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Abstract: This paper continues to explore a possible physical interpretation of the wavefunction but 
with a focus on the wavefunction(s) of a single photon in the Mach-Zehnder experiment. It focuses, in 
particular, on how one might visualize linear and circular polarization states for photon waves, and how 
beam splitters may or may not split a circular polarization state into two independent linear polarization 
states or – vice versa – recombine two linear polarization states into one circular state.  

As such, it attempts to provide a more refined approach to the rather crude hidden-variable theory for 
explaining quantum-mechanical interference that was presented in a previous paper 
(http://vixra.org/pdf/1811.0005v1.pdf). The outcome is the same, however: the theory does not work. 
Hence, this paper again shows the limit of such physical interpretations, thereby confirming the intuition 
behind Bell’s Theorem. 
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Linear and circular photon spin states in the 
Mach-Zehnder interference experiment 

Introduction 
Duns Scotus wrote: pluralitas non est ponenda sine necessitate. Plurality is not to be posited without 
necessity.1 William of Ockham turned this idea into an intuitive lex parsimoniae: the simplest solution 
tends to be the correct one.2 However, redundancy in the description does not seem to bother 
physicists. When explaining the basic axioms of quantum physics in his famous Lectures on quantum 
mechanics, Richard Feynman writes:  

“We are not particularly interested in the mathematical problem of finding the minimum set of 
independent axioms that will give all the laws as consequences. Redundant truth does not 
bother us. We are satisfied if we have a set that is complete and not apparently inconsistent.”3  

Some ambiguity in the description is apparently not eschewed either. For example, most introductory 
courses on quantum mechanics will show that both  = exp(i) = exp[i(kxt)] and * = exp(i) = 
exp[i(kxt)] = exp[i(tkx)] =  are acceptable waveforms to describe a particle that is propagating 
in the x-direction. Both have the required mathematical propertiesas opposed to, say, some real-
valued sinusoid.4 We would then think some proof should follow of why one would be better than the 
other or, preferably, one would expect as a discussion on what these two mathematical possibilities 
might representbut, no. That does not happen. The physicists conclude that “the choice is a matter of 
convention and, happily, most physicists use the same convention.”5 

Instead of making a choice here, we could, perhaps, use the various mathematical possibilities to 
incorporate spin in the description, as real-life particles – think of electrons and photons here – have 
two spin states6 (up or down), as shown below. 

                                                           
1 Duns Scotus, Commentaria. 
2 https://en.wikipedia.org/wiki/Occam%27s_razor. 
3 Feynman’s Lectures on Quantum Mechanics, Vol. III, Chapter 5, Section 5.  
4 The argument is based on whether or not the superposition of similar waveforms gives us a sensible composite 
waveform. 
5 See, for example, the MIT’s edX Course 8.04.1x (Quantum Physics), Lecture Notes, Chapter 4, Section 3.  
6 Photons are spin-one particles but they do not have a spin-zero state. 
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Table 1: Matching mathematical possibilities with physical realities?7 

Spin and direction of travel Spin up Spin down 

Positive x-direction  = exp[i(kxt)] * = exp[i(kxt)] = exp[i(tkx)] 

Negative x-direction χ = exp[i(kx+t)] = exp[i(tkx)] χ* = exp[i(kx+t)]  

 

This seems to make sense. Theoretical spin-zero particles do not exist and we should therefore, perhaps, 
use the extra degree of freedom in the mathematical description to describe the spin state of our 
particle. An important added benefit here is that the weird 720-degree symmetry of spin-1/2 particles 
collapses into an ordinary 360-degree symmetry and that we would, therefore, have no need, perhaps, 
to describe them using spinors and other complicated mathematical objects. We have written about this 
at length elsewhere8 and so we won’t repeat ourselves here.  

Let us return to the topic of ambiguity in the description. It seems to apply to the concept of spin or 
polarization states for photons. Indeed, when discussing electrons, we can think of a spinning charge 
and, therefore, we can easily relate it to classical concepts.9 In contrast, the same discussion for photons 
becomes complicated. This paper explores some elements in this discussion that may or may not be 
useful for a better understanding. 

Linear polarization states 
Electrons have a wavefunction and, as mentioned above, we can come up with easy geometric or 
physical interpretations. Unfortunately, such easy geometric or physical interpretations seem to break 
down when tryring to explain the weird results we get from interference experiments. When analyzing 
interference, the wavefunction concept gives way to the concept of a probability amplitude which we 
associate with a possible path rather than a particle. The math looks somewhat similar but models very 
different ideas and concepts. Before the electron goes through the two slits, we had one wavefunction. 
When it goes through, we have two probability amplitudes that – somehow – recombine to give us a 
diffraction pattern. 

Do we have a wavefunction for the photon when it hits the first beam splitter in the Mach-Zehnder 
interferometer? If we do, how do we capture the spin states? We can easily distinguish between left- 
and right-hand circular polarization, but if we have linearly polarized light, can we distinguish between a 
plus and a minus direction? Maybe. Maybe not. Suppose the light is polarized along the x-direction. We 
know the component of the electric field vector along the y-axis10 will then be equal to Ey = 0, and the 
magnitude of the x-component of E will be given by a sinusoid. However, here we have two distinct 

                                                           
7 Of course, the formulas only give the elementary wavefunction. The wave packet will be a Fourier sum of such 
functions. 
8 Jean Louis Van Belle, Euler’s wavefunction (http://vixra.org/abs/1810.0339, accessed on 30 October 2018) 
9 Jean Louis Van Belle, In Search of Schrödinger’s Electron (http://vixra.org/abs/1809.0350, accessed on 4 
November 2018)  
10 The z-direction is the direction of wave propagation in this example. In quantum mechanics, we often define the 
direction of wave propagation as the x-direction. This will, hopefully, not confuse the reader. The choice of axes is 
usually clear from the context.  
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possibilities: Ex = cos(ω·t) or, alternatively, Ex = sin(ω·t). These are the same functions but – crucially 
important – with a phase difference of 90°: sin(ω·t) = cos(ω·t + π/2).  

  Figure 1: Two varieties of linearly polarized light?11 

 

Would this matter? Sure. We can easily come up with some classical explanations of why this would 
matter. Think, for example, of birefringent material being defined in terms of quarter-wave plates. In 
fact, the more obvious question is: why would this not make a difference, and why would we have two 
possibilities only? What if we add an additional 90° shift to the phase? We know that cos(ω·t + π) = 
cos(ω·t). We cannot reduce this to cos(ω·t) or sin(ω·t). Hence, if we think in terms of 90° phase 
differences, then cos(ω·t) = cos(ω·t + π)  and sin(ω·t) = sin(ω·t + π) are different waveforms too. And 
why should we think in terms of 90° phase shifts only? Why shouldn’t we think of a continuum of linear 
polarization states? The answer is: we probably should. 

Linear polarization in the Mach-Zehnder experiment 
Let us look at the Mach-Zehnder interferometer once again. We have two beam splitters (BS1 and BS2) 
and two perfect mirrors (M1 and M2). An incident beam coming from the left is split at BS1 and 
recombines at BS2, which sends two outgoing beams to the photon detectors D0 and D1. More 
importantly, the interferometer can be set up to produce a precise interference effect which ensures all 
the light goes into D0, as shown below. Alternatively, the setup may be altered to ensure all the light 
goes into D1. 

Figure 2: The Mach-Zehnder interferometer12 

 

                                                           
11 Source of the illustration: https://upload.wikimedia.org/wikipedia/commons/7/71/Sine_cosine_one_period.svg.. 
12 Source of the illustration: MIT edX Course 8.04.1x (Quantum Physics), Lecture Notes, Chapter 1, Section 4 
(Quantum Superpositions). 
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What is the classical explanation? The classical explanation is something like this: the first beam splitter 
(BS1) splits the beam into two beams. These two beams arrive in phase or, alternatively, out of phase 
and we, therefore, have constructive or destructive interference that recombines the original beam and 
makes it go towards D0 or, alternatively, towards D1. That explanation does not make any sense when 
thinking of a continuum of linear polarization states. If beam a and b are linearly polarized, then we can 
describe them by cos(ω·t  k·x) = cos() and cos( + Δ) respectively. In the classical analysis, the 
difference in phase (Δ) will be there because of a difference of the path lengths13 and the recombined 
wavefunction will be equal to the same cosine function, but with argument  + Δ/2, multiplied by an 
envelope equal to 2·cos(Δ/2). We write14: 

cos() + cos( + Δ) = 2·cos( + Δ/2)·cos(Δ/2) 

We always get a recombined beam with the same frequency, but when the phase difference between 
the two incoming beams is small, its amplitude is going to be much larger. To be precise, it is going to be 
twice the amplitude of the incoming beams for Δ = 0. In contrast, if the two beams are out of phase, the 
amplitude is going to be much smaller, and it’s going to be zero if the two waves are 180 degrees out of 
phase (Δ = π), as shown below. That doesn’t make sense because twice the amplitude means four times 
the energy, and zero amplitude means zero energy. The energy conservation law is being violated: 
photons are being multiplied or, conversely, are being destroyed.  

Figure 3: Constructive and destructive interference for linearly polarized beams 

 

Can we solve the problem by assuming that, when the beam splits at BS1, the energy of the a and b 
beam must be split in half too? We know the energy is given by (or, to be precise, proportional to) the 
square of the amplitude (let us denote this amplitude by A).15 Hence, if we want the energy of the two 
individual beams to add up to A2 = 12 = 1, then the (maximum) amplitude of the a and b beams must be 
1/√2 of the amplitude of the original beam, and our formula becomes: 

                                                           
13 Feynman’s path integral approach to quantum mechanics allows photons (or probability amplitudes, we should 
say) to travel somewhat slower or faster than c, but that should not bother us here. 
14 We are just applying the formula for the sum of two cosines here. If we would add sines, we would get sin() + 
sin( + Δ) = 2·sin( + Δ/2)·cos(Δ/2). Hence, we get the same envelope: 2·cos(Δ/2). 
15 If we would to reason in terms of average energies, we would have to apply a 1/2 factor because the average of 
the sin2 and cos2 over a cycle is equal to 1/2. 
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(1/√2)·cos() + (1/√2)·cos( + Δ) = (2/√2)·cos( + Δ/2)·cos(Δ/2) 

This reduces to (2/√2)·cos() for Δ = 0. Hence, we still get twice the energy – (2/√2)2 equals 2 – when the 
beams are in phase and zero energy when the two beams are 180 degrees out of phase. This doesn’t 
make sense. 

Of course, the mistake in the argument is obvious: we cannot just add the amplitudes of the a and b 
beams because they have different directions. If the a and b beams – after being split from the original 
beam – are linearly polarized, then the angle between the axes of polarization will be 90 degrees. 
Hence, we cannot just add the two amplitudes. In fact, we should ask ourselves: can we add them at all? 
The incident angle between the two beams in a Mach-Zehnder apparatus is 90 degrees and the two 
oscillations are, therefore, independent. Hence, we need to add them like we would add the two parts 
of a complex number. Remembering the geometric interpretation of the imaginary unit as a 
counterclockwise rotation, we can – perhaps – try writing the sum of our a and b beams as: 

(1/√2)·cos() + i·(1/√2)·cos( + Δ) = (1/√2)·[cos() + i·cos( + Δ)] 

What can we do with this? Not all that much, except noting that we can write the cos( + Δ) as a sine for 
Δ = ± π/2. To be precise, we get: 

(1/√2)·cos() + i·(1/√2)·cos( + π/2) = (1/√2)·(cos  i·sin) = (1/√2)·ei·   

(1/√2)·cos() + i·(1/√2)·cos(  π/2) = (1/√2)·(cos + i·cos) = (1/√2)·ei·  

Combining circular and linear polarization states 
The result above is interesting, because we can now build an alternative theory of what might happen in 
the Mach-Zehnder interferometer: 

1. If we would assume the incoming light has either a left- or a right-handed circular 
polarization; and 

2. If the first beam splitter would effectively split the beam into two linearly polarized waves; 
and 

3. If the second beam splitter would combine those two beams back into a circularly polarized 
wave; and 

4. Then we can, effectively, explain the binary outcome of the Mach-Zehnder experiment – at 
the level of a photon – in terms of an alternative theory. 

What about the 1/√2 factor? If the ei· and ei· wavefunctions can, effectively, be interpreted 
geometrically as a physical oscillation in two dimensions, as illustrated below16, then each of the two 
(independent) oscillations will pack one half of the energy of the wave. Hence, if such circularly 
polarized wave splits into two linearly polarized waves, then the two linearly polarized waves will 
effectively, pack half of the energy without any need for us to think their (maximum) amplitude should 
be adjusted.    

                                                           
16 Such physical interpretation is very easy in the case of light. We only need to assign the physical dimension of 
the electric field (force per unit charge, N/C) to the two perpendicular oscillations. 



6 
 

Figure 4: Left- and right-handed polarization17 

 

Let us think of the geometry here. If x is the direction of propagation of the wave, then the z-direction 
will be pointing upwards, and we get the y-direction from the righthand rule for a Cartesian reference 
frame.18 We may now think of the oscillation along the y-axis as the cosine, and the oscillation along the 
z-axis as the sine. If we then think of the imaginary unit i as a 90-degree counterclockwise rotation in the 
yz-plane (and remembering the convention that angles (including the phase angle ) are measured 
counterclockwise), then the right- and left-handed waves can be represented by the following 
wavefunctions: 

cos + i·sin = ei· (RHC) 

cos() + i·sin() = cos  i·sin = ei· (LHC) 

If we now think of the x-direction as the direction of the incident beam in the Mach-Zehnder 
experiment, and we would want to also think of rotations in the xz-plane, then we need to need to 
introduce some new convention here. Let us introduce another imaginary unit, which we’ll denote by j, 
and which will represent a 90-degree counterclockwise rotation in the xz-plane.19  

Photon 
polarization 

At BS1 At mirror At BS2 Final result 

RHC Photon (ei· = cos + 
i·sin)   is split into 
two linearly polarized 
beams: 
Upper beam (vertical 
oscillation) = j·sin 

Lower beam 
(horizontal oscillation) 
= cos 

 

The vertical oscillation 
gets rotated clockwise 
and becomes j·j·sin 
= j2·sin = sin 

The horizontal 
oscillation is not 
affected and is still 
represented by cos 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and 
becomes j·sin. The 
lower beam is still 
represented by cos 

The photon 
wavefunction is given 
by cos + j·sin = e+j·.   
This is an RHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

LHC Photon (ei· = cos  
i·sin)   is split into 
two linearly polarized 
beams: 

The vertical oscillation 
gets rotated clockwise 
and becomes 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and 

The photon 
wavefunction is given 
by cos  j·sin = ej·.  

                                                           
17 Credit: https://commons.wikimedia.org/wiki/User:Dave3457. 
18 Note the reference frame in the illustrations of the LHC and RHC wave is left-handed. We will want to think in 
terms of a regular right-handed reference frame. 
19 This convention may make the reader think of the quaternion theory but we are thinking more of simple Euler 
angles here: i is a (counterclockwise) rotation around the x-axis, and j is a rotation around the y-axis.  
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Upper beam (vertical 
oscillation) = j·sin 

Lower beam 
(horizontal oscillation) 
= cos 

 

(j)·(j)·sin = = 
j2·sin = sin 

The horizontal 
oscillation is not 
affected and is still 
represented by cos 

becomes j·sin. The 
lower beam is still 
represented by cos 

This is an LHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

 

Of course, we may also set up the apparatus with different path lengths, in which case the two linearly 
polarized beams will be out of phase when arriving at BS1. Let us assume the phase shift is equal to Δ = 
180° = π. This amounts to putting a minus sign in front of either the sine or the cosine function. Why? 
Because of the cos( ± π) = cos and sin( ± π) = sin identities. Let us assume the distance along the 
upper path is longer and, hence, that the phase shift affects the sine function.20 In that case, the 
sequence of events might be like this: 

Photon 
polarization 

At BS1 At mirror At BS2 Final result 

RHC Photon (ei· = cos + 
i·sin)   is split into 
two linearly polarized 
beams: 
Upper beam (vertical 
oscillation) = j·sin 

Lower beam 
(horizontal oscillation) 
= cos 

 

The vertical oscillation 
gets rotated clockwise 
and becomes j·j·sin 
= j2·sin = sin 

The horizontal 
oscillation is not 
affected and is still 
represented by cos 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and – 
because of the longer 
distance – becomes 
j·sin( + π) = j·sin. 
The lower beam is still 
represented by cos 

The photon 
wavefunction is given 
by cos  j·sin = ej·.  

This is an LHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

LHC Photon (ei· = cos  
i·sin)   is split into 
two linearly polarized 
beams: 
Upper beam (vertical 
oscillation) = j·sin 

Lower beam 
(horizontal oscillation) 
= cos 

 

The vertical oscillation 
gets rotated clockwise 
and becomes 
(j)·(j)·sin = = 
j2·sin = sin 

The horizontal 
oscillation is not 
affected and is still 
represented by cos 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and – 
because of the longer 
distance – becomes 
j·sin( + π) = +j·sin. 
The lower beam is still 
represented by cos 

The photon 
wavefunction is given 
by cos + j·sin = e+j·.   
This is an RHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

 

What happens when the difference between the phases of the two beams is not equal to 0 or 180 
degrees? What if it is some random value in-between? Do we get an elliptically polarized wave or some 
other nice result? Denoting the phase shift as Δ, we can write: 

cos + j·sin( + Δ) = cos + j·(sin·cosΔ + cos·sinΔ) 

                                                           
20 The reader can easily work out the math for the opposite case (longer length of the lower path). 
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However, this is also just a circularly polarized wave, but with a random phase shift between the 
horizontal and vertical component of the wave, as shown below. Of course, for the special values Δ = 0 
and Δ = π, we get cos + j·sin and cos  j·sin once more.   

Figure 5: Left- and right-handed polarization 

 

Conclusion 
Is this some sort of hidden-variable theory of how quantum-mechanical interference in Mach-Zehnder 
experiments really works? No. 

First, the Mach-Zehnder interferometer does not work this way. We do not always get a nice (100%) 
output beam: we do have constructive and destructive interference and the simple model above does 
not explain that.21  

Second, even if this model would work, we basically only diverted attention away from another 
problem: we may be able to explain the interference effect, but we are now not able to explain how 
these 50/50 beam splitters works. Indeed, why is it that, if we would measure the position of the photon 
immediately after it exits beam splitter BS1, the measurement would tell us the photon is either in the 
upper path or, else, in the lower path – and why is the probability of being in either equal to 50%?  

In short, the mystery remains. 

Jean Louis Van Belle, 5 November 2018 
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21 For a good classical explanation of the Mach-Zehnder interferometer, see: K.P. Zetie, S.F. Adams and R.M. 
Tocknell, January 2000, How does a Mach–Zehnder interferometer work? 
(https://www.cs.princeton.edu/courses/archive/fall06/cos576/papers/zetie_et_al_mach_zehnder00.pdf, accessed 
on 5 November 2018). 
For a good quantum-mechanical explanation (interference of single photons), see – for example – the Mach-
Zehnder tutorial from the PhysPort website (https://www.physport.org/curricula/QuILTs/, accessed on 5 
November 2018).  


