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Abstract

Classical mathematics (involving such notions as infinitely small/large and
continuity) is usually treated as fundamental while finite mathematics is treated
as inferior which is used only in special applications. In our previous publica-
tions we argue that the situation is the opposite: classical mathematics is only
a special degenerate case of finite one in the formal limit when the character-
istic of the ring or field in finite mathematics goes to infinity. In the present
paper we give a simple and rigorous proof of this fundamental fact. In general,
introducing infinity automatically implies transition to a degenerate theory be-
cause in that case all operations modulo a number are lost. So, even from the
pure mathematical point of view, the very notion of infinity cannot be funda-
mental, and theories involving infinities can be only approximations to more
general theories. We also prove that standard quantum theory based on classi-
cal mathematics is a special degenerate case of quantum theory based on finite
mathematics. Motivation and implications are discussed.
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1 Remarks on arithmetic

The goal of the present paper is to give a mathematical proof that finite mathematics
is more fundamental than classical one. At the same time, we believe that to better
understand the problem it is important to discuss philosophical aspects of such a
simple problem as operations with natural numbers.

In the 20s of the 20th century the Viennese circle of philosophers under the
leadership of Schlick developed an approach called logical positivism which contains
verification principle: A proposition is only cognitively meaningful if it can be defini-
tively and conclusively determined to be either true or false (see e.g. Refs. [1]). On
the other hand, as noted by Grayling [2], ”The general laws of science are not, even
in principle, verifiable, if verifying means furnishing conclusive proof of their truth.
They can be strongly supported by repeated experiments and accumulated evidence but
they cannot be verified completely”. Popper proposed the concept of falsificationism
[3]: If no cases where a claim is false can be found, then the hypothesis is accepted as
provisionally true.

1



According to the philosophy of quantum theory, there should be no state-
ments accepted without proof and based on belief in their correctness (i.e. axioms).
The theory should contain only those statements that can be verified, where by ”ver-
ified” physicists mean experiments involving only a finite number of steps. So the
philosophy of quantum theory is similar to verificationism, not falsificationism. Note
that Popper was a strong opponent of the philosophy of quantum theory and sup-
ported Einstein in his dispute with Bohr.

The verification principle does not work in standard classical mathematics.
For example, it cannot be determined whether the statement that a + b = b + a
for all natural numbers a and b is true or false. According to falsificationism, this
statement is provisionally true until one has found some numbers a and b for which
a + b 6= b + a. There exist different theories of arithmetic (e.g. Peano arithmetic or
Robinson arithmetic) aiming to solve foundational problems of standard arithmetic.
However, those theories are incomplete and are not used in applications.

From the point of view of verificationism and the philosophy of quantum
theory, classical mathematics is not well defined not only because it contains an
infinite number of numbers. For example, let us pose a problem whether 10+20
equals 30. Then one should describe an experiment which gives the answer to this
problem. Any computing device can operate only with a finite number of bits and can
perform calculations only modulo some number p. Say p = 40, then the experiment
will confirm that 10+20=30 while if p = 25 then we will get that 10+20=5.

So the statements that 10+20=30 and even that 2 · 2 = 4 are ambiguous
because they do not contain information on how they should be verified. On the other
hands, the statements

10 + 20 = 30 (mod 40), 10 + 20 = 5 (mod 25),

2 · 2 = 4 (mod 5), 2 · 2 = 2 (mod 2)

are well defined because they do contain such an information. So, from the point of
view of verificationism and the philosophy of quantum theory, only operations modulo
a number are well defined.

We believe the following observation is very important: although classical
mathematics (including its constructive version) is a part of our everyday life, people
typically do not realize that classical mathematics is implicitly based on the assump-
tion that one can have any desired amount of resources. So classical mathematics is
based on the implicit assumption that we can consider an idealized case when a com-
puting device can operate with an infinite number of bits. In other words, standard
operations with natural numbers are implicitly treated as limits of operations mod-
ulo p when p → ∞. Usually in mathematics, legitimacy of every limit is thoroughly
investigated, but in the simplest case of standard operations with natural numbers
it is not even mentioned that those operations can be treated as limits of operations
modulo p. In real life such limits even might not exist if, for example, the Universe
contains a finite number of elementary particles.
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Classical mathematics proceeds from standard arithmetic which does not
contain operations modulo a number while finite mathematics necessarily involves
such operations. In the present paper we prove that, regardless of philosophical
preferences, finite mathematics is more fundamental than classical one. In Sec. 2 we
define a criterion when one theory is more fundamental than the other, and the proof
of the main statement is given in Sec. 3.

2 Comparison of different theories

A belief of the overwhelming majority of scientists is that classical mathematics (in-
volving the notions of infinitely small/large and continuity) is fundamental while finite
mathematics is something inferior what is used only in special applications. This be-
lief is based on the fact that the history of mankind undoubtedly shows that classical
mathematics has demonstrated its power in many areas of science.

The notions of infinitely small/large, continuity etc. were proposed by
Newton and Leibniz more than 300 years ago. At that time people did not know
about existence of atoms and elementary particles and believed that any body can be
divided by an arbitrarily large number of arbitrarily small parts. However, now it is
obvious that standard division has only a limited applicability because when we reach
the level of atoms and elementary particle the division operation looses its meaning.
In nature there are no infinitely small objects and no continuity because on the very
fundamental level nature is discrete. So, as far as application of mathematics to
physics is concerned, classical mathematics is only an approximation which in many
cases works with very high accuracy but the ultimate quantum theory cannot be
based on classical mathematics.

A typical situation in physics can be described by the following
Definition: Let theory A contain a finite parameter and theory B be ob-

tained from theory A in the formal limit when the parameter goes to zero or infinity.
Suppose that with any desired accuracy theory A can reproduce any result of theory B
by choosing a value of the parameter. On the contrary, when the limit is already taken
then one cannot return back to theory A and theory B cannot reproduce all results of
theory A. Then theory A is more general than theory B and theory B is a special
degenerate case of theory A.

Probably the most known example is that nonrelativistic theory (NT) can
be obtained from relativistic theory (RT) in the formal limit c → ∞ where c is the
velocity of light. RT can reproduce any result of NT with any desired accuracy if c is
chosen to be sufficiently large. On the contrary, when the limit is already taken then
one cannot return back from NT to RT, and NT can reproduce results of RT only in
relatively small amount of cases when velocities are much less than c. Therefore RT
is more general than NT, and NT is a special degenerate case of RT. Other known
examples are that classical theory is a special degenerate case of quantum one in the
formal limit ~ → 0 where ~ is the Planck constant, and Poincare invariant theory is
a special degenerate case of de Sitter invariant theories in the formal limit R → ∞
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where R is the parameter defining contraction from the de Sitter Lie algebras to the
Poincare Lie algebra.

In our publications (see e.g. Refs. [4, 5]) we discussed an approach called
Finite Quantum Theory (FQT) where quantum theory is based not on classical but
on finite mathematics. It has been shown that FQT is more general than standard
quantum theory and the latter is a special degenerate case of the former in the formal
limit when the characteristic of the field or ring in FQT goes to infinity. In Sec. 3 we
describe a proof of this statement and also prove

Main Statement: Even classical mathematics itself is a special
degenerate case of finite mathematics in the formal limit when the char-
acteristic of the field or ring in the latter goes to infinity.

Note that this statement is meaningful only if in applications finite math-
ematics is more pertinent than classical one while if those theories are treated only
as abstract ones than the statement that one theory is more fundamental than the
other is meaningless.

3 Proof of the main statement

Classical mathematics starts from natural numbers but here only addition and mul-
tiplication are always possible. In order to make addition invertible we introduce
negative integers and get the ring of integers Z. However, if instead of all natural
numbers we consider only a set Rp of p numbers 0, 1, 2, ... p− 1 where addition and
multiplication are defined as usual but modulo p then we get a ring without adding
new elements. In our opinion the notation Z/p for Rp is not quite adequate because
it may give a wrong impression that finite mathematics starts from the infinite set Z
and that Z is more general than Rp. However, although Z has more elements than
Rp, Z cannot be more general than Rp because Z does not contain operations modulo
a number.

Since operations in Rp are modulo p, one can represent Rp as a set
{0,±1,±2, ...,±(p− 1)/2)} if p is odd and as a set {0,±1,±2, ...,±(p/2− 1), p/2} if
p is even. Let f be a function from Rp to Z such that f(a) has the same notation
in Z as a in Rp. If elements of Z are depicted as integer points on the x axis of
the xy plane then, if p is odd, the elements of Rp can be depicted as points of the
circumference in Fig. 1. and analogously if p is even. This picture is natural since Rp

has a property that if we take any element a ∈ Rp and sequentially add 1 then after p
steps we will exhaust the whole set Rp by analogy with the property that if we move
along a circumference in the same direction then sooner or later we will arrive at the
initial point.

We define the function h(p) such that h(p) = (p − 1)/2 if p is odd and
h(p) = p/2− 1 if p is even. Let n be a natural number and U(n) be a set of elements
a ∈ Rp such that |f(a)|n ≤ h(p). Then ∀m ≤ n the result of any m operations
of addition, subtraction or multiplication of elements a ∈ U(n) is the same as for
the corresponding elements f(a) in Z, i.e. in this case operations modulo p are not
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Figure 1: Relation between Rp and Z

explicitly manifested.
Let n = g(p) be a function of p and G(p) be a function such that the set

U(g(p)) contains at least the elements {0,±1,±2, ...,±G(p)}. In what follows M > 0
is a natural number. If there is a sequence of natural numbers (an) then standard
definition that (an)→∞ is that ∀M ∃N > 0 such that an ≥M ∀n ≥ N . By analogy
with this definition we will now prove

Statement 1: There exist functions g(p) and G(p) such that ∀M ∃p0 > 0
such that g(p) ≥M and G(p) ≥ 2M ∀p ≥ p0.

Proof. ∀p > 0 there exists a unique natural n such that 2n2 ≤ h(p) < 2(n+1)2 . Define
g(p) = n and G(p) = 2n. Then ∀M ∃p0 such that h(p0) ≥ 2M2

. Then ∀p ≥ p0 the
conditions of Statement 1 are satisfied. �

The problem of actual infinity is discussed in a vast literature. The tech-
nique of classical mathematics does not involve actual infinities and here infinities are
understood only as limits. However, the basis of classical mathematics does involve
actual infinities. For example, Z is treated as actual and not potential infinity and
there is no rigorous definition of Z as a limit of some finite set. Statement 1 is the
proof that the ring Z is the limit of the ring Rp when p→∞, and the result of any
finite combination of additions, subtractions and multiplications in Z can be repro-
duced in Rp if p is chosen to be sufficiently large. On the contrary, when the limit is
already taken then one cannot return back from Z to Rp, and in Z it is not possible
to reproduce all results in Rp because in Z there are no operations modulo a number.
According to Definition in Sec. 2 this means that the ring Rp is more general than
Z, and Z is a special degenerate case of Rp.
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When p is very large then U(g(p)) is a relatively small part of Rp, and in
general the results in Z and Rp are the same only in U(g(p)). This is analogous to the
fact mentioned in Sec. 2 that the results of NT and RT are the same only in relatively
small cases when velocities are much less than c. However, when the radius of the
circumference in Fig. 1 becomes infinitely large then a relatively small vicinity of zero
in Rp becomes the infinite set Z when p→∞. This example demonstrates that once
we involve infinity and replace Rp by Z then we automatically obtain a degenerate
theory because in Z there are no operations modulo a number.

In classical mathematics the ring Z is the starting point for introducing the
notions of rational and real numbers. Therefore those notions arise from a degenerate
set. Then a question arises whether the fact that Rp is more general than Z implies
that finite mathematics is more general than classical one, i.e. in particular whether
finite mathematics can reproduce the results obtained by applications of classical
mathematics. For example, if p is prime then Rp becomes the Galois field Fp, and
the results in Fp considerably differ from those in the set Q of rational numbers even
when p is very large. In particular, 1/2 in Fp is a very large number (p + 1)/2.
Since quantum theory is the most general physical theory, the answer to this question
depends on whether standard quantum theory based on classical mathematics is most
general or is a special degenerate case of a more general quantum theory.

As noted in Sec. 2, de Sitter invariant quantum theory is more general
than Poincare invariant quantum theory. As shown in Refs. [4, 5]

Statement 2: In standard de Sitter invariant quantum theory it is always
possible to find a basis where the spectrum of all operators is purely discrete and the
eigenvalues of those operators are elements of Z. Therefore the remaining problem is
whether or not quantum theory based on finite mathematics can be a generalization
of standard quantum theory where states are described by elements of a separable
complex Hilbert spaces H.

Let x be an element of H and (e1, e2, ...) be a basis of H normalized such
that the norm of each ej is an integer. Then with any desired accuracy each element
of H can be approximated by a finite linear combination

x =
n∑

j=1

cjej (1)

where cj = aj + ibj and all the numbers aj and bj (j = 1, 2, ....n) are rational. This
follows from the known fact that the set of such sums is dense in H.

The next observation is that spaces in quantum theory are projective, i.e.
for any complex number c the elements x and cx describe the same state. This follows
from the physical fact that not the probability itself but only ratios of probabilities
have a physical meaning. In view of this property, both parts of Eq. (1) can be
multiplied by a common denominator of all the numbers aj and bj. As a result, we
have

Statement 3: Each element of H can be approximated by a finite linear
combination (1) where now all the numbers aj and bj are integers, i.e. belong to Z.
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We conclude that Hilbert spaces in standard quantum theory contain a
big redundancy of elements. Indeed, although formally the description of states in
standard quantum theory involves rational and real numbers, such numbers play only
an auxiliary role because with any desired accuracy each state can be described by
using only integers. Therefore, as follows from Definition in Sec. 2 and Statements
1-3,

• Standard quantum theory based on classical mathematics is a special degenerate
case of quantum theory based on finite mathematics.

• Main Statement formulated in Sec. 2 is valid.

4 Discussion

The above construction has a well-known historical analogy. For many years people
believed that the Earth was flat and infinite, and only after a long period of time
they realized that it was finite and curved. It is difficult to notice the curvature
dealing only with distances much less than the radius of the curvature. Analogously
one might think that the set of numbers describing physics in our Universe has a
”curvature” defined by a very large number p but we do not notice it dealing only
with numbers much less than p.

As noted in the preceding section, introducing infinity automatically im-
plies transition to a degenerate theory because in this case operations modulo a
number are lost. Therefore even from the pure mathematical point of view the no-
tion of infinity cannot be fundamental, and theories involving infinities can be only
approximations of more general theories.

In the preceding sections we have proved that classical mathematics is a
special degenerate case of finite one in the formal limit p → ∞ and that quantum
theory based on finite mathematics is more fundamental than standard quantum
theory. The fact that at the present stage of the Universe p is a huge number explains
why in many cases classical mathematics describes natural phenomena with a very
high accuracy. At the same time, as shown in Ref. [5], the explanation of several
phenomena can be given only in the theory where p is finite.

One of the examples is that in our approach gravity is a manifestation of
the fact that p is finite. In Ref. [5] we derive the approximate expression for the
gravitational constant wich depends on p as 1/lnp. By comparing this expression
with the experimental value we get that lnp is of the order of 1080 or more, i.e. p
is a huge number of the order of exp(1080) or more. However, since lnp is ”only” of
the order of 1080 or more, the existence of p is observable while in the formal limit
p→∞ gravity disappears.

Although classical mathematics is a degenerate case of finite one, a prob-
lem arises whether classical mathematics can be substantiated as an abstract science.
It is well-known that, in spite of great efforts of many great mathematicians, the
problem of foundation of classical mathematics has not been solved. For example,
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Gödel’s incompleteness theorems state that no system of axioms can ensure that all
facts about natural numbers can be proven and the system of axioms in classical
mathematics cannot demonstrate its own consistency. Let us recall that classical
mathematics does not involve operations modulo a number.

The philosophy of Cantor, Fraenkel, Gödel, Hilbert, Kronecker, Russell,
Zermelo and other great mathematicians was based on macroscopic experience in
which the notions of infinitely small, infinitely large, continuity and standard division
are natural. However, as noted above, those notions contradict the existence of ele-
mentary particles and are not natural in quantum theory. The illusion of continuity
arises when one neglects the discrete structure of matter.

However, since in applications classical mathematics is a special degenerate
case of finite one, foundational problems in this mathematics are important only
when it is treated as an abstract science. The technique of classical mathematics is
very powerful and in many cases (but not all of them) describes reality with a high
accuracy.
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