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Abstract

We look at some of the details of Cantor’s Diagonal Method and
argue that the swap function given does not have to exclude 9 and

0, base 10. We then give a application of Cantor’s Diagonal Method
that shows ζ(2) is irrational.

Introduction

Cantor’s diagonal method is typically used to show the real numbers

are uncountable [1, 2]. Here is the reasoning.
If the reals are countable they can be listed. List their base ten

decimal representations and starting with the upper left hand corner
digit, construct, going down the upper left to lower right diagonal, a

decimal not in the list. Use the following guide: if the decimal is 7
make your decimal 5 and if it is anything other than 7 make it 5. The
number you construct is not in the list and therefore the real numbers

are uncountable.
There are some points (fine print) to this argument. You can’t

use 0 and 9 in the argument. We show here that this is not really
true. This is not to say that there is anything wrong with Cantor’s

Diagonal Method. If one does use 0 and 9 the argument is lengthened.
You might call it less – or more – elegant.

It seems curious that mathematical proofs typically take fast de-
tours around sticking points. Why bother with convoluted reasoning,

if you don’t have to. Reductio ad absurdum proofs seem to be like
this. But in this particular case of Cantor’s Diagonal Method, going
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into the weeds does produce a pertinent generalization. We can show
ζ(n), n a natural number greater than 1, is irrational.

Why not 0 and 9

Note that if one used the guide if 0 change it to 9 and if 9 change it
to 0, one could construct 0. For example,

.3

.04

.005

.0006

.0000x
...

then, as long as x is not 0, we get .0 = 0. If we constructed, using

another list, .0009, this would also be .001, a number in the list – it’s
a real number.

By making the swap with numbers like 5 and 4 or 3 and 7 or any
two that are not 9 and 0, we don’t run into this problem. But, for

the sake of argument are we really assured that these patterns can be
maintained? No that can’t be. A little observation yields that any
list will only be able to maintain some property of decimal position

for a finite number. Any repeated pattern with 9 at position 1, for
example can only work 1/10th of time in the list. Given an nth position

eventually if will have to vary. The infinite number possible can’t be
only at the head of the list.

What about convergence

Cantor’s diagonal method does not address the convergence of the
decimal representation of a real number generated. Could it be all
5’s (.5) and hence converging to a rational number – a number in the

list. A combination of 4’s and 5’s that represent a infinitely repeating
decimal? These observations are of no concern because the argument

is that the number’s representation is not in the list. Statements
beyond this seem irrelevant.

Of course if we suppose that ambiguity of representation is not
allowed: only finite decimal representations are given of numbers like

.5 and .49, then the infinite decimal we construct might be an excluded
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infinite decimal version of a number included in the list. This is when
the use of not 9 and not 0 fix the situation fast. One could do a

reductio ad absurdum argument. Suppose the constructed number
converges to a number in the list, but the number in the list differs at

at least one decimal point. So how close can .5554445454 . . . get to
say .555444454 . . . – they differ at the 7th place. The numbers would

have differ by at least .0000001.

Proving ζ(2) is irrational

In Table 1 is a modified Cantor’s Diagonal Table. The symbols Dn2

give single decimal points in base n2. So, for example D4 = {.1, .2, .3}

in base 4. How to read the table: All previous columns (left to right)
pertain to the new, right most partial. For example 1/4 + 1/9 + 1/16

is not in D4, D9, or D16. So, like Cantor’s diagonal method as applied
to a list of base ten decimals, we build, not with a swap function, but

with an addition, a number not in any decimal base given by a single
decimal base n2. If this is true, z2 = ζ(2) − 1 must be irrational: for

any rational 0 < p/q < 1, (pq)/q2 ∈ Dq2. Can we conclude that this
based on the elimination aspect of Cantor’s diagonal method or do we

have to consider the limit, the convergence point of the series? Well,

+1/4
+1/9 +1/4 +1/4 +1/4 +1/4 . . . +1/4
/∈ D4 +1/9 +1/9 +1/9 +1/9 . . . +1/9

/∈ D9 +1/16 +1/16 +1/16
...

/∈ D16 +1/25 +1/25
...

/∈ D25 +1/36
...

/∈ D36

+1/(k − 1)2

+1/k2

/∈ Dk2

. . .

Table 1: A list of all rational numbers between 0 and 1 modified to exclude
them all via partial sums of ζ(2) − 1.
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to play it safe, can we prove the convergence point is not in our list?
Consider the following use of the triangle inequality: let Cx be a single

decimal rational in some Dm2, then for all n large enough

0 <

∣

∣

∣

∣

∣

Cx −

n
∑

k=2

1

k2

∣

∣

∣

∣

∣

< ε/2

and

0 <

∣

∣

∣

∣

∣

n
∑

k=2

1

k2
− z2

∣

∣

∣

∣

∣

< ε/2

gives
0 < |Cx − z2| < ε.

But the left hand inequality says that z2 is not rational.

Conclusion

Is Table 1 correct? Do the partials escape the single decimal sets

with base the last term of the partial’s denominator? Yes. See [3] for
details.
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