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Abstract

Classical mathematics (involving such notions as infinitely small/large and
continuity) is usually treated as fundamental while finite mathematics is treated
as inferior which is used only in special applications. We give a simple proof
that the situation is the opposite: classical mathematics is only a degenerate
special case of finite one. Motivation and implications are discussed.
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1 Motivation

A belief of the overwhelming majority of scientists is that classical mathematics (in-
volving the notions of infinitely small/large and continuity) is fundamental while finite
mathematics is something inferior what is used only in special applications. This be-
lief is based on the fact that the history of mankind undoubtedly shows that classical
mathematics has demonstrated its power in many areas of science.

The notions of of infinitely small/large, continuity etc. were proposed by
Newton and Leibniz more than 300 years ago. At that time people did not know
about existence of atoms and elementary particles and believed that any body can be
divided by an arbitrarily large number of arbitrarily small parts. However, now it is
clear that standard division has only a limited applicability because when we reach
the level of atoms and elementary particle the division operation looses its meaning.
In nature there are no infinitely small objects and no continuity because on the very
fundamental level nature is discrete. So, as far as applications of mathematics to
physics is concerned, classical mathematics is only an approximation which in many
cases works with very high accuracy but the ultimate quantum theory cannot be
based on classical mathematics.

A typical situation in physics can be described by the following
Definition: Let theory A contain a finite parameter and theory B be ob-

tained from theory A in the formal limit when this parameter goes to zero or infinity.
Suppose that with any desired accuracy theory A can reproduce any result of theory B
by choosing a value of the parameter. On the contrary, when the limit is already taken
then one cannot return back to theory A and theory B cannot reproduce all results of
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theory A. Then theory A is more general than theory B and theory B is a special
degenerate case of theory A.

Probably the most known example is that nonrelativistic theory (NT) can
be obtained from relativistic theory (RT) in the formal limit c → ∞ where c is the
velocity of light. RT can reproduce any result of NT with any desired accuracy if c is
chosen to be sufficiently large. On the contrary, when the limit is already taken then
one cannot return back from NT to RT, and NT can reproduce results of RT only in
relatively small amount of cases when velocities are much less than c. Therefore RT
is more general than NT and NT is the special degenerate case of RT. Other known
examples are that classical theory is a special degenerate case of quantum one in the
formal limit h̄ → 0 where h̄ is the Planck constant, and Poincare invariant theory is
a special degenerate case of de Sitter invariant theories in the formal limit R → ∞
where R is the parameter defining contraction from the de Sitter Lie algebras to the
Poincare Lie algebra.

In our publications (see e.g. Refs. [1, 2]) we discussed an approach called
Finite Quantum Theory (FQT) where quantum theory is based not on classical but
on finite mathematics. It has been shown that FQT is more general than standard
quantum theory and the latter is a special degenerate case of the former in the formal
limit when the characteristic of the field or ring in FQT goes to infinity. In Sec. 2
we prove the main statement of the present work that even classical mathematics
itself is a special degenerate case of finite mathematics in the formal limit when the
characteristic of the field or ring in the latter goes to infinity. Section 3 is discussion.

2 Proof of the main statement

Classical mathematics starts from natural numbers but here only addition and mul-
tiplication are always possible. In order to make addition invertible we introduce
negative integers and get the ring of integers Z. However, if instead of all natural
numbers we consider only a set Rp of p numbers 0, 1, 2, ... p− 1 where addition and
multiplication are defined as usual but modulo p then we get a ring without adding
new elements. In our opinion the notation Z/p for Rp is not quite adequate because
it may give a wrong impression that finite mathematics starts from the infinite set Z
and that Z is more general than Rp. However, although the number of elements in Z
is greater than in Rp, Z cannot be more general than Rp because Z does not contain
operations modulo p.

We assume for definiteness that p is odd; the case of even p can be con-
sidered analogously. Since operations in Rp are modulo p, one can represent Rp as a
set of elements {0,±i} (i = 1, ...(p − 1)/2). Let f be a function from Rp to Z such
that f(a) has the same notation in Z as a in Rp.

If elements of Z are depicted as integer points on the x axis of the xy
plane then the elements of Rp can be depicted as points of the circumference in Fig.
1. This picture is natural since Rp has a property that if we take any element a ∈ Rp

and successively add 1 to this element then after p steps we will exhaust the whole
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Figure 1: Relation between Rp and Z

set Rp by analogy with the property that if we move along a circumference in the
same direction then sooner or later we will arrive at the initial point.

Let m be a natural number and U(m) be a set of elements a ∈ Rp such
that |f(a)| ≤ [(p − 1)/2]1/m. Then for any n ≤ m the result of any n operations
of addition, subtraction or multiplication of elements a ∈ U(m) is the same as for
the corresponding elements f(a) in Z, i.e. in this case operations modulo p are not
explicitly manifested.

Let us now choose m as m = g(p) = int({ln[(p−1)/2]}1/2) where int(x) is
the integer part of x. Since [(p−1)/2]1/g(p) becomes infinitely large when p→∞ then
in the formal limit p → ∞ the set U(g(p)) becomes Z and for the infinite number
of additions, subtractions and multiplications of the elements of U(g(p)) the result is
the same as in Z. In other words, Z can be treated as a formal limit of U(g(p)) when
p→∞.

We have proved the following
Statement: The result of any finite combination of additions, subtrac-

tions and multiplications in Z can be reproduced in Rp if p is chosen to be sufficiently
large. On the contrary, when the limit p → ∞ is already taken then one cannot
return back from Z to Rp, and in Z it is not possible to reproduce all results in Rp

because in Z there are no operations modulo p. According to the Definition in Sec.
1 this means that the ring Rp is more general than Z, and Z is the special degenerate
case of Rp.

When p is very large then U(g(p)) is a relatively small part of Rp, and
the results in Z and Rp are the same only in U(g(p)). This is analogous to the fact
mentioned in Sec. 1 that the results of NT and RT are the same only in relatively
small cases when velocities are much less than c. However, when the radius of the
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circumference in Fig. 1 becomes infinitely large then a relatively small vicinity of zero
in Rp becomes the infinite set Z when p→∞.

A question arises whether the fact that Rp is more general than Z implies
that finite mathematics is more general than classical one. In classical mathematics
the ring Z is the starting point for introducing the notions of rational and real num-
bers. For example, if p is prime then Rp becomes the Galois field Fp, and the results
in Fp considerably differ from those in the set Q of rational numbers. For example,
1/2 in Fp is a very large number (p + 1)/2. However, for describing nature those
notions play only auxiliary role because, as noted in Sec. 1, standard division has a
limited applicability and, as explained in Ref. [1], since states in standard quantum
theory are projective then with any desirable accuracy they can be described by using
only integers. Therefore on the basis of the above properties of the transition from
Rp to Z we conclude that, at least in applications to physics, classical mathematics
is a degenerate case of finite one when formally p→∞.

3 Discussion

The above construction has a well-known historical analogy. For many years people
believed that the Earth was flat and infinite, and only after a long period of time
they realized that it was finite and curved. It is difficult to notice the curvature when
we deal only with distances much less than the radius of the curvature. Analogously
one might think that the set of numbers describing physics in our Universe has a
”curvature” defined by a very large number p but we do not notice it when we deal
only with numbers much less than p.

In the preceding sections we argue that classical mathematics is a degen-
erate case of finite one in the formal limit p→∞ and that ultimate quantum theory
will be based on finite mathematics. The fact that at the present stage of the Uni-
verse p is a huge number explains why in many cases classical mathematics describes
natural phenomena with a very high accuracy. At the same time, as shown in our
publications in Ref. [2], the explanation of several phenomena can be given only in
the theory where p is finite.

Although classical mathematics is a degenerate case of finite one, a prob-
lem arises whether classical mathematics can be substantiated as an abstract science.
It is well-known that, in spite of great efforts of many great mathematicians, the
problem of foundation of classical mathematics has not been solved. For example,
Gödel’s incompleteness theorems state that no system of axioms can ensure that all
facts about natural numbers can be proven and the system of axioms in classical
mathematics cannot demonstrate its own consistency.

The philosophy of Cantor, Fraenkel, Gödel, Hilbert, Kronecker, Russell,
Zermelo and other great mathematicians was based on macroscopic experience in
which the notions of infinitely small, infinitely large, continuity and standard division
are natural. However, as noted above, those notions contradict the existence of ele-
mentary particles and are not natural in quantum theory. The illusion of continuity
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arises when one neglects the discrete structure of matter.
However, since classical mathematics is a special degenerate case of finite

one, foundational problems in this mathematics do not have a fundamental role and
classical mathematics can be treated only as a technique which in many cases (but
not all of them) describes reality with a high accuracy.
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