
Self-gravitating gaseous spheres in 5D framework

E. E. Kangal∗1

1Computer Technology and Information Systems,

School of Applied Technology and Management of Erdemli,

Mersin University, Mersin-33740, Turkey

Abstract

One of the suitable theoretical idea for the polytrope in the Kaluza-Klein cosmology is discussed.

Assuming a 5-dimensional (5D) spacetime model described by the Kaluza-Klein theory of gravity,

we implement the energy density and pressure of the polytrope which is a self-gravitating gaseous

sphere and still very useful as a crude approximation to more realistic stellar models. Next, we

obtain the best-fit values of the auxiliary parameters given in the model according to the recent

observational dataset. Finally, we study some cosmological features and the thermodynamical

stability of the model.
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I. INTRODUCTION

The cosmic harmony puzzle starts with the diminish of the adiabatic cold dark matter for

structure formation[1]. Nearly two decades ago, astronomers figured out that the large scale

structure growth in cold dark matter simulations supposed a shape parameter Υ ≈ Ωmη ≈

0.25 to generate molds which agree with the recent astrophysical data[2]. Hubble Space

Telescope results[3], for η ≈ 0.7, indicate a low density universe, i.e. Ωm < 1, excluding the

Einstein-de Sitter type model. In addition to this, the predilection for inflation descriptions

and the lower bound to the oldest globular clusters ages contributed to the implementation

of the basic exigency of the cosmic harmony puzzle: Ωm ≈ 0.25 and Ωde = 1 − Ωm[1, 4].

Subsequently, this picture was reinforced by many observations: observational dataset of

SNe-Ia[5], CMB[6], LSS[7], WMAP[8–10], SDSS[11] and the Planck-2013, 2015 and 2018

results[12–14] indicate that the observable universe is at a speedy expansion phase which is

imputed to dark constituents, which do not cluster as ordinary matters do and have negative

large pressures.

Due to the dark content is not being detected directly, assuming the dominant components

of the universe resemble familiar forms of matter or energy has not been justified yet. On

the other hand, there are various theoretical candidates for the dark components of the

universe in literature. The simplest proposal is the cosmological constant[15, 16], and its

energy density ρΛ which remains constant in time and equation-of-state (EoS) parameter

are given by

ρΛ =
Λ

8πG
, ω = −1. (1)

Unfortunately, this earliest dark energy candidate suffers from the famous cosmological

constant issues such as the fine-tuning and cosmological coincidence. These issues have led

many physicists to give different proposals for the dark contents puzzle. Therefore, there

are two significant ways to investigate the current nature of the universe. The first one is to

consider the modification of gravity (for a good review see Ref.[17] and references there in),

and the second one is to assume the dark content territory of the universe (for a good review

see Ref.[16] and references there in). It is noteworthy to emphasize here that the second

method can also describe a non-minimal coupling case between the dark content and gravity

to implement a scalar-tensor theory (see Ref.[19] for a good instance). The most notable one

among various scalar field models is known as quintessence[18, 20] having an evolving scalar
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field ϕ with a self-interacting potential V (ϕ). Also, there are other dark content proposals, for

instance, back-reaction definitions that assume the dark content as a back-reaction effect of

inhomogeneities[21–23], Chaplygin gas[24, 25] and Polytrope[26, 27] models which unify the

dark energy and the dark matter, and braneworld prescriptions, which interpret the speedy

expansion era of the universe by formulating the general relativity in five dimensions[28].

A large number of theoretical physicist have been interested in higher dimensional field

theory compactifications in order to interpret lower dimensional ones in a better new way.

The most significant study among those is the compactification of the 6D(2, 0)-theory on

a Riemann surface[29]. Subsequently, this work leads to various 4D super-conformal field

theories. This notable construction can be considered to uncover many features of the

4D super-conformal ideas. For instance, it leads to Argyres-Seiberg type[30] duality which

is manifested as diverse decomposition of the same Riemann surface[31]. Moreover, con-

sidering the existence of additional dimensions gives interesting conclusions to interpret

the accelerated expansion behavior. The Kaluza-Klein theory including an interaction be-

tween electromagnetism and gravity is one of the most attractive ideas including additional

dimension[32, 33]. The Kaluza-Klein theory of gravity is divided into two branches[34, 35]:

the compact and non-compact ones. In the compact Kaluza-Klein theory, the additional

fifth dimension is assumed to be length-like while, in the non-compact form, we have a

mass-like fifth dimension. In fact, the non-compact version is a conclusion of the Campbell

theorem in which one cannot assume any matter in a 5D manifold by hand[34, 35]. In sub-

sequent studies, the original Kaluza-Klein theory of gravity becomes a basis of other higher

dimensional proposals in various perspectives[36–45]. For a very useful review including

higher dimensional ideas, one can check Ref.[46]. For a Kaluza-Klein type model to be able

to understand the observed 4D world, it is indispensable for the additional dimensions to be

compactified down to a size which one does not probe in particle physics experiments[47].

Appelquist and Chodos[48] showed that the main difference between the 5D Kaluza-Klein

idea and other higher dimensional (4 + d with d > 1) models is that the 5D field equations

have a compactified classical solution. It is known that an energy-momentum tensor must

be taken into account on the right-hand side of the Einstein field equation when the com-

pactification is due to matter fields[47]. On the other hand, there are several redefinitions

of original Chaplygin gas models (generalized[49–51], modified[52, 53], variable[54–58], vari-

able generalized[59, 60], variable modified[61] and extended[62, 63] ones) and there is no a
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definite criterion to select one of them as capable of recent observations at all scales. Like

the Chaplygin gas model, the polytrope gas describing self-gravitating gaseous spheres is

also define a unified dark matter-energy scenario[26, 27, 64, 65].

One of the significant tasks in theoretical physics is to constrain the auxiliary parameters

given in theoretical models. Investigating the luminosity distance measurements to a specific

category of objects[66–72] is the most often considered way. Recently, a new technique

including observational dataset of the Hubble parameter has been taken into account to test

some cosmological proposals[73–84].

This paper is structured as following: in the next section, we exactly construct the five-

dimensional form of the Polytropic model and discuss its adiabatic stability condition. In

the third section, we use the recent observational dataset to constrain two free parameters

of the five-dimensional Polytropic proposal. Next, in the fourth section, we study some

physical features of the model in order to interpret it cosmologically. In the fifth section,

we investigate the Polytropic cosmology via the generalized second law of thermodynamics.

The last section is devoted to closing remarks. All numerical calculations and analyzes will

be performed by using MATHEMATICA sofware[87].

II. KALUZA-KLEIN TYPE POLYTROPES

One of the most significant scalar field description for the role of dark energy is described

by the following lagrangian density[88]

£ = V (ϕ)
√
1 + gµν∂µϕ∂νϕ (2)

where ϕ denotes a scalar field function while V (ϕ) and gµν show a self-interacting potential

and the inverse metric tensor, respectively. In a spatially flat Kaluza-Klein type Friedmann-

Robertson-Walker space-time, the corresponding energy density and pressure of a tachyonic

field are given, respectively, by

ρϕ =
V (ϕ)√
1− ϕ̇2

, (3)

pϕ = −V (ϕ)
√
1− ϕ̇2. (4)

Additionally, the field equation for the scalar field is obtained as follows

ϕ̈

1− ϕ̇2
+

4ȧϕ̇

a
+

∂ϕV

V
= 0. (5)
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A similar formulation, known as the tachyonic scalar field, can be written for a minimally

coupled scalar field as

ρϕ =
ϕ̇2

2
+ V (ϕ), (6)

pϕ =
ϕ̇2

2
− V (ϕ). (7)

The tachyon scalar field model arising in the context of string theory[88, 89] has been

intensively discussed recently in application to modern cosmology[90–97]. It can be easily

concluded that the energy density and pressure given in equations (3), (4), (6) and (7) are

related with the original Chaplygin gas[24, 25] state equation, i.e. p = −B
ρ
, for the potential

V = B = constant. Therefore, we see that the Chaplygin gas proposal coincides with the

tachyonic field. The variable, generalized, modified or extended forms of the Chaplygin gas

model describe a unified dark matter-energy scenario[49, 52–55, 62, 98]. Here, we consider

another interesting proposal, which defines the polytropes[26, 27], and assumes that

p = κρ1+
1
m , (8)

where both κ and m denote real constants. Additionally, m is called as the polytropic index.

Note that, taking m = −1
2
with κ = −B transforms this model into the original Chaplygin

gas proposal. Moreover, assuming m = − 1
α+1

with κ = −B reduces the relation (8) to the

one, written for the generalized Chaplygin gas model[49–51].

The Kaluza-Klein type Friedmann-Robertson-Walker universe is described by the follow-

ing line-element[99]

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2) + (1− kr2)dx2

5

]
, (9)

where k represents the curvature parameter. Here, we have k = −1, k = 0 and k = +1 for the

closed, flat and open universes, respectively. The recent observational data[5, 8, 11, 13, 100]

strongly indicate a spatially flat universe, from this point of view we take k = 0 in further

calculations. Next, we suppose that the Kaluza-Klein type Friedmann-Robertson-Walker

universe is dominated by the Polytrope that is described by the following relation

Tµν = (ρ+ p)uµuν − gµνp (10)

with uµ defining the five-velocity vector.
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Consequently, the Kaluza-Klein forms of Friedmann equations are found as

H2 =
4πG

3
ρ, (11)

2H2 + Ḣ = −8πG

3
p, (12)

where the over-dot implies a time-derivative and H = ȧ
a
indicates the Hubble parameter.

Note that, for simplicity, we assume 4πG
3

= 1 in further calculations. In the Kaluza-Klein

framework, we get

ρ̇+ 4H(1 + ω)ρ = 0, (13)

with the fact that the corresponding Polytropic EoS parameter is defined as ω = p
ρ
. One

can find that the above relation can be transformed to an elegant form

d(ρa4) + pd(a4) = 0. (14)

One can integrate this equation and show that the Polytropic energy density evolves as

ρ =
1

a4

(
4κ

m

∫
a−1− 4

mda+ c
)−m

. (15)

In the above result, c denotes a constant. Subsequently, solving explicitly the above equation

gives

ρ =
[
c

m
√
a4 − κ

]−m
. (16)

We know that the cosmological and present energy densities are related with each other, i.e.

ρpre = 1.3ρcos[62]. Consequently, the constant c may be written in terms of a0 which is the

present cosmic scale factor value. For convenience, we further assume that a0 = 1. Thus, it

follows that c = −m
√
1.3 + κ. Now, we define a new parameter ξ = c

c−κ
, then it transforms

equation (16) into another convenient relation as

ρ =
− 1

m

√
(c− κ)(1− ξ + ξa

4
m ). (17)

Making use of the red shift parameter z in cosmological calculations helps us to fix

auxiliary parameters. It is well known that z = 1
a
− 1. Hence, we can write

H(z) = − ż

1 + z
. (18)

Moreover, we can discuss density perturbations in order to investigate the instability

conditions of the Polytropic proposal by making use of the following relations[101]

g̃µν = gµν + hµν , ũµ = uµ + δuµ, (19)
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ρ̃µ = ρµ + δρµ, p̃µ = pµ + δpµ, (20)

where hµν , δuµ, δρµ and δpµ represent small perturbations around gµν , uµ, ρµ and pµ,

respectively. Thus, the evolution of the perturbational case can be defined by the following

newtonian relation[101]

δ̈ − 2ż

1 + z
δ̇ +

[
λ2(z + 1)2ϑ2

s +
3

z + 1

(
2ż

z + 1
− z̈

)]
δ = 0, (21)

where δ = δρ
ρ
. Additionally, λ and ϑs show the wavelength of the perturbations and the

speed of sound, respectively. It is known that the speed of sound can be calculated by using

ϑ2
s =

∂p

∂ρ
=

ṗ

ρ̇
=

p′

ρ′
, (22)

where the prime represents derivative with respect to z. Now, performing required compu-

tations yields

ϑ2
s =

[
1 + (1 + z)−

4
m

(
0.43

κ
+ 1

)]
, (23)

which is indicating that ϑ2
s remains always positive if we have κ > −2.3. Therefore, under

this case, there is no concern about imaginary sound speed or instability of the selected

proposal. In FIG. 1, we plot the ϑ2
s ∼ z relation by taking the corresponding free parameters

as κ = −0.5, m = −2.4 (blue dashed line) and m = 2.4 (red line). One can conclude

that ϑ2
s ≥ 0 without any restriction as we mentioned in the above text. It is known that

negative values of ϑ2
s may lead us to some problematic issues. For instance, if there is no

interaction between gravity and a fluid, negative ϑ2
s values imply an instable case under

density perturbations. It can be seen from the FIG. 1 that the squared adiabatic sound

speed always has positive values, which means the Polytropic model is stable throughout

the history of the universe.

III. FITTING THE MODEL WITH RECENT OBSERVATIONAL DATASET

Furthermore, using the relation E(z) ≡ H(z)
H0

where H0 indicates the recent observational

value of the Hubble parameter, we find

H(z) = H0

[
(c− κ)(1− ξ + ξ(1 + z)−

4
m )

]−m
2 . (24)

Accordingly, there are two auxiliary parameters in the Polytropic description: κ and m.

Now, considering some observable H(z) data[102–115], we further focus on the validity of
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FIG. 1: ϑ2
s ∼ z relation with auxiliary parameters κ = −0.5, m = −2.4 (blue dashed line),

m = −0.5 (red dotted line), m = 0.5 (black dot-dashed line) and m = 50 (purple solid line).

the constraints on the auxiliary parameters given in the Polytropic model. In TABLE I,

we use the currently available observational H(z) data[102]. Here, DGA and RBAO repre-

sent the Differential Galactic Age and the Radial Baryonic Acoustic Oscillation techniques,

respectively.

In FIG. 2, we have depicted the m ∼ κ phase space by making use of the observational

values of the Hubble parameter given in TABLE I. While performing this analysis, we put

the experimental results into the theoretical proposal given in the equation (24) in order to

get the best-fit values of the auxiliary parameters. One can see that we have an intensive

mesh zone in the bottom left side of the plot. Additionally, we also conclude that there is

an exclusion zone for the (m,κ)-pair in the upper right side of the plot.

On the other hand, one can reach the best-fit values also by employing the standard

minimization of χ2 written as

χ2 =
∑
i

[Htheo(s⃗|zi)−Hobs(zi)]
2

σ2(zi)
(25)

where Htheo(s⃗|zi) shows the theoretical Hubble parameter at red shift zi defined by the

relation (24), s⃗ = (H0, κ,m) is the set of free parameters, Hobs(s⃗|zi) gives the observational

H(z) dataset and σ2(zi) represent the uncertainty of each Hobs(s⃗|zi).

Our main target is just to obtain the primary trends in the fits by selecting suitable

values of the set s⃗. The best-fit values are H0 = 67.8± 0.9 km s−1 Mpc−1[13], κ = −0.5 and

m = −2.4. In FIG. 3, we analyze the confidence control parameter χ2 as a function of the
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TABLE I: The current observational dataset for H(z) [102].

z H Technique Reference

0.0708 69.00∓19.68 DGA Zhang et al.[103]

0.1200 68.60∓26.20 DGA Zhang et al.[103]

0.1700 83.00∓8.000 DGA Simon, Verde and Jimenez[104]

0.1990 75.00∓5.000 DGA Moresco et al.[105]

0.2400 79.69∓2.650 RBAO Gaztañaga, Cabré and Hui[106]

0.2800 88.80∓36.60 DGA Zhang et al.[103]

0.3500 84.40∓7.000 RBAO Xu et al.[107]

0.3802 83.00∓13.50 DGA Moresco et al.[105]

0.4000 95.00∓17.00 DGA Simon, Verde and Jimenez[104]

0.4247 87.10∓11.20 DGA Moresco et al.[108]

0.4300 86.45∓3.680 RBAO Gaztañaga, Cabré and Hui[106]

0.4497 92.80∓12.90 DGA Moresco et al.[108]

0.4783 80.90∓9.000 DGA Moresco et al.[108]

0.4800 97.00∓62.00 DGA Stern et al.[109], Jimenez et al.[110]

0.5700 92.40∓4.500 RBAO Samushia et al.[111]

0.5930 104.0∓13.00 DGA Moresco et al.[105]

0.6800 92.00∓8.000 DGA Moresco et al.[105]

0.7300 97.30∓7.000 RBAO Blake et al.[112]

0.7810 105.0∓12.00 DGA Moresco et al.[105]

0.8750 125.0∓17.50 DGA Moresco et al.[105]

0.9000 117.0∓23.00 DGA Simon, Verde and Jimenez[104]

1.3000 168.0∓17.00 DGA Farooq and Ratra[113]

1.4300 177.0∓18.00 DGA Farooq and Ratra[113]

1.5300 140.0∓14.00 DGA Simon, Verde and Jimenez[104]

1.7500 202.0∓40.00 DGA Thakur et al.[114]

1.9650 186.5∓50.40 DGA Moresco et al.[105]

2.3400 222.0∓7.000 RBAO Delubac et al.[115]
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FIG. 2: The m ∼ κ phase space according to the observational dataset given in TABLE I.

red shift in the 1σ, 2σ and 3σ confidence regions.
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FIG. 3: The corresponding values of the confidence control parameter χ2 with auxiliary parameters

κ = −0.5 and m = −2.4 in the 1σ (blue dots), 2σ (red dots) and 3σ (green dots) confidence regions.

FIG. 4 gives the evolutionary nature of the Hubble parameter in the 1σ confidence region.

Note that, in FIG. 4, the circles indicate the recent observable values.
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FIG. 4: H ∼ z relation with free parameters κ = −0.5 and m = −2.4 in the 1σ confidence region.

IV. COSMOLOGICAL FEATURES

A. Polytropic EoS parameter

Next, using equations (8) and (16), the corresponding EoS parameter, describing a self-

gravitating Polytropic gaseous sphere, is found as

ω = (ξ − 1)
[
1− ξ + ξ(1 + z)−

4
m

]−1
. (26)

In FIG. 5, we have depicted the evolution of the EoS parameter as a function of the

cosmic time. To perform a meaningful analysis, we also assume three different scale factor

cases: (i) the blue dashed line indicates the late-time acceleration case, i.e. z = 1
t2
− 1, (ii)

the black dotted line shows the matter dominated solution, i.e. z = 1

t
2
3
− 1 and (iii) the

red solid line represents the radiation dominated model, i.e. z = 1√
t
− 1. In three of the

cases, it can be seen that the EoS parameter cannot cross −1 line. From FIG. 4, one can

conclude that the 5D form of Polytropic EoS parameter behaves like quintessence energy,

i.e. ω > −1. The ΛCDM model is one of the most common description to understand the

acceleration feature of our universe. It is dominated by the cold dark matter with the EoS

ω = 0 and the cosmological constant Λ with ω = −1. Hence, it may be concluded that, at

late times, the 5D Polytropic model agrees with the ΛCDM cosmology.
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FIG. 5: Relation between the EoS parameter ω and the cosmic time t with κ = −0.5 and m = −2.4.

B. Deceleration parameter

Making use of the relation q = − ä
aH2 with the equation (26) leads us to the following

conclusion

q ≈ −1 +
3ξ

2(1− ξ)2
(1 + z)−

4
m , (27)

where the free parameters ξ and m have prominent influences. So, we must have 3ξ
2(1−ξ)2

< 0,

otherwise we may get positive values for q. See the q ∼ t relation for ξ = −0.5 and m = −2.4

in FIG. 6. Here, the blue dashed line denotes the late-time acceleration solution, the black

dotted line is the matter dominated definition and the red solid line shows the radiation

dominated model. The deceleration parameter initially has a positive value in three of

the cases, then the universe enters into the accelerating expansion phase, and finally the

deceleration parameter reaches q = −1 at the end of the universe.

C. Statefinder Diagnostic

The EoS parameter of some geometrical models obtained by modifying the gravitational

part of the general relativistic field equations does no longer play a requisite role. Thus,

another diagnosis is essential to discriminate the model among different theoretical descrip-

tions. In order to reach this aim, Sahni et. al[117] introduced (r, s) parameters which are

known as the statefinders. Trajectories in the statefinders-plane imply qualitatively different

features[102, 118–121]. For instance, the ΛCDM model includes a fixed point (r, s) ≡ (1, 0).
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FIG. 6: Relation between the deceleration parameter q and the cosmic time t with κ = −0.5 and

m = −2.4.

Next, we have (r, s) ≡ (1, 1) and (r, s) ≡ (∞,−∞) for the standard cold dark matter and

the Einstein static universe models, respectively[122].

The statefinders pair is basically defined as

r =
a···

aH3
, (28)

s =
r − 1

3(q − 1
2
)
. (29)

It is possible to re-write the expression of r in a more convenient form as follows

r = q + 2q2 + (1 + z)q′, (30)

Making use of equations (28), (29) and (30), we find

r

3
= 1 +

5c(ξ − 1)

ξ

1

f
+ 2c(ξ − 1)

3c(ξ − 1)

ξ2
+

(1 + z)−
4
m

m

 1

f 2
, (31)

3s =
2 + 15c(ξ−1)

ξ
1
f
+ 6c(ξ − 1)

[
3c(ξ−1)

ξ2
+ (1+z)−

4
m

m

]
1
f2

1
2
− 3c(ξ−1)

ξ
1
f

, (32)

where

f = 1− ξ + ξ(1 + z)−
4
m . (33)

In FIG. 7, we plot the (r, s)-plane for the five-dimensional Polytropic model. It can be

seen that r and s parameters first decrease from some negative values, then start to increase

from some other negative values to the ΛCDM fixed point (r, s) ≡ (1, 0) and after that

continue to increase.
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FIG. 7: r ∼ z (dashed blue line) and s ∼ z (dotted red line) relations with auxiliary parameters

κ = −0.5 and m = −2.4.

D. Neo-classical behavior

It is significant to implement a causality connection between source and observer at any

time. We can compute the proper distance by making use of the following relation[123]

d(a) =
∫ a

1

da

aȧ
(34)

For the Polytropic model, it gives us the following result

d(a) =
(−κ)

m
2

a
2F1

−m

2
,−m

4
, 1− m

4
,
ca

4
m

κ

 (35)

where 2F1 is the Kummer Confluent Hypergeometric function of the second kind and it is

given by

2F1[K,L,M ;x] = 1 +
KL

x
+

K(K + 1)L(L+ 1)

M(M + 1)

x2

2!
+ ... =

∞∑
i=1

KiLi

Mi

xi

i!
(36)

with c ̸= 0,−1,−2, ... and |x| < 1.

On the other hand, the luminosity distance dL is another significant neo-classical quantity

which is helping us to calculate the distribution of light. Making use of the total energy L

emitted by a source per unit time and l indicating the apparent luminosity of an object,

the luminosity distance is given by[123] dL =
√

L
4πl

. Thus, it can be found[123] that dL =

(1 + z)d(z). Using this description, one can calculate the following result for the Polytropic

model

dL = (−κ)
m
2 (1 + z)22F1

−m

2
,−m

4
, 1− m

4
,
c(1 + z)−

4
m

κ

 . (37)

14



We see that the proper distance d(z) and the luminosity distance dL depend upon the

cosmic red shift parameter and both of them are also increasing functions of z. In FIG. 8,

plot d(z) ∼ z and dL ∼ z relations.
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FIG. 8: Numerical analysis of the proper distance d(z) and the luminosity distance dL with auxiliary

parameters κ = −0.5 and m = −2.4.

E. Scaling case

The evolution of the Polytropic model is equivalent to a dark matter-energy coupling

which is described by the EoS parameter ω = (ξ − 1)
[
1− ξ + ξ(1 + z)−

4
m

]−1
. Assuming a

scaling condition, i.e. ρ = ρm + ρe with ρe ∝ ρm(1 + z)
4
m , in the Polytropic framework leads

to

ρm + ρe = ρcr
− 1

m

√
(1− Ω0

m) + Ω0
m(1 + z)−

4
m . (38)

In the above relation, ρcr is a constant and represents the critical energy density while Ω0
m

indicates the matter density parameter. After focusing on equations (17) and (38), we see

that ξ can be taken into account as an effective matter density Ω0
m. If the coupled conditions

is defined by

ρ̇m + 4Hρm = Ξ, (39)

ρ̇e + 4H
[
1 + (ξ − 1)

[
1− ξ + ξ(1 + z)−

4
m

]−1
]
ρe = −Ξ, (40)

then the interaction term can be characterized by[116]

Ξ =
4Hρmρe
ρe + ρm

ξ − 1

1− ξ + ξ(1 + z)−
4
m

, (41)
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which gives the interaction between the dark matter and the dark energy. From this point

of view, one can conclude that the background evolution of the Polytropic model is identical

to an interacting case. It is important to mention here that negative Ξ values indicate

energy transition to the dark energy territory, and positive values of Ξ imply the vice versa

condition. Recently, the Cluster Abell A586[124, 125] has observed this interesting event,

however its importance has not been clarified yet.

V. THERMODYNAMICAL STABILITY

In this part of the work, we focus on the thermodynamical features of the Polytropic

gaseous sphere description leading to the discussion of the generalized second law of ther-

modynamics, i.e. T Ṡtot(t) ≥ 0 or TS ′
tot ≤ 0 where T shows the temperature, Stot describes

the total entropy and the prime indicates derivative with respect to the red shift z. Note

that we can write d
dt

= −(1 + z)H d
dz
. To reach this goal, the flat Kaluza-Klein universe

is assumed to be a thermodynamical system. In a flat framework, the apparent horizon is

identical to the Hubble horizon[126–128]:

ra = lim
k→0

[
H2 + k(1 + z)2

]− 1
2 =

1

H
. (42)

Additionally, the temperature T and the horizon entropy S are given as follows

T =
1

2πra
=

H

2π
, Sh =

A

4G
, (43)

where A = 2π2r3a is the surface area of 4-sphere. Hence, we get[42]

Sh =
π2

2G

1

H3
, (44)

Next, the internal entropy is written as[129]

TdSi = pdV + dEi, (45)

which is known as the Gibbs’ formulation. In the above expression, Si, Ei = ρV and

V = 1
2
π2r4a indicate the internal entropy, internal energy and the additional-dimensional

volume, respectively.

After performing a time derivation in the relation (45) and making use of the equation

(13) or (14), one can find that

T Ṡi = (ρ+ p)(V̇ − 4HV ), (46)
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and substituting relations (11) and (12) into the above equation gives

TS ′
i = −π2H ′

H4
[(1 + z)H ′ +H]. (47)

On the other hand, using the relations given in (43), the evolution of the horizon entropy

in a flat Kaluza-Klein type spacetime is calculated as

TS ′
h = −π2H ′

H3
. (48)

At this step, we can now focus on the second thermodynamical law. Adding equations

(47) and (48), we can get the total entropy associated with the flat Kaluza-Klein universe

dominated by the Polytropic gas. Thus, it can be found that

TS ′
tot = T (S ′

i + S ′
h) = −π2H ′

H4
[(1 + z)H ′ + 2H] . (49)

Consequently, substituting the relation (24) into the above relation leads us to the following

result

TS ′
tot = −4π2

H2
g(g + 1), (50)

where

g(z) =
ξ(1 + z)−1

ξ + (1− ξ) m

√
(1 + z)4

. (51)

We have plotted the relation TS ′
tot ∼ z in FIG. 9. It can be seen that the generalized

second law of thermodynamics is valid for the Polytropic gas dominating the Kaluza-Klein

universe at all times.

VI. CLOSING REMARKS

The dynamical nature of a Polytropic type unified dark matter-energy scenario has been

investigated in the 5D Kaluza-Klein framework and it is concluded that this model may

have the ability to explain the speedy expansion phase of our universe.

As a first step, we compute theoretical energy density and Hubble parameter relations.

Besides, the adiabatic stability condition of the proposal has been also discussed by focusing

on the speed of sound, and we have seen that there is no concern about the instable feature

of the model, if one consider the meaningful values of κ. Next, we have fitted data from the

recent observations to fix the free parameters m and κ given in the model. Moreover, con-

sidering our calculations, we have discussed some physical features of the model and confirm
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FIG. 9: The evolution of TS′
tot in terms of the red shift parameter z for the case with κ = −0.5

and m = −2.4.

that the second thermodynamical law is satisfied, which means the theoretical description

may be stabilized by assuming best-fit values of the free parameters m and κ.

In summary, the scenario of the Polytropic dark content is compatible with recent obser-

vations.
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