1

)
−
(
∞̂ − 1

)
= 0 .

We see that unhatted infinity likewise cannot have zero as an additive identity
because we could write

∞ =∞−∞ =∞−∞+
(
1−1

)
= ∞̂−∞̂+1−1 =

(
∞̂−1

)
−
(
∞̂−1

)
= 0 .

where we have simply chosen not to do the additive absorptive operation within
the freedom afforded to the order of algebraic operations. This example con-
firms that the only difference between ∞ and ∞̂ is an instruction to delay
additive absorption for the latter.

Remark 4.14 The expressions∞ and ∞̂ are perfectly well defined but∞+0

and ∞̂ + 0 are examples of an undefined composition. Since ∞ is not an R̂
number, this property cannot create problems for the algebra of R̂ numbers.
Essentially, we have traded the zero additive identity element of infinity for

the freedom to add and subtract R̂ numbers.

Theorem 4.15 An R̂ number does not have a multiplicative inverse.

Proof. Assume
x
(
∞̂ − b

)
= 1 .

If x ∈ R̂ then the operation is undefined. If x ∈ R0 then we obtain

∞̂ − xb = 1 .

This is a contradiction because it requires that 1 is a number in the neighbor-

hood of infinity. If x ∈ R∞ is a positive number less than every positive R̂
number then we find that the product of two real numbers larger than one is
equal to one. This is another contradiction. If x is a negative number then its
product with a positive real number must be negative. l
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Remark 4.16 Since real numbers in the neighborhood infinity do not always
have a multiplicative inverse, such numbers cannot be elements of number
fields. The common practice of using number fields as a generalized proxy for
all numbers, therefore, should be considered to have a narrower scope of valid
application than is commonly understood. Also note that operations of the

form R̂ + R are not closed because(
∞̂ − b

)
+ a = ∞̂ , for b = a , b, a ∈ R0 ,

and
∞̂ 6∈ R̂ .

§5 Complex Numbers

Definition 5.1 A number is a complex number z ∈ C if and only if

z = x+ iy , where x, y ∈ R , i =
√
−1 .

Definition 5.2 As∞ does not absorb −1 in 1D, in 2D we have the condition
that infinity does not absorb −1 or ±i.

Definition 5.3 As the extended real line has two distinct infinites, the ex-
tended complex plane has four: {+∞,+i∞,−∞,−i∞}.

Definition 5.4 The affinely extended complex plane is

C ≡ C ∪ {±∞} ∪ {±i∞} .

Definition 5.5 The multiplicative operations for ±∞ and ±i∞ with i are

±∞ · i = i · ±∞ = ±i∞
±i∞ · i = i · ±i∞ = ∓∞ .

Remark 5.6 The non-distributive property of ±∞ (Definition 2.8) was prac-
tically redundant in 1D but for z ∈ C this feature gains significance.

Definition 5.7 The multiplicative operations for ±∞ with complex numbers
z ∈ C are

±∞ · z = z · ±∞ =



±∞ if Re(z) > 0 and Im(z) = 0

∓∞ if Re(z) < 0 and Im(z) = 0

±i∞ if Im(z) > 0 and Re(z) = 0

∓i∞ if Im(z) < 0 and Re(z) = 0

undefined if Im(z) 6= 0 and Re(z) 6= 0

undefined if z = 0

.
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Definition 5.8 The multiplicative operations for ±i∞ with complex numbers
z ∈ C are

±i∞ · z = z · ±i∞ =



±i∞ if Re(z) > 0 and Im(z) = 0

∓i∞ if Re(z) < 0 and Im(z) = 0

∓∞ if Im(z) > 0 and Re(z) = 0

±∞ if Im(z) < 0 and Re(z) = 0

undefined if Im(z) 6= 0 and Re(z) 6= 0

undefined if z = 0

.

Definition 5.9 The arithmetic operations for complex numbers z ∈ C whose

real and/or imaginary parts are R̂ numbers follow directly from the other
definitions.

§6 The Riemann Zeta Function

Example 6.1 The Euler product is constructed from the Dirichlet sum form
of ζ as follows. We expand the series

ζ(z) =
∞∑
n=1

1

nz
= 1 +

1

2z
+

1

3z
+

1

4z
+

1

5z
+ . . . ,

and then multiply both sides by 2−z to obtain

1

2z
ζ(z) =

1

2z
+

1

4z
+

1

6z
+

1

8z
+

1

10z
+ . . . .

The next step is to subtract the second equation from the first to obtain(
1− 1

2z

)
ζ(z) = 1 +

1

3z
+

1

5z
+

1

7z
+

1

9z
+

1

11z
+ . . . .

Then we multiply by 3−z to obtain

1

3z

(
1− 1

2z

)
ζ(z) =

1

3z
+

1

9z
+

1

15z
+

1

21z
+

1

27z
+ . . . .

Subtracting again yields(
1− 1

3z

)(
1− 1

2z

)
ζ(z) = 1 +

1

5z
+

1

7z
+

1

11z
+ . . . .

Next, we would multiply by 5−z and then subtract again. Essentially, we apply
the Sieve of Eratosthenes to get rid of all the fractional terms on the right.
The issue of absolute converges arises when we note that even in the limit of
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sieving out an infinite number of primes, there might still be another term left
on the right hand side after the 1. In the limit, that number is infinitely large,
and for z > 1 the final term is guaranteed to be zero through 1/∞ = 0. For
this reason, we say ζ absolutely converges to the Euler product on the region
of the complex plane where Re(z) > 1. If we took, for example, z = −2, then
remaining term on the right would be ∞ and we could not nicely divide the
parenthetical terms from the left to obtain

ζ(z) =
1(

1− 1

2z

)(
1− 1

3z

)(
1− 1

5z

)(
1− 1

7z

)
. . .

=
∏

p | primes

1

1− p−z
.

Definition 6.2 An application of the Riemann ζ function is said to be an
application in quantum field theory if and only if ζ appears inside the complex
exponential as

ψ := eiζ(z) .

Theorem 6.3 For any application in quantum field theory, the Riemann ζ
function absolutely converges to the Euler product if z is such that Re(z) < −1.

Proof. To prove this theorem, we will construct the Euler product inside the
complex exponential. We have

eiζ(z) = ei(1+
1
2z

+ 1
3z

+ 1
4z

+ 1
5z

+...) .

Multiply this by ei(2
−z) to obtain

ei
1
2z
ζ(z) = ei(

1
2z

+ 1
4z

+ 1
6z

+ 1
8z

+...) .

Next, divide the first equation by the second to obtain

ei(1−
1
2z )ζ(z) = ei(1+

1
3z

+ 1
5z

+ 1
7z

+ 1
9z

+ 1
11z

+...) .

By following the prescription put forth in Example 6.1, we obtain

ei(1−
1
2z )(1− 1

3z )(1− 1
5z )... ζ(z) = ei(1+...) .

As in Example 6.1, if Re(z) > 1 the last term in the exponent is guaranteed
to go to zero and we have

eiζ(z) = e

i

(1− 1
2z )(1− 1

3z )(1− 1
5z )... = e

i
∏ 1

1−p−z .

If Re(z) < −1, then we obtain

ei(1−
1
2z )(1− 1

3z )(1− 1
5z )... ζ(z) = ei(1+∞̂) = eiei∞̂ .
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We have proven in References [1] and [2] that ei∞̂ = 1. Therefore, when
Re(z) < −1, we obtain the absolutely convergent expression

ei(1−
1
2z )(1− 1

3z )(1− 1
5z )... ζ(z) = ei(1+∞̂) = eiei∞̂ = e

i
∏ 1

1−p−z .

We have proven that ζ does absolutely converge to the Euler product for every
application in quantum field theory when Re(z) < −1. l

Theorem 6.4 The Euler product form of the Riemann zeta function has com-
plex zeros in the neighborhood of negative infinity.

Proof. Consider a number z0 ∈ C such that

z0 = −
(
∞̂ − b

)
+ iy0 , where b, y0 ∈ R0 , b 6= 0 .

Observe that the Euler product form of ζ

ζ(z) =
∏

p|primes

1

1− p−z

takes z0 as

ζ(z0) =
1

1− P (∞̂−b)−iy0

 ∏
p|primes
p 6=P

1

1− p(∞̂−b)−iy0



=
1

1− 1

P b
P ∞̂
[

cos(y0 lnP )− i sin(y0 lnP )
]
 ∏
p|primes
p 6=P

1

1− p(∞̂−b)−iy0

 .

Let y0 lnP = 2nπ for some prime P and n ∈ N. Then

ζ(z0) =
1

1− ∞̂

 ∏
p|primes
p 6=p′

1

1− p(∞̂−b)−iy0

 .

By Theorem 4.8, we find that

ζ(z0) = 0 . l

Remark 6.5 Theorem 6.4 demonstrates that the Riemann hypothesis is ef-
fectively false for all applications in quantum field theory.



14 Real Numbers in the Neighborhood of Infinity

References

[1] Jonathan W. Tooker. Proof of the Limits of Sine and Cosine at Infinity.
viXra:1809.0234, (2018).

[2] Jonathan W. Tooker. Derivation of the Limits of Sine and Cosine at Infinity.
viXra:1806.0082, (2018).


	Real Numbers
	Affinely Extended Real Numbers
	Modified Infinity
	Real Numbers in the Neighborhood of Infinity
	Complex Numbers
	The Riemann Zeta Function

