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Abstract: In our previous works we suggest that quantum particles are composite physical 

objects endowed with the geometric and topological structures of their corresponding 

differentiable manifolds that would allow them to imitate and adapt to physical environments. 

In this work we show that Dirac equation in fact describes quantum particles as composite 

structures that are in a fluid state in which the components of the wavefunction can be 

identified with the stream function and the velocity potential of a potential flow described in 

the theory of classical fluids. We also show that Dirac quantum particles can manifest as 

standing waves which are the result of the superposition of two fluid flows moving in 

opposite directions. For a steady motion a Dirac quantum particle does not exhibit a wave 

motion even though it has the potential to establish a wave within its physical structure, 

therefore, without an external disturbance a Dirac quantum particle may be considered as a 

classical particle defined in classical physics. 

 

In our previous works on spacetime structures of quantum particles we suggest that quantum 

particles should be endowed with geometric and topological structures of differentiable 

manifolds and their motion should be described as isometric embeddings in higher Euclidean 

space. We also suggest that all quantum particles are formed from mass points which are 

joined together by contact forces which are a consequence of viewing quantum particles as 

CW-complexes [1,2,3]. Furthermore, we also discuss the topological transformation of 

quantum dynamics by showing the wave dynamics of a quantum particle on different types of 

topological structures in various dimensions from the fundamental polygons of the 

corresponding universal covering spaces [4]. We present our discussions in the form of Bohr 

model in one, two and three dimensions using linear wave equations. In one dimension, the 

fundamental polygon is an interval and the universal covering space is the straight line and in 

this case the standing wave on a finite string is transformed into the standing wave on a circle 

which can be applied into the Bohr model of the hydrogen atom. In two dimensions, the 

fundamental polygon is a square and the universal covering space is the plane and in this case 

the standing wave on the square is transformed into the standing wave on different surfaces 

that can be formed by gluing opposite sides of the square, which include a 2-sphere, a 2-

torus, a Klein bottle and a projective plane. This may be seen as an extension of the Bohr 

model of the hydrogen atom from one-dimensional manifolds of the 1-sphere and 1-torus 

embedded in the ambient two-dimensional Euclidean space    into two-dimensional 

manifolds embedded or immersed in the ambient three-dimensional Euclidean space   . In 

three dimensions, the fundamental polygon is a cube and the universal covering space is the 
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three-dimensional Euclidean space. It is shown that a 3-torus and the manifold      

defined as the product of a Klein bottle and a circle can be constructed by gluing opposite 

faces of a cube therefore in three-dimensions the standing wave on a cube is transformed into 

the standing wave on a 3-torus or on the manifold     . We also discuss a transformation 

of a stationary wave on the fundamental cube into a stationary wave on a 3-sphere despite it 

still remains unknown whether a 3-sphere can be constructed directly from a cube by gluing 

its opposite faces. In spite of this uncertainty, however, we speculate that mathematical 

degeneracy in which an element of a class of objects degenerates into an element of a 

different but simpler class may play an important role in quantum dynamics. For example, a 

2-sphere is a degenerate 2-torus when the axis of revolution passes through the centre of the 

generating circle. Therefore, it seems reasonable to assume that if an n-torus degenerates into 

an n-sphere then wavefunctions on an n-torus may also be degenerated into wavefunctions on 

an n-sphere. Furthermore, since an n-sphere can degenerate itself into a single point, therefore 

the mathematical degeneracy may be related to the concept of wavefunction collapse in 

quantum mechanics where the classical observables such as position and momentum can only 

be obtained from the collapse of the associated wavefunctions for physical measurements. 

This consideration suggests that quantum particles associated with differentiable manifolds 

may possess the more stable mathematical structures of an n-torus rather than those of an n-

sphere. These considerations of the intrinsic geometric and topological characteristics of 

quantum particles raise the question of how these standing waves could be established 

physically. The aim of this work is to answer this question by showing that Dirac equation in 

fact describes quantum particles as composite structures that are in a fluid state in which the 

components of the wavefunction can be identified with the stream function and the velocity 

potential of a potential flow described in the theory of classical fluids. In this case Dirac 

quantum particles can manifest as standing waves which are the result of the superposition of 

two fluid flows moving in opposite directions. We also show that even though a Dirac 

quantum particle has the potential to transfer energy in opposite directions to establish a 

standing wave within its physical structure, for a steady motion without an external 

disturbance a Dirac quantum particle can be considered as a classical particle defined in 

classical physics. 

We have shown that Maxwell field equations of electromagnetism and Dirac relativistic 

equation with an external field can be formulated covariantly from a general system of linear 

first order partial differential equations [5].  

     
 
   
   

 

   

 

   

       
 

 

   

     
  

 

   

    
                                                                 

The system of equations given in Equation (1) can be rewritten in a matrix form as 

    
 

   

 

   

            

 

   

                                                                                          



where               
 ,                                     with   ,   ,   

and   are matrices representing the quantities    
 ,    

 ,   
  and   , which are assumed to be 

constant in this work. While the quantities  ,   and   represent physical entities related 

directly to the physical properties of the particle, the quantities    represent an external field, 

such as the potentials of an electromagnetic field. If we apply the operator    
 

   

 
    on the 

left on both sides of Equation (2) and with the assumption that the coefficients    
 ,   

  and    

are constants then we obtain 

    
  

 

   
 

 

   

              
  

      

 

   

 

   

                  
  

   

 

   

               

In physics, physical equations, such as Maxwell and Dirac equations, are formed by selecting 

the matrices    so that each component    satisfies a wave equation similar to the Klein-

Gordon equation. The simplest case is to form Dirac equation simply by setting   
     and 

           . On the other hand, for the case of Maxwell field equations of 

electromagnetism, we have to rely on the established equations to determine the matrices   . 

From this consideration it seems that there may exist other systems of matrices    that also 

lead to possible formulations of different physical fields depending on the dimension of the 

physical system under investigation. There could also be a general method to determine the 

matrices    so that physical fields could be classified. In the following we will only consider 

Dirac equation for quantum particles. Dirac equation for an arbitrary field can be formulated 

from the system of linear first order partial differential equations given in Equation (2) by 

setting         ,    ,    . In this case, in terms of the operators   , Equation (2) 

becomes 

    
 

   

 

   

            

 

   

                                                                                                  

Equation (4) can be written in a covariant form as Dirac equation for an arbitrary field as [6] 

                                                                                                                                      

Even though in the following we will examine only physical states of Dirac quantum particles 

in which      where the physical quantity    is assumed to be associated with an external 

field, however, if we consider quantum particles as differentiable manifolds which are formed 

by mass points joined together by contact forces then we may suggest that they are endowed 

with intrinsic geometric and topological structures and in this case the quantity    may be an 

internal field that is responsible for the stability of the physical structure of a quantum 

particle. As we showed in our previous that this is in fact the case when at least part of a 

quantum particle exists as a two-dimensional structure in which the intrinsic angular 

momentum can take half-integer values. The problem that we considered can actually be 

started with Dirac equation given in Equation (5). It can be shown that in the non-relativistic 

limit, Dirac equation reduces to the Pauli equation for stationary system as [7] 



 
 

  
           

  

  
                                                                                    

In the case when    ,    , and        then we have 

 
  

  
       

 

 
                                                                                                                  

Now let us examine a physical system that is described by the Schrödinger wave equation 

given in Equation (7) from the viewpoint of an observer who sees it as a planar system 

[8,9,10]. If we consider physical systems whose configuration space is multiply 

connected then multivalued wavefunctions can be used. In two-dimensional space, the 

Schrödinger equation in the planar polar coordinates takes the form 

 
  

  
 
 

 

 

  
  

 

  
  

 

  
  

   
        

 

 
                                                                 

Solutions of the form                 then reduce the above equation to two separate 

equations for the functions   and R 

   

   
                                                                                                                                            

   

   
 
 

 

  

  
 
  

  
  

  

  
 
 

 
                                                                                             

where m is identified as the angular momentum of the system. From the system of ordinary 

differential equations given in Equations (9) and (10), the energy spectrum can be found as 

   
   

           
                                                                                                                   

It is seen that if the physical system is the Bohr model of two-dimensional hydrogen-like 

atom then the angular momentum m must take half-integral values. Hence, the topological 

structure of a configuration space of a physical system can determine the quantum nature of 

an observable of the system. This result should be expected in quantum mechanics since 

we know that the quantum behaviour of a particle depends almost entirely on the 

configuration of an experiment. If, in a particular experiment, the electron of a hydrogen-

like atom is constrained to move in a plane, then the orbital angular momentum of the 

electron must take half-integral values if we use the Schrödinger equation to study the 

dynamics of the electron and want to retain the same energy spectrum as the Bohr model. 

As a consequence, it might seem possible to invoke the result to explain the Stern-Gerlach 

experiment without the necessity of introduction of spin into the quantum theory.  

Now we show that Dirac equation for a free particle can be used to describe the state of a 

fluid of the quantum particle formulated in the theory of classical fluids. For free Dirac 

quantum particles, Equation (5) reduces to 



                                                                                                                                              

with the matrices    of the form 

    

    
    
     
     

         

    
    
     
     

          

     
    
    
     

          

    
     
     
    

              

By expanding Equation (12) using Equation (13), we obtain 

 
   
  

       
 

  
  

 

  
    

   
  

                                                                                          

 
   
  

       
 

  
  

 

  
    

   
  

                                                                                          

   
  

        
 

  
  

 

  
    

   
  

                                                                                          

   
  

        
 

  
  

 

  
    

   
  

                                                                                          

First, it is observed that with the form of the field equations given in Equations (14-17), we 

may interpret that the change of the field         with respect to time generates the field 

       , similar to the case of Maxwell field equations in which the change of the electric 

field generates the magnetic field. With this observation it may be suggested that, like the 

Maxwell electromagnetic field which is composed of two essentially different physical fields, 

the Dirac field of massive particles may also be viewed as being composed of two different 

physical fields, namely the field        , which plays the role of the electric field in 

Maxwell field equations, and the field        , which plays the role of the magnetic field. 

The similarity between Maxwell field equations and Dirac field equations can be carried 

further by showing that it is possible to reformulate Dirac equation as a system of real 

equations. When we formulate Maxwell field equations from a system of linear first order 

partial differential equations we rewrite the original Maxwell field equations from a vector 

form to a system of first order partial differential equations by equating the corresponding 

terms of the vectorial equations. Now, since, in principle, a complex quantity is equivalent to 

a vector quantity therefore in order to form a system of real equations from Dirac complex 

field equations we equate the real parts with the real parts and the imaginary parts with the 

imaginary parts. In this case Dirac equation given in Equations (14-17) can be rewritten as a 

system of real equations as follows 

 
   
  

 
   
  

 
   
  

                                                                                                                               

  
   
  

 
   
  

 
   
  

                                                                                                                              



 
   
  

 
   
  

 
   
  

                                                                                                                               

 
   
  

 
   
  

 
   
  

                                                                                                                               

   
  

                                                                                                                                                    

   
  

                                                                                                                                                

   
  

                                                                                                                                                

 
   
  

                                                                                                                                                   

If the wavefunction   satisfies Dirac field equations given in Equations (18-25) then we can 

derive the following system of equations for all components 

    
   

                                                                                                                                            

    
   

 
    
   

 
    
   

                                                                                                                         

Solutions to Equation (26) are  

            
            

                                                                                                         

where     and     are undetermined functions of      . The solutions given in Equation (28) 

give a distribution of a physical quantity along the y-axis. On the other hand, Equation (27) 

can be used to describe the dynamics, for example, of a vibrating membrane in the      -

plane. If the membrane is a circular membrane of radius   then the domain   is given as 

            . In the polar coordinates given in terms of the Cartesian coordinates 

      as        ,        , the two-dimensional wave equation given in Equation (27) 

becomes 

 

  
   

   
 
   

   
 
 

 

  

  
 
 

  
   

   
                                                                                                    

The general solution to Equation (29) for the vibrating circular membrane with the condition 

    on the boundary of   can be found as [11] 



                                              

 

   

                    

 

     

                                                                               

where           is the Bessel function of order   and the quantities    ,    ,     and 

    can be specified by the initial and boundary conditions. It is also observed that at each 

moment of time the vibrating membrane appears as a 2D differentiable manifold which is a 

geometric object whose geometric structure can be constructed using the wavefunction given 

in Equation (30). Even though elementary particles may have the geometric and topological 

structures of a 3D differentiable manifold, it is seen from the above descriptions via the 

Schrödinger wave equation and Dirac equation that they appear as 3D physical objects that 

embedded in three-dimensional Euclidean space. Interestingly, in the following we will show 

that the solution given in Equation (30) can be used to describe a standing wave in a fluid due 

to the motion of two waves in opposite directions. At its steady state in which the system is 

time-independent, the system of equations given in Equations (18-21) reduces to the 

following system of equations 

   
  

 
   
  

              
   
  

 
   
  

                                                                                                 

   
  

 
   
  

               
   
  

 
   
  

                                                                                                

It is observed from Dirac equation for steady states that the field         and the field 

        satisfy the Cauchy-Riemann equations in the      -plane. We will now discuss 

whether it is possible to consider Dirac quantum particles as physical systems which exist in 

a fluid state as defined in the classical fluid dynamics as substances that retain a definite 

volume, have the ability to flow and deform continually, hence they can exhibit a wave 

motion. For the clarity of presentation we first need to outline the main features in the theory 

of classical fluids, especially in two dimensions. In fluid dynamics, quantities that satisfy the 

Cauchy-Riemann equations can be identified with the velocity potential and the stream 

function of an incompressible and irrotational flow [12,13,14,15]. In two-dimensional fluid 

dynamics, a streamline is a theoretical line that is assumed to be tangential to the 

instantaneous velocity, therefore there is no flow that can cross the streamline. For a 

continuous stream of fluid, the streamlines can form continuous lines or closed curves. As an 

illustration, in the following we will consider a free or potential vortex flow whose 

streamlines are concentric circles in the      -plane as shown in the following figure  



 

In two-dimensional incompressible flow, the stream function   is defined as a volume flux 

through a curve given by 

                                                                                                                                           

From the definition given in Equation (33), we have             . On the other hand, 

the total derivative of the stream function   is given by                       , 

therefore we obtain the following relationships between the velocity components         and 

the stream function   

   
  

  
           

  

  
                                                                                                                      

The stream function   is defined in terms of polar coordinates       as         , 

therefore we have                       . As shown in the figure below, we also 

have                . 

 

therefore we also obtain the following relationships between the velocity components 

        and the stream function   

   
 

 

  

  
            

  

  
                                                                                                                     

From the definition of the stream function we see that the radial component of the velocity of 

a vortex flow is equals to zero,     , since there is no flow that can cross the streamlines. 

In fluid dynamics, the circulation   around a closed curve is a line integral of velocity   

defined as 



                                                                                                                                         

where    is the tangential velocity. By Stokes’ theorem, the circulation   is related to the 

vorticity       as 

       
  

      
 

                                                                                                                        

It is seen from the above equation that the flux of vorticity is the circulation. In particular, for 

a two-dimensional flow in the      -plane, the circulation becomes 

    
   
  

 
   
  
     

 

                                                                                                                      

A flow for which the circulation is equals to zero,        , is called a potential or 

irrotational flow. In two dimensions it is seen from Equation (38) that the condition for 

potential flow is  

   
  

 
   
  

                                                                                                                                             

It should be mentioned that in potential flow we have        
  

   therefore closed 

streamlines cannot exist in such flow. In general this result prevents us from identifying the 

components of Dirac equation    as closed stream function at the same time identifying    

as velocity potential. However, it is seen that the           may not be valid if the 

region of space is multiply-connected since the velocity circulation may not be zero if the 

closed contour cannot be contracted to a point. This interesting feature can be discussed 

further as follows. For a two-dimensional irrotational flow given in polar coordinates, it can 

be shown that the flow velocity    and the radius   satisfy the following relationship     

 , where   is a constant. The constant   can be established by using the singularity in the 

irrotational vortex flow where to velocity becomes infinite at the centre of the vortex with the 

vorticity is given by the relation                 . In this case the circulation around 

a circular streamline can be found as 

                                                                                                                              

It is interesting to note that in the Bohr model of the hydrogen atom in which the electron is 

assumed to move around the nucleus in stationary circular orbits with      then the 

angular momentum is quantised as       . If we now also assume that Dirac quantum 

particles are in fluid states whose circulation   is also quantised as the angular momentum 

then we obtain the following quantisation for the circulation 

       
    

 
 
  

 
                                                                                                                        

Since     , the stream function         can be obtained as follows 



           
 

   
    

 

  
         

  

 
                                                         

where    is an undetermined constant. 

In fluid dynamics, another important concept that is connected with an irrotational flow is the 

concept of the velocity potential   which is defined in the      -plane as 

                                                                                                                               

It is seen from Equation (43) that the velocity components can be expressed in terms of the 

velocity potential as follows 

   
  

  
           

  

  
                                                                                                                            

In polar coordinates      , the velocity potential and its relationship with the velocity 

components are given as 

                                                                                                                             

   
  

  
           

 

 

  

  
                                                                                                                         

Similarly, the velocity potential   can also be obtained using the relation          

      as  

            
 

   
       

  

  
    

  

 
                                                          

where    is an undetermined constant. From the relationships given in Equations (34) and 

(44) we then obtain the Cauchy-Riemann equations 

  

  
 
  

  
              

  

  
 
  

  
                                                                                                        

By comparing Equation (48) to Dirac equations given in Equations (31) and (32), the field 

        may also be identified as the stream function and the velocity potential of one fluid 

flow and the field         with another fluid flow. However, the main problem that we want 

to deal with now is whether the two fields         and         are connected and, most 

importantly, how such connection would lead to the prospect of using them to describe a 

Dirac quantum particle as a standing wave. In the following we will show that in fact this is 

the case by using the relationships between the components of these two fields given in 

Equations (22-25). For convenience we rewrite these equations as follows 

   
  

            
   
  

                                                                                                                    



   
  

             
   
  

                                                                                                              

    
   

                                                                                                                              

If the physical quantity  , which is identified with the inertial mass of a quantum particle, is 

assumed to be positive,    , then it is observed that it is possible to describe the physical 

structure of a Dirac quantum particle as a spinning top if we consider solutions to Equation 

(51) as hybrid functions of the form 

    
         

                             

         
                             

                                                                                           

For simplicity, in the following we will consider only the case for which    . The solutions 

given in Equation (52) can be rewritten in the following forms 

            
                           

                                                                                   

            
                             

                                                                                 

Using the equations given in Equations (49) and (50), we further obtain the conditions 

         and        . If we write            and            then we have 

                                 
                                                                                           

                                    
                                                                                      

From the above forms of solutions given to the components    of the wavefunction   we can 

show how a standing wave can be established from the superposition of a wave associated 

with the field         and a wave associated with the field        . Let           
    

be identified with the velocity potential and               with the stream function of 

one fluid flow. Now we have two different descriptions that can be given to the field 

       . If we identify the component               with the velocity potential and 

               with the stream function of another fluid flow then we have the stream 

function of the first flow equals the velocity potential of the second flow, and the stream 

function of the second flow is a reflection of the velocity of the first flow. Even though this 

kind of identification may be used to describe a particular type of fluid flow of Dirac 

quantum particles, it does not give rise to the physical structure that we are looking for, that is 

a standing wave. However, if we now identify the component               with the 

stream function and            
    with the velocity potential of the second flow then 

the two flows that are identical except for their flow directions, which are opposite to each 

other, and in fact this is what we want to obtain because they can form a required standing 

wave. It is also observed that for a steady motion a Dirac quantum particle does not exhibit a 

wave motion even though it has the potential to establish a wave within its physical structure. 

Therefore, without an external disturbance a Dirac quantum particle may be considered as a 

classical particle defined in classical physics. 
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