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I begin with a short historical analysis of the problem of the electron from Lorentz to Dirac.

It is my opinion that this problem has been quasi frozen in time because it has always been

formulated within the paradigm of the Minkowski-Laue consensus, the relativistic version

of the Maxwell-Lorentz theory. By taking spin away from particles and putting it in the

metric, thus following Dirac’s vision, I start my attempt to formulate an alternative math-

phys language. In the created non-commutative math-phys environment, biquaternion and

Clifford algebra related, I formulate an alternative for the Minkowski-Laue consensus. This

math-phys environment allows me to formulate a generalization of the Dirac current into a

Dirac probability/field tensor with connected closed system condition. This closed system

condition includes the Dirac current continuity equation as its time-like part. A generalized

Klein Gordon equation that includes this Dirac current probability tensor is formulated and

analyzed. The Standard Model’s Dirac current based Lagrangians are generalized using

this Dirac probability/field tensor. The Lorentz invariance or covariance of the generalized

equations and Lagrangians is proven. It is indicated that the Dirac probability/field tensor

and its closed system condition closes the gap with General Relativity quite a bit.
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I. A PREVIEW OF THE KEY INNOVATIVE PROPOSAL: IV A 3 THE CLOSED

SYSTEM CONDITION FOR THE DIRAC PROBABILITY CURRENT TENSOR

The derivative of the probability density tensor in its closed system condition,

∂νΦ
ν

µ ≡ ∂νΨ
†
γµγ

ν
Ψ = 0, (1)

can be retraced to the Klein Gordon equation on the Dirac level as

∂νΨ
†/V /PΨ = ∂ν

1
m0

Ψ
†/P/PΨ = ∂νΨ

†U0/1Ψ =U0∂νΨ
†
Ψ = 0. (2)

which includes the proof of the closed system condition for the symmetric tensor /T = /V /P as ∂ν /T =

0. This closed system condition applies to both the Dirac representation as the Weyl representation,

as long as it is clear that not only γ0 but also ααα and Ψ have a Dirac representation and a Weyl

representation. The gamma tensor γµγν is given by

γµγ
ν =

[
γ0 γ1 γ2 γ3

]


γ0

γ1

γ2

γ3

=


γ0γ0 γ1γ0 γ2γ0 γ3γ0

γ0γ1 γ1γ1 γ2γ1 γ3γ1

γ0γ2 γ1γ2 γ2γ2 γ3γ2

γ0γ3 γ1γ3 γ2γ3 γ3γ3

=


/1 −α1 −α2 −α3

α1 −/1 −iΣ3 iΣ2

α2 iΣ3 −/1 −iΣ1

α3 −iΣ2 iΣ1 −/1

 . (3)

The probability density tensor is then given by

Φ
ν

µ = Ψ
†
γµγ

ν
Ψ =


Ψ†/1Ψ −Ψ†α1Ψ −Ψ†α2Ψ −Ψ†α3Ψ

Ψ†α1Ψ −Ψ†/1Ψ −Ψ†iΣ3Ψ Ψ†iΣ2Ψ

Ψ†α2Ψ Ψ†iΣ3Ψ −Ψ†/1Ψ −Ψ†iΣ1Ψ

Ψ†α3Ψ −Ψ†iΣ2Ψ Ψ†iΣ1Ψ −Ψ†/1Ψ

 . (4)

The time-like part of ∂νΦ ν
µ = 0 is given by

1
c

∂tΨ
†/1Ψ+∇1Ψ

†
α1Ψ+∇2Ψ

†
α2Ψ+∇3Ψ

†
α3Ψ =

1
c

∂tΨ
†/1Ψ+∇∇∇Ψ

†
αααΨ = 0 (5)

This can be abbreviated as the Dirac current continuity equation

c∂νΨ
†
α

ν
Ψ = c∂νΨγ

ν
Ψ = ∂νJν = 0. (6)

This proves that the Klein Gordon equation on the Dirac level includes the continuity equation

for the probability current as part of a much stronger closed system condition for the probability

density (current-)tensor. That connects the Klein Gordon at Dirac level environment to the Laue
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closed system condition, which in turn is a basic axiom of or prerequisite for General Relativity’s

symmetric stress energy density tensors T =V G.

The space-like derivatives of ∂νΦ ν
µ = 0 can be split into a complex part and a real part. The

complex part gives

∇∇∇×Ψ
†
ΣΣΣΨ = 0. (7)

The real part gives

∂tΨ
†
αααΨ = c∇∇∇Ψ

†/1Ψ (8)

which can be multiplied by the constants m0c, and using the Dirac adjoint, to give

∂tm0cΨγγγΨ = ∇∇∇m0c2
Ψγ0Ψ. (9)

The last two conditions show that the closed system condition for the probability density tensor

is a stronger condition than the continuity equation on its own. The above two conditions can

be connected to the earlier ∇∇∇× ppp = 0 and the ∂t ppp = −∇∇∇Ui as there probability/field analogues.

The first prohibits a probability/field vorticity in the closed system condition, the second implies a

conserved force-field condition for the probability/field, connecting the time-rate of change of the

current to the space divergence of the related density.

Given the fact that all Lagrangians of the Standard Model’s Dirac fields are based upon the

Dirac current, the Dirac adjoint and the use of the Dirac equation to prove the continuity equation

for the Dirac current, it’s generalization into a Dirac probability or field tensor with connected

much stronger closed system condition and a prove of its validity based upon the Dirac level Klein

Gordon equation should have some impact. The recognition that the Dirac current is just a part

of a tensor and that the Dirac current continuity equation is just the time-like part of a space-time

closed system condition of that tensor will close the gap with General Relativity considerably,

given the relation of both to the Laue closed system condition ∂νT ν
µ = 0. I propose to use tensor

Lagrangians based on

L =
1

m0
Ψ

† /̂P/̂PΨ, (10)

which then contain the inertial probability or inertial field tensor

m ν
µ c2 = m0Φ

ν
µ c2 = m0Ψ

†
γµγ

ν
Ψc2, (11)

as a relativistic generalization of the usual Dirac current with Dirac adjoint based Lagrangians of

the Standard Model.
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II. HISTORICAL INTRODUCTION

A. The problem of the electron from its discovery until spin.

The problem of the electron around 1905 is the starting point of this paper. In the early-

relativistic or pre-Einstein period, Lorentz, Abraham and Poincaré worked on the electromag-

netic electron theory in an attempt to make it compatible with classical mechanics (1), (2). The

problem was the nature of the electron as an elementary particle. Was it possible to deduce the

electron’s mechanical properties from electrostatic and -magnetic principles only, or should the

electron be considered as a part mechanical, part electromagnetic in origin? Abraham considered

the mechanical mass of the electron to be completely electromagnetic, Lorentz and Poincaré opted

for the composed mass, part mechanic and part electromagnetic in origin. The problem of the

Coulomb-self-energy of the static electron was the starting point. If the non-moving electron was

a static point then its electromagnetic self-energy (or rest-mass) exploded to infinity in that point,

in clear contradiction with the measured finite mechanical mass. This problem could be avoided

by giving the electron a finite size and a sphere was the simplest model for the calculations. Abra-

ham, Lorentz and Poincaré all three accepted the spherical electron-model. Abraham wanted his

model to be rigid by principle because a deformable charged sphere would need a compensation-

force to prevent a Coulomb-force explosion of the sphere. This compensation-force should have a

non-electromagnetic origin with a mixed model as a result. Lorentz and Poincaré choose for a de-

formable sphere with the necessity of a compensation-force, and -pressure, introduced by Poincaré

in 1905. (3), (4).

The real electron is stable, so if this spherical model was right and its stability was to be ex-

plained, not declared, then a reaction-force should be introduced to balance the Coulomb-force.

This is what Poincaré did in 1905 in such a way that not only Newton’s third law of Coulomb-

action and Poincaré-reaction, but also the invariance of the rest-mass was saved. Both sphere

and stress had the defect of being pure ad-hoc solutions because measurements on that size of

the sphere (≈ 10−15m) were not possible and the electron in a space free of external influences

could not possibly be connected to some observable Poincaré-mechanism balancing the electro-

static Coulomb-force. Poincaré tried to connect it to the only possible influence he could imagine

in free space, gravity, but he failed to come up with a convincing connection between his stresses

and a theory of gravity. The Abraham-sphere and the Poincaré-stress were never more than smart

6



inventions to avoid theoretical paradoxes that arose in the simultaneous application of electromag-

netics and mechanics on the electron-level. Fundamentally, they were constructions for mass-, or

Coulomb-self-energy-, normalizations and struggled with the problem of the origin of the electron-

mass. But although the problem of the electron remained unsolved, a consensus resulted from the

theoretical debates concerning relativistic dynamics of the spherical electron. Although the Abra-

ham ideal of a completely electromagnetic world view wasn’t accepted by Lorentz and Poincaré,

all three used the hypothesis that all forces should behave as if they were of electromagnetic origin

during a global translation of the system. [...] If all forces, including inertial forces, transformed

like electromagnetic forces; [...] in order to respect the relativity principle all forces had to trans-

form like electromagnetic forces; that is, according to a representation of the Lorentz group (1),

(5).

Einstein’s formulation of his kinematic theory of Special Relativity was an event that lifted the

problem of the electron’s electrostatic rest-energy and the balance of forces, or the conservation of

momentum, to a higher level. In the Special Theory of Relativity these two classically separated

aspects came together in the energy-momentum four-vector. Very early, physicists like Poincaré,

Abraham (6), Born (7), Ehrenfest (8), Nordström (9) and Einstein (10) realized the need to in-

clude stresses, and thus the stress-tensor, to treat the paradoxes surrounding the electron. In 1911,

Laue’s tensordynamics merged the energy and momentum with the stress-tensor and the flow of

energy into the mechanical stress-energy tensor (11), (12). His relativistic tensordynamics unified

Newton’s mechanics and Special Relativity and can be seen as the end result of a hotly discussed

topic by the specialists of special relativity at the time, the relativistic mechanics of deformable,

stressed bodies ((13), p. 19). Maxwell’s electro-magnetics and Special Relativity were fused

mainly by the work of Minkowski (14), who was the first to formulate a version of the electro-

magnetic stress-energy tensor. From then on the problem of the free electron could only be treated

on a fundamental level by formulating it as the problem of the divergence of its electromagnetic

stress-energy tensor.

In Laue’s tensor-dynamics, basically presented in (11) (see (13), p.n 43-53 for a concise de-

scription, including the closed system condition; see (15) for Weyl’s description of it including

the problem of the electron), conservation-law considerations require the stress-energy tensor of a

free particle in space to have a zero divergence:

∂µT µν

mech = 0. (12)
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This ensures action to equal reaction and energy to be conserved. Further more, the conservation of

angular momentum for such a free particle requires the total stress energy tensor to be symmetric,

implying that the free particle has no net internal stresses or net internal elastic forces. The key

sentence in Laue’s 1911 paper, confirming the opinion of Lorentz and Poincaré, stated: Planck and

Einstein have already expressed that all ponderomotoric forces should behave under a Lorentz

transformation in an equal manner as in electrodynamics. Thus it should be possible in all areas

of physics to put the force density together with the power density into a four force density. This

leading principle lead Laue to the general expression for relativistic mechanics

F ν =−∂µT µν

mech. (13)

He then stated the assumption that in every area of physics a stress energy tensor could be for-

mulated who’s components had the same significance as their electromagnetic counterparts. So

basically, Laue assumed that all forces of physics behaved relativistically like in electromagnet-

ics, thus presuming a Maxwell-Lorentz structure beneath all forces as a basis of his relativistic

mechanics.

According to von Laue, the electron in free space is a (quasi-)static system, so the divergence

of its stress-energy tensor should be zero. But in Minkowski’s relativistical electro-magnetics, the

divergence of the stress-energy tensor of the electromagnetic field is zero only in charge-free space

and equals the electromagnetic Lorentz four-force when charges are present. Electromagnetically

the electron in free space is a charge in its own field, so:

∂µT µν
em = Fν

em. (14)

The electron in free space feels its own em-four-force, which is not zero and not balanced by a

reaction-force. So the electron in free space acts a net em-force and em-power on itself. A free

electron with a non-zero power must have energy flowing in or out without compensation and an

infinite amount of energy, positive or negative, will be assembled. The net force that this free

particle acts on itself will create a runaway situation and its momentum will become infinite. It

is obvious that this is an erroneous theory because a real electron in free space has a constant

macroscopic energy and momentum.

Up till now, two strategies have been developed to find a way out of the conflict. The first is to

add a mechanical tensor to the electro-magnetic field-tensor and to declare the divergence of the

sum to be zero. This could be called the Poincaré-Laue strategy or the compensation-method. In
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the words of Laue: inside the electron different kind of stresses besides the electromagnetic stresses

necessarily prevail. It was the relativistic tensor extension of Poincaré’s method to compensate for

the Coulomb-force and as such first formulated by von Laue in 1911. In a modern expression,

in which the word ”Poincaré” is often replaced by ”mechanic”, the logic goes like this (see (16),

(17), (18), (19), (20),(21), (22)):

We know that for a free charged particle in vacuum

∂µT µν

total = 0, (15)

and that for the same particle

∂µT µν
em = Fν

em. (16)

Let us assume

∂µT µν

Poincare = Fν
Poincare, (17)

so that

T µν

total = T µν

Poincare +T µν
em (18)

with

∂µ

(
T µν

Poincare +T µν
em
)
= (19)

Fν
Poincare +Fν

em = 0 (20)

and

Fν
em =−Fν

Poincare (21)

then we have solved the conflict between relativistic mechanics and relativistic electromagnetics.

The solution should have worked fine when macroscopic experimental setups are concerned in

which all kinds of mechanical or chemical compensations can be found, but it fails utterly once

the fundamental problem of the nature of the proposed Poincaré-like mechanism for an electron in

free space is concerned. Then the strategy turns out to be a guessing in the dark and can be placed

in the category of ”æther-theories” because it uses an unobservable entity, a Poincaré-mechanism,

to explain away a true paradox and fundamental problem in the present state of our physical theory

(19).

The second strategy is to suggest changes in the electro-magnetic stress-energy tensor, or some

of its components, in such a way that the problem can be solved within the frame of electromagnet-

ics. This was in accordance with the original vision of Abraham, who had the encompassing ideal
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of reducing all of mechanics to electromagnetics. This strategy generated its own controversy

regarding the correct formulation of the electromagnetic stress energy tensor or the connected

field momentum density (23). According to Lopéz-Mariño and Jiménez, this controversy is still

unsolved (24).

Pauli discussed the Poincaré-Laue compensation strategy in his 1921 article ”Relativitätstheorie”

and reviewed the electron-theories of Mie and Einstein (16). Mie, in his 1912 article ”Grundlagen

einer Theorie der Materie”, tried to solve the conflict between mechanics and electromagnetics in

the spirit of the second strategy (25). In the words of Pauli, Mie ”set himself the task to generalize

the field equations and the energy-momentum tensor in the Maxwell-Lorentz theory in such a

way that the Coulomb repulsive forces in the interior of the electrical elementary particles are

held in equilibrium by other, equally electrical, forces, whereas the deviations from ordinary elec-

trodynamics remain undetectable in regions outside the particle”((16),p. 188). Einstein’s 1919

comment on Mie’s theory was: ”His theory is based mainly on the introduction into the energy-

tensor of supplementary terms depending on the components of the electro-dynamical potential,

in addition to the energy terms of the Maxwell-Lorentz theory. These new terms, which in outside

space are unimportant, are nevertheless effective in the interior of the electrons in maintaining

equilibrium against the electric forces of repulsion. In spite of the beauty of the formal struc-

ture of this theory, as erected by Mie, Hilbert and Weyl, its physical results have hithertho been

unsatisfactory” (26)

After having weighed Mie’s attempt to solve the electron problem by adding Tµν = JµAν to

Minskowski’s EM tensor, Einstein tried to formulate a theory in which the repulsive Coulomb-

forces inside the electron are held in equilibrium by a gravitational pressure. This solution was

already tried by Poincaré in 1905 but failed, due to the lack of a developed theory of relativity

including gravity. Einstein formulated a gravitational stress-energy tensor capable of balancing

the non-zero divergence of the electromagnetic energy-tensor. Einstein himself concluded that the

attempt to connect the Poincaré-stress to the metric failed because it resulted in the general stability

of every spherically symmetrical distribution of charge. That of course would imply the total

non-appearance of the Coulomb-force in nature, a solution that was clearly to general. Einstein

interested himself in the problem of the non-zero divergence of the electromagnetic stress-energy

tensor because the divergence of the Einstein equations gives, in the limiting case of the special

theory of relativity:

∂µT µν

mech = 0. (22)
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For that reason, the electromagnetic stress-energy tensor for charged matter could not be used

in Einstein’s equations. Einstein’s equations are only valid for stress-energy tensors with zero

divergence. In the words of Einstein: ”Therefore, by equation (1)[the Einstein equations] we

cannot arrive at a theory of the electron by restricting ourselves to the electromagnetic components

of the Maxwell-Lorentz theory, as has long been known. Thus if we hold to (1) we are driven to

the path of Mie’s theory” (26).

We end with a series of quotes, relating the Laue closed system condition ∂νT µν = 0 to the

problem of the Lorentz electron in free space and the introduction of the Poincaré stresses as the

formal solution to this problem, solutions which have never been verified experimentally. The

proposed or supposed Poincaré stresses exist at the nominalistic or mathematic level, not in the

realistic experimental plane.

This equation (∂νT µν = 0) is exactly the differential form of the conservation laws of energy

and momentum for the electromagnetic field. But it is valid only in the region r > a, i.e., outside

the electron where no matter is present. (Rohrlich, 1960, (27).)

The model of this classical charged particle is a sphere of radius a, mass m, and uniformly

distributed surface charge e. As a free object it is a closed system. If the entire particle were

expressible by means of a field and an associated energy tensor Θµν such a tensor would neces-

sarily have to satisfy ∂αΘαµ = 0 since the system is closed. [..] The particle is however not purely

electromagnetic but contains an electromagnetic component (the Coulomb field) and an non elec-

tromagnetic one. We shall accept the usual assumption that these two components are additive in

the energy tensors, Θµν = Θ
µν
e +Θ

µν
n . Neither of the two components are separately conserved.

(Rohrlich, 1982, (18).) Instead, we have ∂αΘ
µν
e +∂αΘ

µν
n = 0 (Rohrlich, 1970, (28).)

A necessary condition for an energy-stress tensor T µ

ν to yield covariantly conserved expressions

for energy and momentum is T µ

ν ,µ = 0 (3). Condition (3) is of course not satisfied by the Lorentz

electron. One has Mµ

ν ,µ = JµFνµ . This is the well known self-force problem. The above discussion

brings out the fact that a classical electrodynamics based solely on the electromagnetic field can

be covariant only in the absence of charged particles, since we have Mµ

ν ,µ = 0, and the self-stress

problem does not arise.(Tangherlini, 1963, (29).)

This equation, ∂Tik
∂xk

=−1
c Fik ji (4−55)which is the generalization of equation (4−41) ∂Tik

∂xk
= 0,

contains the mathematical formulation of the law of conservation of energy and momentum of the

electromagnetic field together with the particles present in it. (Landau, 1951, (30)).

We can introduce a stress tensor representing the Poincaré stress [..]. The quantity θ
µν

Poincare is
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constructed so that ∂µθ µν = ∂µ(θ
µν

EM +θ
µν

Poincare) = 0, where ∂µ(θ
µν

EM is the electromagnetic stress

tensor associated with the Coulomb field of a spherical shell. [..] The above solution of solving

the 3/4 problem is clearly rather formal and arbitrary. (Kim, Sessler, 1999, (21)).

Until now, the origin and nature of the Poincaré stresses have been unknown. [..] Of course

the problem of the nature of the Poincaré stresse remains, and since progress here seems very

difficult, work on classical theories in this line has been abandoned. By now the phenomeno-

logical approach, with its renormalization program, has produced important results in quantum

electrodynamics, but not so much in classical electrodynamics. (Campos, 1986, (19)).

[..]the well-known fact that the introduction of Poincaré stresses or the Rohrlich redefinition

of energy and momentum are, in fact, equivalent in essence [..] Eq. (41), T µ

ν ,µ = 0, refers to the

total energy-momentum tensor, while the electromagnetic part of it is not divergenceless at all (its

divergence is, simply, the Lorentz fourforce density) (Saldin, 2007, (31)).

In 1956 Casimir proposed that the zero-point force could be the Poincaré stress stabilizing a

semiclassical model of an electron [12]. Unfortunately as Tim Boyer was to discover a decade

later after a heroic calculation [13], the Casimir force in this case is repulsive. (Milton, 2001,

(32)).

The weak nuclear force is the missing non-electromagnetic force or the Poincaré stress which

holds the elementary electric charge together. (Koschmieder, 2006, (33)).

The above relation, because the pressure being negative, corresponds to a repulsive gravita-

tional force. This is identified with the Poincaré stress of cohesive force in nature which is required

to maintain stability for the Lorentz extended electron. (Ray, 1993, (34)).

These quotes illustrate the fact that the problem of the structure of the electron in relation

to Laue’s closed system condition is ongoing in the foundations of physics discussions in the

literature. In all the quotes the problem is formulated using the formalism of the Minkowski-Laue

consensus and all proposed solutions are withing the realm of this hundred year old paradigm.

B. Revising Laue’s relativistic mechanics as an approach to the problem of the electron

The problem of the electron, defined as the discrepancy between the divergence of the Laue

mechanical stress-energy tensor and the Minkowski electromagnetic stress energy tensor, can be

approach in a third way. Instead of suggesting changes in the Maxwell-Lorentz theory or suggest-

ing Poincaré mechanisms added to Laue’s tensor, on can try to reformulate relativistic mechanics,
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Laue’s theory as the fixation of the growing consensus in the relativistic avant-garde in the first

decade of the nineteenth century. The tricky side catch of this approach is that Einstein used Laue’s

closed system condition, so essentially Laue’s relativistic mechanics, or the relativistic formula-

tion of the conservation of energy, momentum and angular momentum, as a basis for his theory of

gravity ((35), postulate 1 on p. 1250; (13), p. 57).

The pre-GR theories of gravity of Abraham (36), (37), (38), Nordström (39), (40), (41) and

Mie (25), (42), (43), (44), (45), were based upon the four force equations

Fgravity
µ = ∂µL, (23)

with

L =−1
γ

U0. (24)

or, with the densities,

f gravity
µ = ∂µL , (25)

with the Lorentz invariant

L =−T νν =−u0, (26)

where in the latter the trace of Laue’s stress energy density tensor T νν functioned as the source

of field. After the 1911 establishment of the ‘Laue consensus’, they all three tried to make their

theories conformable to Laue’s closed system condition. In the words of Nordström: The previous

reasonings concerning the condition of matter result quite general from the dynamics of matter

as developed by von Laue, which I have considered valid in both my theories of gravity (40). Re-

maining within Laue’s relativistic mechanics, a new theory of gravity, adapted to the requirements

of relativity, could not be formulated in a satisfactory manner. Implicitly, they tried to formu-

late a theory of gravity within the structures set up by Maxwell-Lorentz’ electromagnetism. This,

amongst other things, motivated Einstein to reject relativistic gravity as a four-force derived from

a Lorentz scalar u0 (or scalar potential u0 = ρφg) and he succesfully managed to explain gravity

as a curvature of space instead. But in the limit to Special Relativity, Einstein’s equations still

lead to Laue’s closed system condition ((13), p. 58). In the language of Poincaré, Einstein left

the Lorentz group confinement in his search for a relativistic theory of gravity. Thus for gravity

he rejected the key hypothesis of the Minskowki-Laue consensus that all forces, including inertial

forces, transformed like electromagnetic forces.

The SR Lorentz electron however didn’t fit into the Laue’s closed system condition without

invoking some mysterious, unobserved Poincaré stress. GR gravity couldn’t function as a Poincaré
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mechanism, so in the limit, Einstein’s theory did not cover the Lorentz electron. This was one of

the circumstances that motivated Einstein to engage an unsuccessful metric GR-EM unification

program. But since Einstein’s successful relativistic theory of gravity, it is generally accepted that

a scalar potential, four force, non-metric theory of gravity formulated within the confinements

of Minkowski flat space-time, cannot be made fully relativistic. As a conclusion, if we try to

approach the problem of the electron by reformulating Laue’s relativistic mechanics, inevitably

we will run into trouble with the SR limit of the Einstein Equations, although our approach is an

anachronistic pre-GR program.

C. The problem of the electron with elementary spin.

Quantum mechanics added new confusing dimensions to the already problematic electron in

the form of spin and spinor properties. In a previous paper, in which we discussed the connection

between the gravitational geodesic precession and the Thomas precession, we gave a short history

of electron spin, which we will repeat here (46). In 1925 Uhlenbeck and Goudsmit introduced the

concept of electron-spin. With this idea of an electron spinning on its orbit around the nucleus they

managed to explain the doublet terms in the Hydrogen atom’s spectral lines in the Röntgen region

and also the a-normal Zeeman-effect. (47) But they didn’t manage to explain the factor 2 difference

in the magnitude of the coupling of their electron spin to its intrinsic magnetic momentum needed

to explain the correct width of the splitting of spectral lines in the a-normal Zeeman-effect. (48)

They send their results to Bohr, who discussed it with Kramers. Thomas joined the discussion: I

being a reasonably brash young man in the presence of Bohr said, ”Why doesn’t someone work

it out relativistically.” Kramers [...] said to me ”It would be a very small relativistic correction.

You can work it out, I won’t.” (49) Thomas did work out the idea of a relativistic precession of

the orbit of the electron and found what we now call the Thomas precession, that produced effects

that had to be added to the precession of the electron–spin in its own rest–system. (50) He showed

that this extra orbital precession of the electron as a gyroscope was a consequence of relativistic

velocity addition applied to rotations, two successive Lorentz boosts added up to one Lorentz

boost and a rotation. Thomas explained the factor-two difference in the coupling constant α in

the Uhlenbeck and Goudsmit approach as a consequence of the kinematics involved, according to

which the relativistic precession of the orbit of the electron had to be added to the precession of

the spin in the electrons own reference frame. (51)
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The old quantum theory (52) as embodied by Bohr and Sommerfeld around 1924 was the

context in which the discovery of electron spin and relativistic precession of the spin axis of the

electron in a circular orbit and the relativistic precession of this orbit itself took place. Sommer-

feld’s book ”Atombau und Spektrallinien”, translated as ”Atomic Structure and Spectral Lines”,

expressed the old approach which was centered around the model of electrons orbiting a nucleus

analogous to the planetary system but subjected to Bohr’s restrictive quantum postulates. (53) Part

of the problem of the fine structures was solved by the innovative work of Uhlenbeck, Goudsmit

and Thomas, who were operating in the context of the Bohr–Sommerfeld approach. In the words of

Pais: the discovery of spin, made after Heisenberg had already published the first paper on quan-

tum mechanics, is an advance in the spirit of the old quantum theory, that wonderfully bizarre

mixture of classical reasoning supplemented by ad hoc quantum rules. (54) In the new Quan-

tum Mechanics of Heisenberg, Schrödinger, Born, Pauli and Dirac, the atomic theory based on

the model of the semi-classically orbiting electron became outdated and so did the model of the

electron with an internal structure of a spinning gyroscope.

But the confusion regarding the relation of the model based Thomas precession with an elec-

tron orbiting a nucleus and the math based Dirac spin with the point-like electron did not just go

away. Applied to the Poincaré-Lorentz model of the spherical electron, Thomas’ electron spin

seemed to require a rotating velocity of many times the speed of light, indicating that spin added

a new dimension to the older problem of the stability of the spherical electron. At least, for those

physicists that still pondered on that issue. In our paper on the geodesic precession we show that

the Thomas precession when applied to macroscopic spinning gyroscopes gives correct results,

verified by experiments like Gravity Probe B. So in the macroscopic world where the models are

a clear representation of reality, Thomas’ approach gives correct results. But in the femtoscopic

world of the elementary electron, where the electron model leads to paradoxes, Thomas’ recipe

still functions. The intriguing question is: ‘Why is it still functioning?’ The Thomas’ approach to

electron spin has quantum mechanically been superseded by the Dirac’s equation and the corre-

spondence principle of Bohr, that heuristic instrument only really understood by Bohr himself, is

sometimes invoked to explain the correctness of both theories ((55) , p. 214).

After the theory of Thomas and the one of Dirac, physicists like Frenkel, Kramers and de

Broglie tried to understand spin more or less in the relativistic language of anti-symmetric six-

vectors, partly in tensor formulation (56), (57), (58), (59). A few decades later, in his 1974 treatise

on spin, Tomonaga used a similar six-vector formulation of the relativistic interpretation of Dirac
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spin ((55), p. 61, p. 207). Six-vectors where introduced by Minkowski in 1908 together with

the four-vector notation of space-time as (r, ict) (14). Four-vectors and six-vectors were given

a more profound geometrical interpretation by Sommerfeld in 1910 (60), (61). The most im-

portant example of a six-vector was, and still is, the electromagnetic six-vector
−→
B = BBB− i1

c E.

With the use of this six-vector and the four-vectors for charge-currency and the divergence- and

rotation-operators, Minkowski rewrote Maxwell’s equations for electromagnetism in a form that

was invariant under a Lorentz Transformation. But Minkowski, a mathematician, mostly preferred

tensor- and matrix-representation of vectors, whereas Sommerfeld, a physicist, deliberately chose

vector-formulations, witch he esteemed more directly connected to the physical world in its three

dimensional geometry and for that reason better accessible for the physicists of his day. Due

mainly to Laue and Einstein, second-rank tensors became the dominant notation in books and ar-

ticles on relativism whereas Sommerfeld’s six-vector notation got used less and less in the course

of the twentieth century but never disappeared.

Frenkel, de Broglie and Kramers started their relativistic spin analysis with an attempt to

formulate angular momentum in a relativistic six-vector form analogous to the magnetization-

polarization six-vector of electromagnetism. But the relativistic generalization of angular momen-

tum itself was found to lead to a confusion that couldn’t be solved. Already with Thomas and

Frenkel in 1926 there was a dispute concerning the relativistic generalization of the connected

angular frequency. Thomas discussed both options, a four vector with a scalar acceleration and

a six-vector with a three vector acceleration. He concluded that in a system where the spinning

electron was at rest, the acceleration would be zero anyhow and he showed that both choices lead

to the same three relations for the angular velocity. In his own words, using w for the angular

frequency three vector ωωω: It makes no difference which of w, wµ , wµν is used to find the secular

change. So in his derivation he didn’t have to make a choice between four vector model or six-

vector model for the spinning electron, but he nevertheless formulated both options, indicating that

he was theorizing within Minkowski-Sommerfeld structures. Thomas then related his result to the

spherical model of the electron, the Abraham spinning electron, and arrives at the conclusion that

the charges on the surface should rotate with a velocity two hundred times the velocity of light,

which he deems absurd. He added: I think we must look towards the general relativity theory for

an adequate solution of the problem of the “structure of the electron”; if indeed this phrase has

any meaning at all and if it can be possible to do more than to say how an electron behaves in an

external field. (51)
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In the perspective of Thomas, the relativistic generalization of spin angular frequency as a

three vector was an acceleration, either as a scalar, resulting in a four vector, or as a three vector,

resulting in a six-vector. Thus, with relativistic electron spin frequency as a quantum thing and rel-

ativistic electron acceleration as a GR thing, two thus far incompatible math-phys languages seem

involved in the problem of the (precession) frequency of the relativistic electron spin. Frenkel

argued that the relativistic generalization of spin had to be a six-vector, not a four vector, due

to the fact that mechanical electron spin had to be accompanied by a magnetic moment with the

Bohr magneton as its size. And in relativistic electromagnetics, it had already been proven that the

correlated three vector of magnetic moment was electric polarization. Then the analogy lead to

the conclusion that relativistic electron spin had to be a six-vector, with the strange property that

its dipole three vector part had to be zero in its own rest system. Frenkel defined the first three

components of his angular momentum six-vector as the three components of the 3-dimensional

angular momentum L, but, curiously enough, in the entire article not a single physical interpreta-

tion of the last three components of this six-vector was given. It remained a purely mathematical

entity needed for a complete relativistic calculation. The analysis of Frenkel connected the debate

concerning the problem of the spinning electron to the already existing confusion of the correct in-

terpretation of the magnetic moment and electric polarization six-vector or anti-symmetric tensor

(56). So he added the Minkowski EM math-phys language to the problem of the correct relativistic

treatment of the spinning electron.

Kramers in part two of his Quantum Mechanics, a translation of Quantentheorie des Elektrons

und der Strahlung of 1938 started with quoting Frenkels 1926 paper and repeating his six-vector

theory of electron spin. After adding the Thomas factor he turns to the Pauli matrix representation

and explains that one can add a unit matrix times a constant to the Pauli spin three vector matrix

in order to get a most general observable which refers to the electron spin. This in fact looks like

the four vector Pauli spin to which de Broglie will refer later on. The result is a combination of a

six-vector theory and a matrix four vector, which together combine into the Hamiltonian EM-field

spin interaction operator. But in this operator, only the three vectors of the magnetic momentum

and the spin angular momentum remain, with the electric polarization and the spin’s fourth unit

matrix set zero in the rest frame of the electron. To add to the confusion, the foregoing is part of

Kramer’s non-relativistic treatment of the spinning electron. In the second part, the Dirac spinning

electron is presented in the form of a doubling of the Pauli spin structure (57).

De Broglie signaled that Pauli-spin and Dirac-spin defied simple incorporation into the anti-
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symmetric tensor or six-vector scheme. He formulated relativistic angular momentum as an anti-

symmetric tensor and related six-vector but argued that quantum spin should be made relativistic

as a density four vector, with a zero time-like part in its own rest system. But later on he con-

nected spin magnetic moment to the usual magnetic moment electric polarization six-vector or

anti-symmetric tensor of relativistic electromagnetics. So by relating the three vector spin to both

a four vector and to a six-vector generalization without a clear connection between both general-

izations, de Broglie puts the reader in a state of confusion regarding the relativistic status of the

electron spin that matches Kramers (58), (59).

In Tomonaga’s The story of spin, the Pauli spin as a three vector is completed by a fourth unit

matrix and then this set of four 2x2 matrices is used to produce a six-vector on a Dirac level. But

this six-vector, with 2x2 matrices containing the Pauli spin matrices as basic elements, has two

three vectors who neither equal the Dirac spin three vector presented earlier in the book. But still,

Tomonaga says that we can interpret them as components of one six-vector, and we can regard them

as the relativistic generalization of electron spin. Later on in the book, the EM spin interaction

energy term is given as a linear combination of this six-vector spin and the electromagnetic six-

vector (55).

We conclude that the way Thomas, Frenkel, Kramers, de Broglie and Tomonaga presented their

attempts towards and understanding of the relativistic spinning electron, just added confusion to an

already problematic scene regarding the problem of the electron. But at the same time, elements

of their presentations cannot be neglected, as they incorporate experimentally verified quantum

aspect and classical aspects of the electron. Individually, they all added insights and provisional

partial structures concerning the problematic relation between electron spin and relativistic electro-

dynamics and mechanics. They invoked two sets of languages to deal with the relativistic problem

of the spinning electron, the Minkowski-Laue consensus and Pauli-Dirac spin QM but remained

incapable of fusing the concepts and the math-phys of these two paradigmatic approaches.

D. Dirac’s return to the pre-quantum theory of the electron

In 1938 Dirac returned to the Lorentz model of the electron in an attempt to find an opening re-

garding the self-energy problem as it reappeared in quantum mechanics, a problem that prevented

the application of quantum mechanics to high-energy radiative processes (62). This problem was

eventually solved with the development of QED by Feynman, Schwinger, Tomonaga and Dyson.
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But Dirac didn’t like the renormalization solution of QED and he continued to try to solve the

electron’s self-energy problem, related to the Lorentz model, in a more fundamental way, by go-

ing back to the pre-quantum theory of relativistic electrodynamics (63).

In an article of 1949 Dirac tried to combine the restricted principle of relativity with the Hamil-

tonian formulation of (quantum-) dynamics in a paper titled Forms of Relativistical Dynamics (64).

This lead to the appearance of ten fundamental quantities for each dynamical system, the four-

momentum Pµ and the six-vector, in tensor-form, Mµν which had three components equal to the

total angular momentum. The remaining three components did not correspond to any such well-

known physical quantities, but Dirac considered them equally important in the general scheme.

According to Dirac the four-vector Pµ and the six-vector Mµν formed together the ten fundamen-

tal quantities or physical variables. In his treatment Mµν was the four-dimensional cross-product

of the four-momentum Pµ and the generalized four-coordinate Qν with Mµν = qµpν − qνpµ . In

his article, Dirac never gave a physical interpretation of the extra three vector component of his

second-rank tensor or six-vector. Dirac mentioned the appearance of ten fundamental quantities

in the cross-product of the four-location and the four-momentum as kind of a mixture of the sym-

metric and the anti-symmetric tensor products. But his attempt to formulate a new relativistic

dynamics didn’t lead to enduring results.

A few year later, Dirac expressed his intuition regarding the problem of the electron as fol-

lows: Classical electrodynamics is based on Maxwell’s equations for the electromagnetic field

and Lorentz’s equations of motion for electrons. It is an approximate theory [...] and all attempts

to make it accurate bring one up against the problem of the structure of the electron, which has

not received any satisfactory solution. People hoped at one time that quantum mechanics would

remove these difficulties, but this hope has not been fulfilled. To make progress one should there-

fore re-examine the classical theory of electrons and try to improve on it. (63) We can see now that

we may very well have an æther, subject to quantum mechanics and conforming to relativity, [...].

We must make some profound alterations in our theoretical ideas of the vacuum. It is no longer

a trivial state, but needs elaborate mathematics for its description.[...] Thus with the new theory

of electrodynamics we are rather forced to have and æther. (65) It (the new æther) will probably

have to be modified by the introduction of spin variables before a satisfactory quantum theory of

electrons can be obtained from it, and only after this has been accomplished will one be able to

give a definite answer to the æther question. (66)

This is the point were we catch on, Dirac’s suggestion of introducing spin variables into the

19



vacuum/metric/æther as a necessary step forward in our understanding of the electron. This means

that in dealing with the problem of relativistic dynamics regarding the problem of the (spinning)

electron, we ignore what was to come afterwards, the Yang-Mills theories of the weak force and

the strong force. So not only is our approach anachronistic relative to General Relativity, due to

our focus on revising the Minkowski-Laue consensus, but it is also anachronistic relative to the

Yang-Mill’s theories of the Standard Model. In no way does this mean that we criticize these

experimentally strongly tested and verified theories as such. The anachronistic approach is chosen

because it greatly simplifies the problem of the electron in the context of revising relativistic dy-

namics (or replacing the Minkowski-Laue paradigm). The hope is that the fundamental problems

regarding the electron can be dealt with in such an anachronistic way so that it will nevertheless

allow us to produce interesting results.

In the foundations of physics discussion, several papers support Dirac’s view that QED found a

(highly successful) way around the infinite self energy of the electron but without solving the prob-

lem itself. In 1986 Jiménez and Campos, discussing the Boyer-Rohrlich controversy, wrote: [...]

questions about the stability of the electron, the nature of the electron mass (totally electromag-

netic or partly nonelectromagnetic), and infinite self energy. The clarification of these problems

is worthwhile since most of them appear again in quantum electrodynamics (19). In their paper,

the whole problem of around 1905-1915 reappears, unsolved, almost frozen in time. In 1999 they

end a paper titled Models of the classical electron after a century with the sentence Thus, after

a century, the search for a deeper understanding of the electron continues (67). But strangely

enough, modern discussions of the problem of the electron in the math-phys framework of Laue’s

relativistic mechanics do not incorporate the problem of electron spin with Pauli of Dirac matrices

as it appeared in the treatments of Kramers, de Broglie and Tomonaga.

We believe that three results presented in the following mathematical part might be interesting.

First the Lorentz transformation as a basis transformation with invariant coordinates as a result

of our way to put spin into the metric. Second the relativistic mechanics as an alternative to the

Minkoski-Laue consensus that results from our math-phys language. Further more, our approach

is focused on producing only a rough sketch of a math-phys language that is rich enough in its

internal structures in order to comprise the discussions regarding the problem of the (spinning)

electron in a better way than was possible in the past. Presenting only a first gross outline of

a somewhat new math-phys language we ignore inevitably many, many details of the theories in-

volved. The goal was to create one math-phys language for the electron problem, one that replaced
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the Minkowski-Laue consensus and contained pre-YM Pauli-Dirac QM and pre-GR gravitation.

The first goal has been achieved, the second is still open, but has been closed in upon.

III. THE PAULI SPIN LEVEL

A. A complex quaternion basis for the metric

Quaternions can be represented by the basis (1̂, Î, Ĵ,K̂). This basis has the properties ÎÎ = ĴĴ =

K̂K̂ =−1̂ and 1̂1̂ = 1̂; 1̂K̂ = K̂1̂ = K̂ for Î, Ĵ,K̂; ÎĴ =−ĴÎ = K̂; ĴK̂ =−K̂Ĵ = Î; K̂Î =−ÎK̂ = Ĵ.

A quaternion number in its summation representation is given by A = a01̂+ a1Î+ a2Ĵ+ a3K̂, in

which the aµ are real numbers . Bi-quaternions or complex quaternions are given by

C = A+ iB = c01̂+ c1Î+ c2Ĵ+ c3K̂

(a0 + ib0)1̂+(a1 + ib1)Î+(a2 + ib2)Ĵ+(a3 + ib3)K̂ =

a01̂+a1Î+a2Ĵ+a3K̂+ ib01̂+ ib1Î+ ib2Ĵ+ ib3K̂, (27)

in which the cµ = aµ + ibµ are complex numbers and the aµ and bµ are real numbers.

The biquaternions can be used to provide a basis for relativistic space-time. One way to do

this is by making the time coordinate c0 complex and the space coordinates c1,c2,c3 real. This

however produces confusion regarding the time-like complex number as the physics gets more

complex. It also produces language conflicts with almost all of modern physics, that is Quantum

Mechanics and Special and General Relativity. For this reason, I choose to insert the time-like

complex number of c0 in the basis instead of in the coordinate. So by using c01̂ = b0i1̂ = b0T̂ the

space-time basis is then given by (T̂, Î, Ĵ,K̂). In this way, the coordinates are always a set of real

numbers ∈ R. Spinors however are always given by a set of complex numbers.

A set of four numbers ∈ R is given by

Aµ =


a0

a1

a2

a3

 , (28)

or by

Aµ = [a0,a1,a2,a3] . (29)
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The biquaternion basis can be given as a set Kµ as

Kµ =


T̂

Î

Ĵ

K̂

 , (30)

Then a biquaternion space-time vector can be written as

A = AµKµ = [a0,a1,a2,a3]


T̂

Î

Ĵ

K̂

= a0T̂+a1Î+a2Ĵ+a3K̂ (31)

I apply this to the space-time four vector of relativistic bi-quaternion 4-space R with the four

numbers Rµ as

Rµ =


ct

r1

r2

r3

=


r0

r1

r2

r3

 . (32)

so with r0,r1,r2,r3 ∈ R. Then we have R = RµKµ or

R = RµK̂µ
= r0T̂+ r1Î+ r2Ĵ+ r3K̂ = r0T̂+ r ·K. (33)

We use the three-vector analogue of RµKµ when we write r ·K. In this notation we have

RT =−r0T̂+ r1Î+ r2Ĵ+ r3K̂ =−r0T̂+ r ·K (34)

for the time reversal operator and

RP = r0T̂− r1Î− r2Ĵ− r3K̂ = r0T̂− r ·K (35)

for the space reversal operator. We have RP =−RT . In this notation, the transpose of a matrix will

be given by the suffix ‘t’, so Rt
µ = Rµ . The complex transpose of spinors is given by the dagger

symbol, as in ψ†. The complex conjugate of a spinor is given by ψ∗.
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B. Matrix representation of the quaternion basis

Quaternions can be represented by 2x2 matrices. Several representations are possible, but most

of those choices result in conflict with the standard approach in physics. My choice is

1̂ =

 1 0

0 1

 , T̂ =

 i 0

0 i

 , Î =
 i 0

0 −i

 , Ĵ =

 0 1

−1 0

 ,K̂ =

 0 i

i 0

 . (36)

I can compare these to the Pauli spin matrices σσσP = (σx,σy,σz).

σσσ x =

 0 1

1 0

 ,σσσ y =

 0 −i

i 0

 ,σσσ z =

 1 0

0 −1

 . (37)

If I exchange the σx and the σz, I get K = iσσσ and Kµ = i(1̂,σσσ). So in my use of the Pauli matrices,

I use σσσ ≡ (σI,σJ,σK) = (σz,σy,σx). So also Î = T̂σσσ I, Ĵ = T̂σσσ J,K̂ = T̂σσσK and σσσ I = −T̂Î,σσσ J =

−T̂Ĵ,σσσK =−T̂K̂.

With this choice of matrices, a four-vector R can be written as

R = r0

 i 0

0 i

+ r1

 i 0

0 −i

+ r2

 0 1

−1 0

+ r3

 0 i

i 0

 . (38)

This can be compacted into a matrix representation of R:

R =

 r0i+ ir1 r2 + ir3

−r2 + ir3 r0i− ir1

=

 R00 R01

R10 R11

 (39)

with the numbers R00,R01,R10,R11 ∈ C.

C. Multiplication of vectors as matrix multiplication

In general, multiplication of two vectors A and B follows matrix multiplication, with Ai j,Bi j,Ci j ∈

C.

AB =

 A00 A01

A10 A11

 B00 B01

B10 B11

=

C00 C01

C10 C11

=C. (40)

So we have

C = AB =

 A00B00 +A01B10 A00B01 +A01B11

A10B00 +A11B10 A10B01 +A11B11

=

C00 C01

C10 C11

 . (41)
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Of course, vectors A, B and C can be expressed with their aµ ,bµ ,cµ coordinates ∈ R and if we

use them, after some elementary but elaborate calculations and rearrangements we arrive at the

following result of the multiplication expressed in the aµ , bµ and cµ as

c0 =−a0b0−a1b1−a2b2−a3b3

c1K = a2b3−a3b2

c2K = a3b1−a1b3

c3K = a1b2−a2b1

c1σ =−a0b1−a1b0

c2σ =−a0b2−a2b0

c3σ =−a0b3−a3b0 (42)

In short, if we use the three-dimensional Euclidean dot and cross products of Euclidean three-

vectors in classical physics, this gives for the coordinates

c0 =−a0b0−a ·b

cK = a×b (43)

cσ =−a0b−ab0 (44)

And in the quaternion notation we get

C = AB = (−a0b0−a ·b)1̂+(a×b) ·K+(−a0b−ab0) ·σσσ (45)

This matrix multiplication, in which I used T̂T̂ = −1̂ and T̂K = −σσσ , implies that the space-time

basis (T̂,K) is being duplicated by a spin-norm basis (1̂,σσσ).

The physically relevant multiplications of two four-vectors are all in the form C = AT B. The

difference between AB and AT B is in the sign of a0. This results in

C = AT B = (a0b0−a ·b)1̂+(a×b) ·K+(a0b−ab0) ·σσσ (46)

From this it follows that the physically relevant norm of a four-vector, from a relativistic per-

spective, is the product AT A and not the product AA:

C = AT A = (a0a0−a ·a)1̂+(a×a) ·K+(a0a−aa0) ·σσσ = (a0a0−a ·a)1̂ = c2a2
τ 1̂. (47)

The main quadratic form of the metric is

dRT dR = (c2dt2−dr2)1̂ = c2dτ
21̂ = ds21̂ (48)
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with ds = cdτ . The quadratic giving the distance of a point R to the origin of its reference system

is given by

RT R = (c2t2− r2)1̂ = c2
τ

21̂ = s21̂ (49)

with s = cτ .

The multiplication of two four vectors can also be arranged as the multiplication of two tensors,

a coordinate tensor times a metric tensor using that

(AµKµ)T BνKν = AµBν(Kµ)
T Kν =C ν

µ K ν
µ (50)

with the metric tensor as

K ν
µ = (Kµ)

T Kν =
[
−T̂, Î, Ĵ,K̂

]


T̂

Î

Ĵ

K̂

=


−T̂T̂ ÎT̂ ĴT̂ K̂T̂

−T̂Î ÎÎ ĴÎ K̂Î

−T̂Ĵ ÎĴ ĴĴ K̂Ĵ

−T̂K̂ ÎK̂ ĴK̂ K̂K̂

= (51)


1̂ −σI −σJ −σK

σI −1̂ −K̂ Ĵ

σJ K̂ −1̂ −Î

σK −Ĵ Î −1̂

 . (52)

This multiplication product has a norm 1̂ part, a space K part and a spin σσσ part. So the multiplica-

tion of two four vectors AT B =C has this multiplication matrix. The multiplication combines the

properties of symmetric and anti-symmetric in one product.

D. The Lorentz transformation

Usually the Lorentz transformation is given as a coordinate transformation against a Minkowski

spacetime background. This spacetime background is an inert, static theater in which the physics

of special relativity takes place. Without gravity, this metric is presumed to be flat or inert. A

Lorentz transformation acts upon the coordinates, not upon the metric. This is the context of

Special Relativity. Quantum mechanics, from Schrödinger’s to Dirac’s version, is defined in this

environment of Special Relativity. The metric of Quantum Theory is Minkowski flat or inert.

A normal Lorentz transformation between two reference frames connected by a relative ve-

locity v in the x− or Î-direction, with the usual γ = 1/
√

1− v2/c2, β = v/c and r0 = ct, can be
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expressed as  r′0
r′1

=

 γ −βγ

−βγ γ

 r0

r1

=

 γr0−βγr1

γr1−βγr0

 . (53)

We want to connect this to our matrix representation of R as in Eq.(39) which gives

R′00 = ir′0 + ir′1 = iγr0− iβγr1 + iγr1− iβγr0 (54)

R′11 = ir′0− ir′1 = iγr0− iβγr1− iγr1 + iβγr0. (55)

Now we want to introduce rapidity or hyperbolic Special Relativity in order to integrate Lorentz

transformations into our matrix metric. In (46) we gave a brief history of rapidity in its relation

to the Thomas precession and the geodesic precession. For this paper we only need elementary

rapidity definitions. If we use the rapidity ψ as eψ = coshψ + sinhψ = γ + βγ , the previous

transformations can be rewritten as

R′00 = ir′0 + ir′1 = (γ−βγ)(ir0 + ir1) = R00e−ψ (56)

R′11 = ir′0− ir′1 = (γ +βγ)(ir0− ir1) = R11eψ . (57)

As a result we have

RL =

 R′00 R′01

R′10 R′11

=

 R00e−ψ R01

R10 R11eψ

=U−1RU−1. (58)

In the expression RL =U−1RU−1 we used the matrix U as

U =

 e
ψ

2 0

0 e−
ψ

2

 . (59)

But this means that we can write the result of a Lorentz transformation on R with a Lorentz

velocity in the Î-direction between the two reference systems as

RL = r0

 ie−ψ 0

0 ieψ

+ r1

 ie−ψ 0

0 −ieψ

+ r2

 0 1

−1 0

+ r3

 0 i

i 0

 . (60)

This can be written as

RL = r0U−11̂U−1 + r1U−1ÎU−1 + r2Ĵ+ r3K̂ = r01̂L
+ r1ÎL

+ r2Ĵ+ r3K̂. (61)

But because we started with Eq.(53), we now have two equivalent options to express the result of

a Lorentz transformation

RL = r′01̂+ r′1Î+ r2Ĵ+ r3K̂ = r01̂L
+ r1ÎL

+ r2Ĵ+ r3K̂, (62)
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either as a coordinate transformation or as a basis transformation.

This shows that we do not need to have an inert metric any more. In our metric, a Lorentz

transformation can leave the coordinates invariant and only change or rotate the basis on the level

of spin-matrices. Mathematically we can formulate a Lorentz transformation as a matrix internal

twist of the quaternion matrix basis, leaving the coordinates unchanged. A Lorentz transformation

thus twists the metric. This implies that our metric is not the Minkowski metric of Special Rel-

ativity any more, although it remains closely related to it. But is it a metric that can accomodate

Quantum Physics?

This result only works for Lorentz transformation between vx-, v1- or Î-aligned reference

systems. Reference systems which do not have their relative Lorentz velocity aligned in the Î-

direction will have to be space rotated into such an alignment before the Lorentz transformation in

the form RL =U−1RU−1 is applied. In principle, such a rotation in order to achieve the Î alignment

of the primary reference frame to a secondary reference frame is always possible as an operation

prior to a Lorentz transformation.

The interesting thing about the eψ = γ + βγ term is that it represents a relativistic Doppler-

correction applied to the frequency ν of light-signals exchanged between two inertial reference

systems.
ν

ν0
= eψ . (63)

So if we twist the matrix basis internally as to compensate for the relativistic Doppler shift, then

the coordinates can remain invariant under a Lorentz transformation. As to the Î-alignment issue,

two reference systems that exchange light signals in order to communicate might as well align

their x-axes along the light signal communication direction.

The Lorentz transformation of the coordinates can be written as

(Rµ)L =


r′0
r′1
r′2
r′3

= Λ
µ

ν Rν


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1




r0

r1

r2

r3

=


γr0−βγr1

γr1−βγr0

r2

r3


So the Lorentz transformation of R = RµKµ = KµRµ can be presented as

RL = Kµ(Rµ)L = KµΛ
µ

ν Rν = (KµΛ
µ

ν )Rν = (Kν)
LRν =U−1KνU−1Rν =

U−1KνRνU−1 =U−1RU−1 (64)
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This implies the identity KµΛ
µ

ν =U−1KνU−1, an identity that isn’t possible for the coordinates

only. The matrix representation of the basis is key to this identity. As is the Î alignment of the two

involved reference frames during the Lorentz transformation.

The Lorentz transformation of AT is also interesting, due to the importance of the product

C = AT B and therefore the Lorentz transformation CL. Given the inverse Lorentz transformation

as

AL−1
≡UAU (65)

one can prove (
AT)L−1

=U
(
AT)U =

(
U−1AU−1)T

=
(
AL)T

(66)

and (
AT)L

=U−1 (AT)U−1 = (UAU)T =
(

AL−1
)T

. (67)

Given A and B in reference system S1 and their product in S1 as C = AT B. Then in reference

system S2 one has AL and BL and their product CL =
(
AL)T BL. We then have

CL =
(
AL)T

BL =
(
AT)L−1

BL =U
(
AT)UU−1BU−1 =UAT BU−1 =UCU−1. (68)

As a result, it is easy to prove that the quadratic AT A = c2a2
τ 1̂ is Lorentz invariant. We have

(AL)T AL = (AT )−LAL =UATUU−1AU−1 =UAT AU−1 =

U(c2a2
τ)1̂U−1 =UU−1(c2a2

τ)1̂ = c2a2
τ 1̂ = AT A. (69)

So both quadratics RT R and dRT dR are Lorentz invariant scalars, as has been shown for every

quadratic of four-vectors.

E. Adding the dynamic vectors

If we want to apply the previous to relativistic electrodynamics and to quantum physics, we

need to develop the mathematical language further. We start by adding the most relevant dynamic

four vectors. The basic definitions we use are quite common in the formulations of relativistic

dynamics, see for example (16). We start with a particle with a given three vector velocity as v,

a rest mass as m0 and an inertial mass mi = γm0, with the usual γ = (
√

1− v2/c2)−1. We use

the Latin suffixes as abbreviations for words, not for numbers. So mi stands for inertial mass and

Up for potential energy. The Greek suffixes are used as indicating a summation over the numbers
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0, 1, 2 and 3. So Pµ stands for a momentum four-vector coordinate row with components (p0 =

1
cUi, p1, p2, p3). The momentum three-vector is written as p and has components (p1, p2, p3).

We define the coordinate velocity four vector as

V =VµKµ =
d
dt

RµKµ = cT̂+v ·K = v0T̂+v ·K. (70)

The proper velocity four vector on the other hand will be defined using the proper time τ = t0,

with t = γt0 = γτ , as

U =UµKµ =
d

dτ
RµKµ =

d
1
γ
dt

RµKµ = γVµKµ = u0T̂+u ·K. (71)

The momentum four vector will be, at least when we have the symmetry condition p = miv,

P = PµKµ = miVµKµ = miV = m0UµKµ = m0U. (72)

The four vector partial derivative ∂ = ∂µKµ will be defined using the coordinate four set

∂µ =

[
−1

c
∂t ,∇1,∇2,∇3

]
= [∂0,∂1,∂2,∂3]≡

∂

∂Rµ

. (73)

The electrodynamic potential four vector A = AµKµ will be defined by the coordinate four set

Aµ =

[
1
c

φ ,A1,A2,A3

]
= [A0,A1,A2,A3] (74)

The electric four current density vector J = JµKµ will be defined by the coordinate four set

Jµ = [cρe,J1,J2,J3] = [J0,J1,J2,J3] , (75)

with ρe as the electric charge density. The electric four current with a charge q will be also be

written as Jµ and the context will indicate which one is used.

Although we defined these fourvectors using the coordinate column notation, we will often use

the matrix or summation notation, as for example with P = PµKµ , written as

P = p0T̂+ p1Î+ p2Ĵ+ p3K̂ = p0T̂+p ·K

=

 ip0 + ip1 p2 + ip3

−p2 + ip3 ip0− ip1

=

 P00 P01

P10 P11

 . (76)
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F. The EM field in our language

I we apply the matrix multiplication rules to the electromagnetic field with four derivative ∂

and four potential A, with ∂0 =−1
c ∂t and A0 =

1
c φ , we get B = ∂ T A as

B = ∂
T A = (− 1

c2 ∂tφ −∇∇∇ ·AAA)1̂+(∇∇∇×AAA) ·K+
1
c
(−∂tAAA−∇∇∇φ) ·σσσ . (77)

If we apply the Lorenz gauge B0 =− 1
c2 ∂tφ −∇∇∇ ·AAA = 0 and the usual EM definitions of the fields

in terms of the potentials we get

B = ∂
T A = BBB ·K+

1
c

EEE ·σσσ . (78)

Using σσσ =−T̂K =−iK, this can also be written as

B = ∂
T A = (BBB− i

1
c

EEE) ·K =
−→
B ·K. (79)

The use of B= BBB− i1
c EEE dates back to Minkowski’s 1908 treatment of the subject (14).

Using B we can write B as

B = B1Î+B2Ĵ+B3K̂ =
−→
B ·K =

 iB1 B2 + iB3

−B2 + iB3 −iB1

=

 B00 B01

B10 B11

 . (80)

For the Lorentz transformation of B we can apply the result of the previous section to get

BL = (∂ L)T AL = (∂ T )−LAL =U(∂ T )UU−1AU−1 =U(∂ T A)U−1 =UBU−1, so

BL =

 e
ψ

2 0

0 e−
ψ

2

 B00 B01

B10 B11

 e−
ψ

2 0

0 e
ψ

2

=

 B00 B01eψ

B10e−ψ B11

 (81)

which, when written out with EEE and BBB leads to the usual result for the Lorentz transformation of the

EM field with the Lorentz velocity in the x-direction. But it can also be written as a transformation

of the basis, while leaving the coordinates invariant:

BL =UBU−1 = B1U ÎU−1 +B2U ĴU−1 +B3UK̂U−1 =

B1Î+B2ĴL
+B3K̂L

= B1

 i 0

0 −i

+B2

 0 eψ

−e−ψ 0

+B3

 0 ieψ

ie−ψ 0

 . (82)

The Lorentz transformation of the EM field can be performed by internally twisting the (Ĵ,K̂)-

surface perpendicular to the Lorentz velocity and in the process leaving the EM-coordinates in-

variant.
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That the above equals the usual Lorentz transformation of the EM field can be shown by going

back to the 1908 paper by Minkowski (14), where he wrote the transformation in a form equivalent

to 
B′1
B′2
B′3

=


1 0 0

0 γ iβγ

0 −iβγ γ



B1

B2

B3

=


B1

γB2 + iβγB3

γB3− iβγB2

 (83)

So we have

B′01 = B′2 + iB′3 = γB2 + iβγB3 + iγB3 +βγB2 (84)

and

B′10 =−B′2 + iB′3 =−γB2− iβγB3 + iγB3 +βγB2. (85)

If we use the rapidity ψ as eψ = coshψ + sinhψ = γ +βγ , this can be rewritten as

B′01 = B′2 + iB′3 = (γ +βγ)(B2 + iB3) = B01eψ (86)

and

B′10 =−B′2 + iB′3 = (γ−βγ)(−B2 + iB3) = B10e−ψ , (87)

which leads to Eqn. (81).

G. The Maxwell Equations and the Lorentz force law

The Maxwell equations in our language can be given as, using J = ρV

∂B = µ0J (88)

and the Lorentz force law, with a four force density F , as

JB = F . (89)

Maxwell’s inhomogeneous wave equations can be written as

(−∂
T

∂ )B =−µ0∂
T J (90)

and with the Lorentz invariant quadratic derivative,

−∂
T

∂ = (∇∇∇2− 1
c2 ∂

2
t )1̂ (91)
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we get the homogeneous wave equations of the EM field in free space in the familiar form as

(−∂
T

∂ )B = ∇∇∇
2B− 1

c2 ∂
2
t B = 0. (92)

I will look at ∂B = µ0J first. The underlying structure then also applies to the Lorentz Force

Law and the inhomogeneous part of the wave equation. I start with

B = ∂
T A = BBB ·K+

1
c

EEE ·σσσ . (93)

Then ∂B is given by

∂B =

(
−1

c
∂tT̂+∇∇∇ ·K

)(
BBB ·K+

1
c

EEE ·σσσ
)
=

−(∇∇∇ ·BBB)1̂+ 1
c
(∇∇∇ ·EEE)T̂+(∇∇∇×BBB− 1

c2 ∂tEEE) ·K+
1
c
(∇∇∇×EEE +∂tBBB) ·σσσ (94)

If we interpret this result using the knowledge regarding the inhomogeneous Maxwell equations,

we get an interesting result. First of all, the part of the Maxwell Equation with the dimension of

the norm 1̂ is zero and so is the part with the dimension of spin σσσ . The space-time parts K and T̂

equal the space-time parts of the four current µ0J. So we get

∂B =−(∇∇∇ ·BBB)1̂+ 1
c
(∇∇∇ ·EEE)T̂+(∇∇∇×BBB− 1

c2 ∂tEEE) ·K+
1
c
(∇∇∇×EEE +∂tBBB) ·σσσ =

01̂+µ0cρT̂+µ0JJJ ·K+0σσσ = µ0J. (95)

So the spin-norm part of the Maxwell Equations equals zero and the space-time part equals the

space-time four current density times µ0. In the line of this interpretation, magnetic monopoles

and the correlated magnetic monopole current should be searched in the dimensions of spin-norm,

not in the dimensions of space-time.

As for the Lorentz covariance of the Maxwell Equations, this can be demonstrated quite easily.

Given the four-vectors ∂ , A and J in reference system S1, with the Maxwell Equations as ∂ (∂ T A)=

µ0J, then in reference system S2 we have the four-vectors ∂ L, AL and JL and the covariant Maxwell

Equations given as ∂ L(∂ L)T AL = µ0JL. In S2 this can be proven through

∂
L(∂ L)T AL = ∂

L(∂ T )L−1
AL =U−1

∂U−1U(∂ T )UU−1AU−1 =

U−1
∂ (∂ T )AU−1 =U−1

∂BU−1 =U−1
µ0JU−1 = µ0JL. (96)

So if we have ∂B = µ0J in one frame of reference, this transforms as ∂ LBL = µ0JL in another

frame of reference, which means that the equation maintains its form, it is Lorentz covariant. We

have form-invariance of the equations.
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I will look at JB = F now, with J = qV . The underlying structure for the Lorentz Force Law is

the same as for the Maxwell equations. So JB is given by

JB =
(
cqT̂+ JJJ ·K

)(
BBB ·K+

1
c

EEE ·σσσ
)
=

−(JJJ ·BBB)1̂+ 1
c
(JJJ ·EEE)T̂+(JJJ×BBB+qEEE) ·K+(

1
c

JJJ×EEE− cqBBB) ·σσσ (97)

If we interpret this result using the knowledge regarding the Lorentz Force Law, we get an inter-

esting result. First of all, the part of the Lorentz force law with the dimension of the norm 1̂ is

zero and so is the part with the dimension of spin σσσ . The space-time parts K and T̂ equal the

space-time parts of the four force F . Thus we get

JB =−(JJJ ·BBB)1̂+ 1
c
(JJJ ·EEE)T̂+(JJJ×BBB+qEEE) ·K+(

1
c

JJJ×EEE− cqBBB) ·σσσ =

01̂+
1
c

PT̂+FFF ·K+0σσσ = F. (98)

So the spin-norm part of the Lorentz Force Law equals zero and the space-time part equals the

space-time four force.

In both cases, ∂B and BJ, we get a dual spin-norm and space-time product, with the spin-norm

equal zero and the non-zero space-time leading to the inhomogeneous four-vectors of current and

force. Speculations about magnetic monopoles are connected to these spin-norm parts. In my

analysis, if spin-norm is the twin dual of space-time and as such an integral aspect of the metric

as foreseen by Dirac (65), then searches for magnetic monopoles should focus on this spin-norm

aspect of the vacuum.

H. Invariant EM field energies and the generalized Poynting theorem

As for the electromagnetic energy density of a pure EM field, we have the two products BB and

BT B. These product are structurally different from the previous ∂ T A and ∂B = ∂∂ T A because it

now involves the multiplication of four four-vectors as in BB = ∂ T A∂ T A.

For BB the antisymmetric part eliminates and we get the norm-time product

BB =

(
BBB ·K+

1
c

EEE ·σσσ
)(

BBB ·K+
1
c

EEE ·σσσ
)
= (

1
c2 EEE2−BBB2)1̂+(2

1
c

BBB ·EEE)T̂, (99)

which, with a complex uEB = uE −uB +2i√uBuE , can be written as

1
2µ0

BB = (uE −uB)1̂+(2
√

uBuE)T̂ = uEB1̂. (100)
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The fact that the product BB is Lorentz invariant follows from BL =UBU−1 and the fact that BB

result in a complex scalar value, so

BLBL =UBU−1UBU−1 =UBBU−1 = 2µ0uEBU 1̂U−1 = 2µ0uEB1̂ = BB. (101)

We also have the interesting product 2∂uEB = ∂ ( 1
µ0

BB), the four divergence of this Lorentz in-

variant EM energy related product. Using the Maxwell equations ∂B = µ0J and the Lorentz force

density law JB = F , we get

∂uEB = ∂ (
1

2µ0
BB)' 2

2µ0
(∂B)B = JB = F , (102)

resulting in ∂uEB = F .

For the second EM energy related product BT B the antisymmetric part survives and we get the

spin-norm product

BT B =

(
BBB ·K− 1

c
EEE ·σσσ

)(
BBB ·K+

1
c

EEE ·σσσ
)
=−( 1

c2 EEE2 +BBB2)1̂− (2
1
c

EEE×BBB) ·σσσ =

−2µ0uEM1̂−2µ0
1
c

SSS ·σσσ =−2µ0c
(

1
c

uEM1̂+
1
c2 SSS ·σσσ

)
=−2µ0c

(
1
c

uEM1̂+ggg ·σσσ
)
. (103)

In the last equation, I used the Poynting vector SSS = 1
µ0

EEE×BBB, the EM momentum density ggg = 1
c2 SSS

and the EM energy as 2µ0uEM = BBB2 + 1
c2 EEE2. The last part can also be written as

BT B =−2µ0c
(

1
c

uEM1̂+ggg ·σσσ
)
= 2iµ0c

(
1
c

uEMT̂+ggg ·K
)
= 2iµ0cG. (104)

Thus we get the usual EM four momentum density G and the four EM energy current density S as

G =
1
c2 S =

−i
2µ0c

BT B =
1
c

uEMT̂+ggg ·K, (105)

in which G has the appearance of a good relativistic space-time four vector. But according to our

analysis it isn’t a space-time four vector but a spin-norm four vector. That makes this product

an interesting case for studying the characteristics of the spin-norm dual or twin dimension of

space-time, as manifesting aspects of the Dirac vacuum or Dirac Æther.

For the Lorentz transformation of BT B, one has to go to the Lorentz transformation of the

primary constituting four vectors. We have BT B = (∂ T A)T (∂ T A) = (∂AT )(∂ T A). The Lorentz

transformation of BT B then results in

∂
L(AL)T (∂ L)T AL = ∂

L(AT )L−1
(∂ T )L−1

AL =U−1
∂U−1U(AT )UU(∂ T )UU−1AU−1 =

U−1(∂AT )UU(∂ T A)U−1 =U−1BTUUBU−1 = (BT )L−1
BL = (BL)T BL (106)
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This means that we have Lorentz covariance for the equation G =− i
2µ0cBT B. So in Eqn.(105) the

EM four momentum density G and the four EM energy current density S are defined in a Lorentz

covariant way.

The product ∂ T G is interesting too, being the divergence of the EM momentum density BT B. It

brings us at the level of the product of five original four-vectors. It should give a Maxwell-Lorentz

structured complex force. We get

∂
T G =

−i
2µ0c

∂
T BT B =

−i
2µ0c

(∂BBT )T ' −i
2µ0c

(2µ0JBT )T =
−i
c
(JT B) = F (107)

implying that we returned to a product of three four-vectors with as a necessary result a Maxwell

Equation, Lorentz Force Law structured outcome. The main difference is in the appearance of the

complex number i, JT B = icF , stemming from T̂ = i1̂, which turns space-time into spin-norm

and vice versa. The second related difference is coming from the time reversal in J in JT B.

Calculating −i
c JT B gives

−i
c

JT B =
−i
c

(
−cqT̂+ JJJ ·K

)(
BBB ·K+

1
c

EEE ·σσσ
)
=

1
c
(JJJ ·BBB)T̂+

1
c2 (JJJ ·EEE)1̂+

1
c
(JJJ×BBB−qEEE) ·σσσ − (

1
c2 JJJ×EEE +qBBB) ·K (108)

We see that the spin-norm and space-time switch places due to i and that the sign of q changes due

to T (not the sign of JJJ). The other part ∂ T G leads to

∂
T G = (− 1

c2 ∂tuEM−∇∇∇ ·g)1̂+(∇∇∇×g) ·K+
1
c
(∂tg+∇∇∇uEM) ·σσσ . (109)

The norm 1̂ part of the equation ∂ T G = −i
c (JT B) contains the relativistic Poynting’s theorem:

1
c2 ∂tuEM +∇∇∇ ·g =− 1

c2 JJJ ·EEE (110)

so using S = c2g we get the relativistic Poynting theorem for EM energy density conservation

∂tuEM +∇∇∇ ·S =−JJJ ·EEE. (111)

The equation ∂ T G = − i
c(J

T B) can be perceived as the generalizes Poynting theorem. In the

derivation, the step (∂BBT )T ' (2(∂B)BT )T = (2µ0JBT )T does need further evaluation, but that

is a topic for another time. It’s details don’t influence the result regarding the presented derivation

of the Poynting theorem.
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Two issues are relevant for the present paper. The first point to make is that the Poynting

continuity equation refers to an open system when a charge is moving in an electric field. Without

the current one has the EM field energy density continuity equation for a closed system

∂
T
µ Sµ = ∂tuEM +∇∇∇ ·S = 0. (112)

The second issue is that this continuity equation has its origin in the norm-like part of the momen-

tum closed system condition ∂ T G = 0 of Eqn.(120)

∂
T
µ Gµ =

1
c2 ∂tuEM +∇∇∇ ·g = 0. (113)

The other closed system conditions are the space-like absence of vorticity condition

∇∇∇×g = 0 (114)

and the spin-like

∂tg+∇∇∇uEM = 0. (115)

The last part can be written as the spin-like conserved force condition

∂tg =−∇∇∇uEM. (116)

This pattern will repeat itself for the Dirac current. In the third part of this paper, the Dirac

current will shown to be a probability/field tensor and the continuity equation for the Dirac current

will turn out to be the time-like part of the closed system condition for this probability/field tensor.

At the same time, a charge in an electromagnetic field isn’t a closed system condition because

we get for the generalized Poynting theorem

∂
T G = F =

−i
c
(JT B) (117)

Only in the absence of charges, so when J = 0 do we have the closed system condition ∂ T G. The

problem of the free electron in it’s own field hasn’t been solved. The inhomogeneous parts of the

generalized Poynting theorem are given as a spin-like part and a space-like part. These parts have

a Maxwell-Lorentz structure. The structure appearing here is highly analogous to the formulation

of a generalized Dirac current continuity equation in the third part of this paper; the closed system

condition for the probability/field tensor.
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As for the Poincarè strategy to solve the problem of the free electron in the vacuum, one might

reformulate the generalized Poynting theorem as

∂
T G−F = ∂

T G− −i
c
(JT B) = 0 (118)

and then define a new G′ for which one has

∂
T G′ = ∂

T G−F = ∂
T G− −i

c
(JT B) = 0 (119)

and declare the problem solved. I am inclined to rebaptize this as the Ouroboros strategy. Because

how to restructure the JT B term in a ∂G“ term otherwise that to write is as the original ∂ T G again?

I. Relativistic mechanics

1. The conserved four momentum condition in relativistic mechanics

In SR and GR, Laue’s condition for the conservation of energy-momentum in a closed system

is ∂νT ν
µ = 0. In our language we have a comparable but not identical ∂ T P = 0 condition as a

starting point of our alternative relativistic mechanics. In the case of electrodynamics, when we

have the canonical P = qA, we have ∂ T A = B 6= 0. So in circumstances analogous to a nonzero

anti-symmetric EM field, the condition ∂ T P = q∂ T A = qB = 0 is not fulfilled. In the previous

section, we saw other conditions in the EM context where the closed system condition is not

satisfied due to charges (moving) in EM fields.

The mechanic condition ∂ T P = 0 leads to

∂
T P = (− 1

c2 ∂tUi−∇∇∇ ·p)1̂+(∇∇∇×p) ·K+
1
c
(∂tp+∇∇∇Ui) ·σσσ = 0. (120)

so to three subconditions

1
c2 ∂tUi +∇∇∇ ·p = 0 (121)

∇∇∇×p = 0 (122)

∂tp =−∇∇∇Ui. (123)

The first one is the continuity equation, the second means that we have zero vorticity and the third

that the related force field can be connected to a potential energy. Due to the second condition, the

time derivative of ∇∇∇×p must be zero, giving the secondary conserved force field condition

∇∇∇×F = 0. (124)
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The first condition can also be written as

∂tmi +∇∇∇ · (miv) = 0, (125)

so the continuity equation for inertial mass.

If we have ∂ T P = 0 in one system of reference, then in another system of reference we have

(∂ L)T PL = (∂ T )L−1
PL =U∂

TUU−1PU−1 =U∂
T PU−1 = 0, (126)

proving that the condition is Lorentz covariant.

With ∂ T P = 0 we have a relativistic condition of a mechanical system representing a central

force. It is best characterized as the extended continuity condition, it’s relativistic completion: the

generalized continuity equation. It has as a norm 1̂ condition the continuity equation, as a space

K condition the absence of vorticity and as a spin σσσ condition the conserved force condition. This

will become crucial in relativistically extending the conserved Dirac current condition in RQM.

2. The stress energy tensor equivalent

In the Laue condition ∂νT ν
µ = 0 the stress-energy density tensor is T ν

µ =V νGµ . In our math-

phys language we would get the not exact analog T = V T G and ∂T = 0, but that would imply

a full homogeneous Maxwell-Lorentz structure with the product ∂V T G = 0. Our stress energy

density ‘tensor’ T is given by

T =V T G = (ui−v ·g)1̂+(v×g) ·K+ c(g− 1
c2 uiv) ·σσσ . (127)

This tensor analog contains all the elements of T ν
µ = V νGµ , with the difference that the cross

product v×g appears directly in our T =V T G whereas ony half of it is in the usual tensor and the

anti-symmetric tensor product is needed to get the full cross product.

In the case of a symmetric situation v has the same direction as g, resulting in

T = (ui−v ·g)1̂ = u01̂ (128)

v×g = 0 (129)

g =
1
c2 uiv. (130)

The third equation contains the mass-energy density equivalence ui = ρic2, but it also implies

the absence of linear stresses. The second equation implies the absence internal pressures. The

38



first equation equals the scalar Lagrangian density, the trace of the Laue mechanical stress-energy

density tensor. A symmetric T can be written as T = 1
ρ

GT G in the mass density formulation and

as T = 1
m0

PT P in the mass formulation.

The divergence of the symmetric T has the space-like part and the spin-like part equal to zero

and only the norm-like part possibly non-zero. This leads to a four force density as

F =−∂T =−∂
1
ρ

GT G =−∂u01̂ =
1
c

∂tu0T̂−∇∇∇u0 ·K. (131)

The direct parallel in electromagnetics would be that
−→
B = 0 with a Coulomb gauge for the

field and that TEM = JT A = ρ0φ01̂, with F = −∂ρ0φ0. In the rest system this would produce a

Coulomb force density and a Coulomb force power, which, for a static potential, would be zero.

Thus in our relativistic dynamics, in the symmetric case the electromagnetic parallel would only

produce a Coulomb force situation.

Only if v doesn’t have the same direction as g will there be an anti-symmetric component

present that is analog to the structure of the Maxwell-Lorentz electromagnetic field/force situation.

The Lorentz force is given as JB=F , which can be written as qV ∂ T A=F which, by using P= qA,

results in the mechanical analog V ∂ T P = F . This still isn’t the full ∂V T P = −F . The Lorentz

force law analog in our relativistic dynamics implies that ∂ T P 6= 0, so that m0∂ TU 6= 0. If we look

closer at V ∂ T , we see that it contains the three parts

(− ∂

∂ t
−v ·∇∇∇)1̂≡− d

dt
1̂ (132)

v×∇∇∇ (133)

c∇∇∇+
1
c

v∂t . (134)

So the product−V ∂ T is our variant of the absolute derivative, with d
dt 1̂ as the scalar norm 1̂ part of

it. Thus if we go from ∂ T P = 0 to V ∂ T P = F , we move in our relativistic mechanics from a pure

Coulomb force structure or environment to a Lorentz force one, related to a move from a partial

derivative to an absolute derivative. As for gravity, the Newton-Coulomb gravito-electric analogy

implies that ∂ T P = 0 in the low velocity limit should be able to contain Newtonian gravity. At the

same time, we already know from experience that gravity lacks a Lorentz force structure, so we

should expect the same relative to the mechanical V ∂ T P = F . In density expression, the equation

V ∂ T G = F should be a Lorentz invariant expression.

What is becoming apparent is that we have a lot of highly relevant relativistic mechanics

before we arrive at analog of the traditional Laue product in its full, non-symmetric realisation
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∂V T G = −F . It seems that the divergence of the stress energy density tensor looses its central

role, and thereby also its function as a role-model. Especially when we realize that the Minkowski-

Laue principle example, ∂ νT EM
νµ = −Fµ , is a highly compact, complex expression containing in

our translation the energy products BB, BBT , the equations ∂B = µ0J and JB = F and the higher

complex ∂ T BB and ∂ T BT B. In our math-phys language, the compactified Minkowski-Laue equa-

tion’s content is spread out over several products and equations existing at different layers of com-

plexity. What remains is that in our language, the math-phys structures contained in our relativistic

mechanics products and equations continue to mirror the electromagnetic world. So, as far as the

worldview or ‘Weltanschauung’ of the Abraham-Lorentz generation of physicists is concerned, we

only replaced one math-phys language by another without loosing the relativistic EM-mechanics

analogy.

Relativistic gravity never truly fitted in the scheme of the EM-‘Weltanschauung’ of the

Minkowski-Laue consensus, and neither did spin quantum mechanics together with the Stan-

dard Model parts that are build on top of Dirac equation based relativistic quantum mechanics,

so we can expect that the math-phys language developed thus far won’t be able to grasp those

gravitational an quantum environments either. But we managed to put spin, or spin related ma-

trices, in the metric and still have a somewhat sensible math-phys language and we do seem to

have developed a more detailed-rich relativistic mechanics as an alternative to Laue’s relativistic

mechanics. For the problem of the electron however, we need to relate our math-phys language to

Pauli spin and, above all, Dirac spin in order to get rid of the mathematical incommensurability

between the Poincaré-Laue, Boyer-Rohrlich discussion of the electron problem and the Frenkel,

de Broglie, Kramers, Dirac discussion of the same elementary particle, regardless of (im)possible

solutions.

3. Action and angular momentum

But first we can check to what extend we can put some structure into the presentations of De

Broglie and Kramers on spin and angular momentum in a semi-relativistic context, using the result

up until now. Angular momentum is given by LLL = rrr× ppp so let’s try to generalize it with the four

vector action product RT P. We get

RT P=(Uit−rrr · ppp)1̂+(rrr× ppp) ·K+(ct ppp− 1
c

Uirrr) ·σσσ = S1̂+LLL ·K+ZZZ ·σσσ = S1̂+(ZZZ− iLLL) ·σσσ . (135)
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In this one single product we can recognize the scalar action S, the Pauli-level spin-orbit interaction

iLLL ·σσσ , but also the angular momentum six-vector (ZZZ− iLLL) of Frenkel, de Broglie and Kramer.

Clearly ZZZ = ct ppp−micrrr represents the barycentric momentum of de Broglie and the sixvector

completion of angular momentum with Frenkel, Kramers and Dirac, as a part of the six-vector

LLL− iZZZ.

In the rest system of the electron this three vector ZZZ is supposed to be zero, leaving us with

something like a four vector dot product −iST̂+LLL ·K, so the complex Lµ = (−iS,LLL). De Broglie

called S some scalar value needed for the completion of spin angular momentum as a four vector,

or T̂+K = i(1̂+σσσ ) when translated in our language.

Dirac added the momentum four vector P to the six-vector LLL+ iSSS to get his ten fundamental

values in his 1949 paper.

Frenkel and Kramers used the relation between angular momentum and magnetic momentum

µµµ = − e
2mLLL, which for spin was µµµs = − e

mLLLs, to define intrinsic spin and magnetic moment six-

vectors as µµµs + icπππs =− e
m(LLLs− iZZZs), without specifying the physics of intrinsic electric polariza-

tion πππs.

For the moment, the product RT P adds some light to the confusing treatments of Frenkel, de

Broglie, Kramers and Dirac (who frequently referred to Frenkel’s 1926 paper). Especially de

Broglie and Kramers were trying hard but without success to formulate QM Pauli-Dirac electron

spin in the formalism of the Minkowski-Laue paradigm. The problem in their approaches is that

they didn’t go beyond the four-vector and six-vector scheme with either symmetric tensors or

anti-symmetric ones and nothing in between. This strict dichotomy between symmetric and anti-

symmetric is still with us today in the form of bosons versus leptons; Einstein-Bose statistics or

Fermi-Dirac statistics. Some kind of Supersymmetry should overcome this dichotomy as non-

fundamental on some deeper level. The non-commutative math-phys language developed here is

such an attempt to formulate a synthesis of symmetric tensors as thesis and anti-symmetric tensors

as anti-thesis. The product of two four-vectors in this language produces a norm 1̂, a space K and

spin σσσ outcome, combining symmetric and anti-symmetric.

J. The Klein-Gordon condition

The basic scalar Klein-Gordon wave equation in Quantum Mechanics is

(∇∇∇2− 1
c2 ∂

2
t )Ψ = 0 (136)
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In our environment it can be written as

−∂
T

∂Ψ = (∇∇∇2− 1
c2 ∂

2
t )1̂Ψ = 0 (137)

but then we have a two column spinor as wave-function

Ψ =

 Ψ0

Ψ1

 (138)

instead of the scalar spinor of Schrödinger- and standard Klein-Gordon QM. But it would result in

two identical equations, so a degenerate situation in which the two valued spinor equation can be

reduced to a single one.

Thus far, only Lorentz transformation could act on the matrix internal aspect of our basis. And

even then, a coordinate interpretation was always possible, leaving the basis inert. So up until now,

the matrix part of the basis has been practical but not essential. Spinors on the Pauli and Dirac

level change that situation. Spinor wave functions interact with the internal elements, the matrix

aspect, of the metric (1̂, Î, Ĵ,K̂).

The Klein-Gordon Equation has its roots in the quadratic energy-momentum condition

PT P = (
1
c2U2

i − p2)1̂ =
1
c2U2

0 1̂, (139)

which can be linked to the symmetric energy-momentum matrix

T =V T P =
1

γm0
PT P =

1
γ

U01̂ =−L1̂. (140)

If you take the density version, by dividing it by a volume, this volume has one of its lengths

Lorentz contracted, which then compensates for the γ in L to produce a Lorentz invariant rest-

energy density. In Quantum Mechanics this volume is included in the probability density so

Ψ†LΨ = u0

In Wave Mechanics this is the basis for the introduction of the eigenvalue wave equation

PT PΨ = (
1
c2U2

i − p2)1̂Ψ =
1
c2U2

0 1̂Ψ. (141)

With the operator convention P̂ = −ih̄∂ we can switch from energy-eigenvalue condition to

operator-wave equation

P̂T P̂Ψ =
1
c2U2

0 1̂Ψ. (142)
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We can make this canonical by applying the replacement P→ P + qA and P̂→ P̂ + qA or

∂ → D = ∂ + iq
h̄A. We get the canonical Klein-Gordon wave equation in a biquaternion metric

DT DΨ =
U2

0

c2h̄2 1̂Ψ. (143)

This equation includes the Pauli-spin EM-field interaction term. One issue with the canonical

version is the rest energy term U0 is the question what it should all include. For the moment that

question is ignored. But the issue is related to the open or closed system context. A closed system

has constant rest energy and thus it has

∂
1

m0
PT P = 0. (144)

An open system doesn’t have its divergence equal zero. Electromagnetic fields with moving

charges are notoriously open systems. That affects the canonical wave equations of Quantum

Mechanics.

The DT DΨ part can be expanded as

DT DΨ = ∂
T

∂Ψ+ i
q
h̄

∂
T AΨ+ i

q
h̄

AT
∂Ψ− q2

h̄2 AT AΨ. (145)

Now, the first and the last terms give scalar quadratics but the two middle terms must be examined

more carefully. By writing out the two matrix products and applying the standard differentiation

rule to the scalars in these matrixes, one can show that

∂
T AΨ+AT

∂Ψ = BΨ+2(
1
c2 φ∂t +A ·∇∇∇)1̂Ψ (146)

This gives us for DT DΨ =
U2

0
c2h̄2 1̂Ψ the equation

∂
T
µ ∂

µ 1̂Ψ− q2

h̄2 AT
µAµ 1̂Ψ−2i

q
h̄

AT
µ∂

µ 1̂Ψ =−
U2

0

c2h̄2 1̂Ψ+ i
q
h̄

BΨ, (147)

with

∂
T

∂ = (
1
c2 ∂

2
t −∇∇∇

2)1̂ =−∂
T
µ ∂

µ 1̂, (148)

AT A = (
1
c2 φ

2−A2)1̂ =−AT
µAµ 1̂, (149)

AT
µ∂

µ = (
1
c2 φ∂t +A ·∇∇∇). (150)

The only non-degenerate part in this equation is iq
h̄BΨ. In our units we have the Bohr magneton

µB = eh̄
2m0

and if we multiply the equation by h̄2

2m0
we get the non-degenerate term as iµBBΨ. This
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can be written as

iµBBΨ = iµb
−→
B ·KΨ =−µb

−→
B ·σσσΨ =−µbB ·σσσΨ+ iµb

1
c

E ·σσσΨ, (151)

with the remark that we exchanged the Pauli σx and σz, as σI = σz and σK = σx. So by putting

spin in the metric we get a canonical Klein Gordon equation that includes Pauli-spin EM field

interaction terms. Now, we have the spin magnetic moment µµµs = µBσσσ . We can further interpret the

relativistic companion of the intrinsic magnetic moment as the intrinsic zitter-effect polarization

πππs =
eλ c

2 σσσ , we get

iµBBΨ =−B ·µµµsΨ+ iE ·πππsΨ (152)

The complete wave equation on the Pauli-spin spinor-level, in which a spinor consists of two

complex variables, will then be

− h̄2

2m0
1̂∇∇∇

2
Ψ+

h̄2

2m0c2 1̂∂
2
t Ψ+

q2

2m0
A21̂Ψ− q2φ 2

2m0c2 1̂Ψ (153)

+
ih̄qφ

m0c2 1̂∂tΨ+
iqh̄
m0

A ·∇∇∇1̂Ψ (154)

=
U0

2
1̂Ψ+B ·µµµsΨ− iE ·πππsΨ, (155)

The first term with ∇∇∇
2 is the kinetic term, the AAA2 part is know as the diamagnetic part of the Pauli

equation, the A ·∇∇∇ part as the paramagnetic part, and with the Coulomb gauge this part can also

be rearranged into the orbital or angular momentum term causing the Zeeman effect. The B · µµµs

term is the spin magnetic moment term connected to the anormal Zeeman effect. The other terms

are either simply ignored, as for example the E ·πππs term, or somehow reduced to a term for the

potential and a term for the constant energy.

It is interesting to observe that we have a quadratic time derivative as is usual in the Klein-

Gordon equation, but that we also have a linear time derivative. It is my impression that that linear

term, together with the intrinsic zitter polarization term constitutes the relativistic complement

of the JJJ = LLL + SSS total angular momentum. The relativistic origin of total angular momentum

JJJ = LLL+SSS lies in the two cross-products of the square of the canonical momentum

∂
T AΨ+AT

∂Ψ = BΨ+2(
1
c2 φ∂t +A ·∇∇∇)1̂Ψ. (156)

With the use of iµBBΨ =−B ·µµµsΨ+ iE ·πππsΨ, this can be split into the familiar JJJ = LLL+SSS parts as

iB ·µµµsΨ+2µBA · 1̂∇∇∇Ψ. (157)
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and the ignored part as

E ·πππsΨ+
qφ h̄
m0c2 1̂∂tΨ. (158)

With the intrinsic zitter-effect polarization πππs =
eλ c

2 σσσ and the orbital zitter-effect Compton-level

polarization as πo = eλ c this last term can be written as

E ·πππsΨ+
πoφ

c
1̂∂tΨ (159)

and then interpreted as the total zitter-effect Compton-level polarization.

This zitter-polarization linear in time derivative might well be the damping part of the canonical

Klein-Gordon equation and then be responsible for the quantum jumps. It is also possible that

these two terms, scaled to the reduced Compton wavelenght of the electron λ c, are responsible

for the electric counterparts of the normal Zeeman effect and the anormal Zeeman effect, ie linear

Stark effect and anormal Stark effect. It seems outdated to just ignore the parts of the equation

that one cannot connect to some physical experimental phenomena, as Dirac did with the intrinsic

polarization term of his equation. But perhaps some of those terms only appear in this analysis

due to the non-commutative character of the math-language used/developed.

It is also possible to interpret

E ·πππsΨ+
qφ h̄
m0c2 1̂∂tΨ. (160)

for stationary states with constant energy as

E ·πππsΨ+V 1̂∂tΨ. (161)

with V = qφ and ∂tΨ = iU0
h̄ Ψ. With this stationary state interpretation, the term with the linear

time derivative turns out to produce the standard potential energy term, and its energy levels are

then the usual Coulomb energy levels. The E · πππsΨ term then produces a zitter-like Compton

reduced wavelength scale smearing out of the principal orbits. Such an effect has been observed

for the most inner S-orbits.

So with the equation DT DΨ =
U2

0
c2h̄2 1̂Ψ we are able to treat Pauli spin relativistically, provided

that the spinor Ψ Lorentz transforms as ΨL =UΨ. That however is only the case for the spinors in

the Weyl representation and not for spinors in the Dirac representation. The Lorentz transformation

of spinors in the Dirac representation can only be achieved at the Dirac spinor level, so with

four variable spinors. A two variable Pauli spinor in the Dirac representation cannot be Lorentz

transformed on its own, that is, without its Dirac twin. On the Weyl level, a Lorentz transformation
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of a Pauli spinor is possible, but the transformation to its Dirac representation is impossible without

its Weyl twin spinor. In a modern interpretation, this implies that understanding the intrinsics of

a quantum jump as a damping term effect is impossible without introducing anti-particles and

the related quantum field interpretation, even in atoms. If so, then we should introduce Feynman

diagram like analysis in atomic physics’s attempts to grasp the intrinsics of quantum jumps. It is

however impossible to prove this at the Pauli spin level. In the context of atomic physics at the

Pauli level of two variable spinors, quantum jumps are and will remain a mystery, without proof

why that is. Just like line beings will never understand angles and surface restricted beings will

never be able to understand volumes.

IV. THE DIRAC SPIN LEVEL

A. The Dirac environment metric matrices

In the nineteen twenties, the quadratic relativistic scalar Klein-Gordon wave equation couldn’t

be applied to the relativistic electron. Dirac linearized the Klein-Gordon equation by going to four

by four matrices instead of the two by two Pauli matrices. In his two seminal 1928 papers he

introduces the Clifford four set (β ,ααα) and, using what were later called the gamma matrices, the

covariant Clifford four set (β ,γγγ). The Pauli matrices are incorporated in these matrices. Weyl later

found a third covariant Clifford four set, which relates to the Dirac covariant set as low velocity

relativistic to high velocity relativistic gamma matrices Clifford four set.

All these matrices can be represented as two by two matrices of the biquaternion basis (1̂,σσσ ).

But using the biquaternion basis (1̂,σσσ ) as a basis of the space-time metric is already highly prob-

lematic. Duplicating this spin-norm basis by going from the Pauli spinor level to the Dirac spinor

level is even more so. As a consequence, using the Clifford four set gamma matrices written as

γµ = (γ0,γγγ), as a basis for the space-time metric or as space-time four vectors is truly questionable.

It is my opinion that the (T̂,K) biquaternion basis will provide a more solid basis for connecting

the Clifford four sets of Relativistic Quantum Mechanics to ordinary relativistic space-time.

1. The Dirac and Weyl matrices in dual norm-spin mode

In the following I present the Dirac and Weyl matrices using my reversed order of the Pauli

spin matrices, with σI = σz, σJ = σy, σK = σx and σσσ = (σI,σJ,σK). This implies that the order
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of the gamma matrices are reversed correspondingly, with γ1 = γI = γz, γ2 = γJ = γy, γ3 = γK = γx

and γγγ = (γ1,γ2,γ3) = (γI,γJ,γK)).

In my (1̂,σσσ ) norm-spin basis the Dirac set αµ = (β ,ααα) can be represented as

αµ = (/1,ααα) =

 1̂ 0

0 1̂

 ,
 0 σσσ

σσσ 0

 . (162)

The most straightforward doubling of the Pauli level norm-spin set (1̂,σσσ ) is the Dirac level

norm-spin set Σµ = (/1,ΣΣΣ) defined as

Σµ = (/1,ΣΣΣ) =

 1̂ 0

0 1̂

 ,
 σσσ 0

0 σσσ

 . (163)

The set of gamma matrices in the Dirac representation, γµ = (β ,γγγ) = (γ0,γγγ), can be defined as

γµ = (β ,γγγ) = (γ0,γγγ) =

 1̂ 0

0 −1̂

 ,
 0 σσσ

−σσσ 0

 (164)

The set of gamma matrices in the Weyl representation, γµ = (γ0,γγγ), can be defined as

γµ = (γ0,γγγ) =

 0 1̂

1̂ 0

 ,
 0 σσσ

−σσσ 0

 (165)

The last matrix we need to define in this environment is the γ5 matrix as

γ5 =

 0 1̂

−1̂ 0

 . (166)

The most important product needed to understand the genius of Dirac’s two 1928 Dirac equa-

tion papers is the Dirac gamma product

γ0γµ = (γ0γ0,γ0γγγ) = (1̂,ααα) = αµ . (167)

This equation is key towards understanding the Dirac four current and the related continuity equa-

tion. This product eventually leads to the definition of the Dirac adjoint as Ψ = Ψ†γ0, the Dirac

probability current as

Jµ = cΨγµΨ = cΨ
†
γ0γµΨ = cΨ

†
αµΨ (168)

and the Dirac current continuity equation as

∂µJµ = c∂µΨγ
µ

Ψ = c∂µΨ
†
γ0γ

µ
Ψ = c∂µΨ

†
α

µ
Ψ = 0. (169)
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The main innovative result of the third part of this paper is the conclusion that the elements of this

probability current four vector can be interpreted as part of a metric probability tensor and that the

continuity equation has its origin in the time like part of the closed system condition of that metric

probability tensor, as in

∂νΦ
ν

µ ≡ ∂νΨ
†
γµγ

ν
Ψ = 0. (170)

In order to make this consistent as a space-time metric probability condition, I need to introduce

the Dirac and Weyl related matrix representations in the time-space basis (T̂,K), what I will call

the bèta matrices, instead of gamma matrices in the norm-spin basis (1̂,σσσ).

In my treatment of RQM, the Weyl representation in the time-space basis (T̂,K) will prove to

be like Machiavelli’s “return to the banner” when coherence is fading. In my context, it is the most

simple point of departure possible, from where almost all the rest can be derived. To return to the

space-time basis,(T̂,K) and the related Weyl βµ as its dual-parity version will prove its strategic

worth. But the Dirac representation has proven it’s worth for almost all practical, experimental

area’s of interest, so to understand the operator that switches between them is as important.

2. The transformation from the Dirac to the Weyl representation and vice versa

The transformation from the Weyl to the Dirac representation and vice versa is an operator that

is usually written as S. Two possible versions of S are being used. The most common one is

S =
1√
2

1̂ 1̂

1̂ −1̂


and the one I prefer is the less common

S =
1√
2

 1̂ 1̂

−1̂ 1̂

 .
The reason I will only use the second version is that it has the property γ0S = S−1γ0 and the directly

related Sγ0 = γ0S−1.

The switch from the Weyl γν
w to the Dirac γν

d is then given by γν
d = Sγν

wS−1 and the switch

from the Dirac to the Weyl representation by the inverse γν
w = S−1γν

d S. This also applies to the αν

matrices, which are almost always given in their Dirac representation, but who can also be written
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in the Weyl representation as

α
ν
w = S−1

α
ν
d S =

 1̂ 0

0 1̂

 ,
 −σσσ 0

0 σσσ

 . (171)

As a logical consequence one has

γ
w
0 γ

w
ν = (γw

0 γ
w
0 ,γ

w
0 γγγ

w) = (1̂,αααw) = α
w
ν . (172)

A Weyl adjoint can be defined as Ψ
w
= Ψ†wγw

0 and a Weyl current as Jw
ν = Ψ

w
γw

ν Ψw. This Weyl

current is exactly the same as the Dirac current, due to the transformation properties of the spinors

under the Dirac to Weyl representation transformation, given as Ψw = S−1Ψd and Ψ†
w = Ψ

†
dS. On

has

Jw
ν = Ψ

w
γ

w
ν Ψ

w = Ψ
†w

γ
w
0 γ

w
ν Ψ

w = Ψ
†w

α
w
ν Ψ

w = Ψ
†dSS−1

α
d
ν SS−1

Ψ
d = Ψ

†d
α

d
ν Ψ

d = Jd
ν . (173)

The Dirac level norm-spin set Σµ = (/1,ΣΣΣ) has it’s Weyl representation given by the unchanged

Σ
w
ν = S−1(/1,ΣΣΣ)S =

 1̂ 0

0 1̂

 ,
 σσσ 0

0 σσσ

 . (174)

3. The closed system condition for the Dirac probability current tensor

The derivative of the probability density tensor in its closed system condition,

∂νΦ
ν

µ ≡ ∂νΨ
†
γµγ

ν
Ψ = 0, (175)

can be retraced to the Klein Gordon equation on the Dirac level as

∂νΨ
†/V /PΨ = ∂ν

1
m0

Ψ
†/P/PΨ = ∂νΨ

†U0/1Ψ =U0∂νΨ
†
Ψ = 0. (176)

which includes the proof of the closed system condition for the symmetric tensor /T = /V /P as ∂ν /T =

0. This closed system condition applies to both the Dirac representation as the Weyl representation,

as long as it is clear that not only γ0 but also ααα and Ψ have a Dirac representation and a Weyl

representation. The gamma tensor γµγν is given by

γµγ
ν =

[
γ0 γ1 γ2 γ3

]


γ0

γ1

γ2

γ3

=


γ0γ0 γ1γ0 γ2γ0 γ3γ0

γ0γ1 γ1γ1 γ2γ1 γ3γ1

γ0γ2 γ1γ2 γ2γ2 γ3γ2

γ0γ3 γ1γ3 γ2γ3 γ3γ3

=


/1 −α1 −α2 −α3

α1 −/1 −iΣ3 iΣ2

α2 iΣ3 −/1 −iΣ1

α3 −iΣ2 iΣ1 −/1

 .(177)
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The probability density tensor is then given by

Φ
ν

µ = Ψ
†
γµγ

ν
Ψ =


Ψ†/1Ψ −Ψ†α1Ψ −Ψ†α2Ψ −Ψ†α3Ψ

Ψ†α1Ψ −Ψ†/1Ψ −Ψ†iΣ3Ψ Ψ†iΣ2Ψ

Ψ†α2Ψ Ψ†iΣ3Ψ −Ψ†/1Ψ −Ψ†iΣ1Ψ

Ψ†α3Ψ −Ψ†iΣ2Ψ Ψ†iΣ1Ψ −Ψ†/1Ψ

 . (178)

The time-like part of ∂νΦ ν
µ = 0 is given by

1
c

∂tΨ
†/1Ψ+∇1Ψ

†
α1Ψ+∇2Ψ

†
α2Ψ+∇3Ψ

†
α3Ψ =

1
c

∂tΨ
†/1Ψ+∇∇∇Ψ

†
αααΨ = 0 (179)

This can be abbreviated as the Dirac current continuity equation

c∂νΨ
†
α

ν
Ψ = c∂νΨγ

ν
Ψ = ∂νJν = 0. (180)

This proves that the Klein Gordon equation on the Dirac level includes the continuity equation

for the probability current as part of a much stronger closed system condition for the probability

density (current-)tensor. That connects the Klein Gordon at Dirac level environment to the Laue

closed system condition, which in turn is a basic axiom of or prerequisite for General Relativity’s

symmetric stress energy density tensors T =V G.

The space-like derivatives of ∂νΦ ν
µ = 0 can be split into a complex part and a real part. The

complex part gives

∇∇∇×Ψ
†
ΣΣΣΨ = 0. (181)

The real part gives

∂tΨ
†
αααΨ = c∇∇∇Ψ

†/1Ψ (182)

which can be multiplied by the constants m0c, and using the Dirac adjoint, to give

∂tm0cΨγγγΨ = ∇∇∇m0c2
Ψγ0Ψ. (183)

The last two conditions show that the closed system condition for the probability density tensor

is a stronger condition than the continuity equation on its own. The above two conditions can

be connected to the earlier ∇∇∇× ppp = 0 and the ∂t ppp = −∇∇∇Ui as there probability/field analogues.

The first prohibits a probability/field vorticity in the closed system condition, the second implies a

conserved force-field condition for the probability/field, connecting the time-rate of change of the

current to the space divergence of the related density.
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Given the fact that all Lagrangians of the Standard Model’s Dirac fields are based upon the

Dirac current, the Dirac adjoint and the use of the Dirac equation to prove the continuity equation

for the Dirac current, it’s generalization into a Dirac probability or field tensor with connected

much stronger closed system condition and a prove of its validity based upon the Dirac level Klein

Gordon equation should have some impact. The recognition that the Dirac current is just a part

of a tensor and that the Dirac current continuity equation is just the time-like part of a space-time

closed system condition of that tensor will close the gap with General Relativity considerably,

given the relation of both to the Laue closed system condition ∂νT ν
µ = 0. I propose to use tensor

Lagrangians based on

L =
1

m0
Ψ

† /̂P/̂PΨ, (184)

which then contain the inertial probability or inertial field tensor

m ν
µ c2 = m0Φ

ν
µ c2 = m0Ψ

†
γµγ

ν
Ψc2, (185)

as a relativistic generalization of the usual Dirac current with Dirac adjoint based Lagrangians of

the Standard Model.

4. The Dirac and Weyl matrices in dual time-space mode as bèta matrices

What is absent in the above treatments is the Lorentz transformation and the check if all rela-

tions that are given are Lorentz invariant or at least Lorentz covariant. The Lorentz transformation

of the matrices, the four vectors and the spinors are most elementary in the time-space (1̂,K) Weyl

representation. I will call these time-space Weyl-Dirac matrices the bèta matrices.

In my math-phys language and with a Möbius kind of doubling in mind I can define matrices

through the application of parity or point reflection P and time reversal or present reflection T as P P

PP PT

=

 P P

−PT PT

=

p0

 T̂ T̂

T̂ −T̂

+ p1

 Î Î

−Î Î

+ p2

 Ĵ Ĵ

−Ĵ Ĵ

+ p3

 K̂ K̂

−K̂ K̂

=

p0

 T̂ T̂

T̂ −T̂

+p ·

 K K

−K K

 . (186)

The norm of this matrix is simply 2PT P = 2U0/1.
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I split this into Pµβ µ +Pµξ µ by defining

/P = Pµβ
µ =

 0 P

−PT 0

= p0

 0 T̂

T̂ 0

+p ·

 0 K

−K 0

= p0β0 +p ·βββ =

p0

 0 T̂

T̂ 0

+ p1

 0 Î

−Î 0

+ p2

 0 Ĵ

−Ĵ 0

+ p3

 0 K̂

−K̂ 0

 (187)

with /P = Pµβ µ = p0β0 + p1β1 + p2β2 + p3β3, and

Pµξ
µ =

 P 0

0 PT

= p0

 T̂ 0

0 −T̂

+p ·

 K 0

0 K

= p0ξ0 +p ·ξξξ =

p0

 T̂ 0

0 −T̂

+ p1

 Î 0

0 Î

+ p2

 Ĵ 0

0 Ĵ

+ p3

 K̂ 0

0 K̂

 (188)

with Pµξ µ = p0ξ0 + p1ξ1 + p2ξ2 + p3ξ3.

If I use T̂ = i1̂ and K = iσσσ I get

βµ = (β0,βββ ) =

 0 i1̂

i1̂ 0

 ,
 0 iσσσ

−iσσσ 0

= (i1̂, iγγγ) = iγµ (189)

which relates the parity dual βµ to the Weyl bèta representation. The Dirac representation mixes

the bèta and the xi representation and thus represents a PT dual. I nevertheless, using the gamma

tradition, use the bèta and Feynman slash symbols for both representations in the time-space T̂,K

basis. This gives for the Dirac bèta representation

/P = Pµβ
µ = p0

 T̂ 0

0 −T̂

+p ·

 0 K

−K 0

= p0β0 +p ·βββ =

p0

 T̂ 0

0 −T̂

+ p1

 0 Î

−Î 0

+ p2

 0 Ĵ

−Ĵ 0

+ p3

 0 K̂

−K̂ 0

 . (190)

As with the Weyl representation, in the Dirac representation we have βµ = iγµ .

The transformation matrix S remains unchanged. But its interpretation can be enriched. It

isn’t just a neutral change of representations, it changes a parity only Weyl dual representation of

space-time into a combined parity, time reversal Dirac dual representation of space-time (and vice

versa). The transformation operation S adds or removes time reversal from the dual, it is a time

reversal transformation.
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There is one additional matrix needed for the Dirac equation, the split of the square of the eigen

time matrix ξ , defined as

ξ =

 T̂ 0

0 T̂

 . (191)

B. The Dirac and Weyl equations in the space-time bèta matrices environment

The trick in formulating equations in the Dirac environment is that they have to be reducible to

the Klein Gordon energy condition PT P = E21̂ with E = U0
c = m0c. We have three equations that

match this demand, but only the first two use a Clifford four set. The third equation uses tricks to

compensate for the limitations of a Clifford three set in a 4-D environment. In the Weyl and Dirac

equations we can split −E2/1 using the ξ matrix, as /E2
= (Eξ )2 =−E2/1.

The Weyl or chiral equation stems from the quadratic /P/P = /E /E in the space-time Weyl repre-

sentation.

/P/P =

 0 P

−PT 0

 0 P

−PT 0

=

 −PPT 0

0 −PT P

=

 −E21̂ 0

0 −E21̂

=−E2/1= /E /E (192)

So we have /P/P− /E /E = 0. This leads to (/P− /E)(/P+ /E) = 0. If we split this into two equations,

/P− /E = 0 and /P+ /E = 0, then only the trivial all zero solution is possible. But if we add the Dirac

spinors, then non zero solutions are possible. We get Ψ†(/P− /E)(/P+ /E)Ψ = 0, which can be split

into Ψ†(/P− /E) = 0 and (/P+ /E)Ψ = 0. By interpreting the spinors as waves or wave-like fields

all the solutions of those equations can be interpreted as eigenvalue solutions of related operators

and we get the Weyl wave equations as

/̂PΨ = /EΨ (193)

/̂PΨ =−/EΨ (194)

if we use /̂P =−ih̄/∂ and a four column dual spinor Ψ.

The Dirac equation stems from the quadratic (p0β0 +p ·βββ )2 =−E2/1.

/P/P =

 p0T̂ p ·K

−p ·K −p0T̂

 p0T̂ p ·K

−p ·K −p0T̂

=

 (−p2
0 +p2)1̂ 0

0 (−p2
0 +p2)1̂

=−E2/1 (195)

This leads to the two options for the Dirac equations

(p̂0β0 + p̂ ·βββ )Ψ = E/1Ψ (196)

(p̂0β0 + p̂ ·βββ )Ψ =−E/1Ψ (197)
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if we use P̂ =−ih̄∂ and a four column spinor Ψ.

So in the space-time representation we have the Weyl /P as

/Pw =

 0 P

−PT 0

 (198)

and the Dirac /P as

/Pd =

 p0T̂ p ·K

−p ·K −p0T̂

 (199)

and the transformation between them as /Pw = S−1/PdS and /Pd = S/PwS−1.

C. Lorentz transformations in the Dirac and Weyl representation environments

In part III of this paper I developed the Pauli level basis (T̂,K) relativistic approach. This

resulted in the Lorentz transformation of a four vector P = (p0T̂, ppp ·K) as PL =U−1PU−1 and the

Lorentz transformation of its time reversal PT as (PL)T = (PT )L−1
=UPTU with U as

U =

 e
ψ

2 0

0 e−
ψ

2

 (200)

and the rapidity ψ . The Lorentz transformation of its time reversal PT was (PL)T = (PT )L−1
=

UPTU . The quadratic PT P then is automatically a Lorentz invariant scalar U2
0

c2 1̂ with the dimension

of the norm 1̂. If in the space-time representation we have the Weyl /P in a reference system S as

/P =

 0 P

−PT 0

 (201)

then in reference system S′ we have PL and so also the Weyl /PL as

/PL
=

 0 PL

−(PL)T 0

=

 0 U−1PU−1

−UPTU 0

 (202)

The question then is how to generate this result. The obvious answer is

/PL
w = Λ

−1/PwΛ =

U−1 0

0 U

 0 P

−PT 0

U 0

0 U−1

=

 0 U−1PU−1

−UPTU 0

 (203)
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with the Lorentz transformation matrix

Λ =

U 0

0 U−1

 (204)

and its obvious inverse Λ−1.

The Klein Gordon equation’s Lorentz invariance or covariance depends on the products /PL/PL.

Using the previous result, we have for the Lorentz transformation of the product /P/P in the Weyl

representation

/PL/PL
= Λ

−1/PΛΛ
−1/PΛ = Λ

−1/P/PΛ = Λ
−1/E /EΛ =−E2/1Λ

−1
Λ =−E2/1= /P/P, (205)

so a Lorentz invariant product. This proof then included that /EL/EL
= /E /E. This ensures the Lorentz

invariance of the Klein Gordon condition /P/P = /E /E in the Weyl representation.

In the Dirac version, where /P = p0β0 +p ·βββ , things get more complicated. We have to start

with the Dirac /Pd in the primary reference system and we want to end up with /PL
d in the secondary

reference system. We know how to transform between the Dirac and the Weyl representations and

we know how to Lorentz transform the Weyl /Pw. This means we have to go from Dirac to Weyl in

the primary reference system, then Lorentz transform the Weyl four vector to the secondary refer-

ence system and then transform back from the Weyl to the Dirac representation, three operations

in total. The total result gives

/PL
d = SΛ

−1S−1/PdSΛS−1. (206)

For the Klein Gordon equation in the Dirac representation, we get the Lorentz invariance through

/PL
d/P

L
d = SΛ

−1S−1/PdSΛS−1SΛ
−1S−1/PdSΛS−1 = SΛ

−1S−1/PdSΛΛ
−1S−1/PdSΛS−1 = (207)

SΛ
−1S−1/PdSS−1/PdSΛS−1 = SΛ

−1S−1/Pd/PdSΛS−1 = SΛ
−1S−1/Ed /EdSΛS−1 = (208)

−E2/1SΛ
−1S−1SΛS−1 =−E2/1SΛ

−1
ΛS−1 =−E2/1SS−1 =−E2/1= /Pd/Pd. (209)

As for the Lorentz transformation of a Weyl 4-spinor, we have the requirement that we want

the Lagrangian density element L = 1
m0

Ψ†/P/PΨ to be Lorentz invariant. This requirement is met

if

L L =
1

m0
(Ψ†)L/PL/PL

Ψ
L =

1
m0

(Ψ†)L
Λ
−1/PΛΛ

−1/PΛΨ
L = (210)

1
m0

(Ψ†)L
Λ
−1/P/PΛΨ

L =
1

m0
(Ψ†)/P/PΨ = L . (211)

55



This implies first that

(Ψ†)L
Λ
−1 = (Ψ†) (212)

so

(Ψ†)L = (Ψ†)Λ. (213)

Secondly we must have

ΛΨ
L = Ψ (214)

so

Ψ
L = Λ

−1
Ψ. (215)

Thus, in the Weyl space-time representation, (Ψ†)L
w = (Ψ†)wΛ and ΨL

w = Λ−1Ψw. This gives

Ψ
L
w = Λ

−1
Ψw =

U−1 0

0 U

 Ψ1
w

Ψ2
w

=

U−1Ψ1
w

UΨ2
w

 . (216)

Important in this last equation is the result that the bispinors Ψ1 and Ψ2 do not mix in the Lorentz

transformation in the space-time Weyl representation.

The same line of reasoning will give us the Lorentz transformation rules for the spinors in the

space-time Dirac representation, respectively

(Ψ†)L
d = (Ψ†

d)SΛS−1 (217)

and

Ψ
L
d = SΛ

−1S−1
Ψd. (218)

In details, with rapidity ψ , the operator SΛ−1S−1 is given as

SΛ
−1S−1 =

 cosh(ψ

2 )1̂ sinh(ψ

2 )σI

sinh(ψ

2 )σI cosh(ψ

2 1̂

 (219)

and the operator SΛS−1 is given as

SΛS−1 =

 cosh(ψ

2 )1̂ −sinh(ψ

2 )σI

−sinh(ψ

2 )σI cosh(ψ

2 1̂

 . (220)

The operator SΛ−1S−1 for the Lorentz transformation of the Dirac spinor Ψ exactly matches the

one in (69, Darwin, 1928).
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The structure of these transformations look familiar. If we define γ ′ = cosh(ψ

2 ) and γ ′β ′ =

sinh(ψ

2 ), we get the Lorentz transformation of Ψ as

Ψ
L =

 γ ′1̂ γ ′β ′σI

γ ′β ′σI γ ′1̂

 Ψ1

Ψ2

=

 γ ′1̂Ψ1 + γ ′β ′σIΨ
2

γ ′1̂Ψ2 + γ ′β ′σIΨ
1

 . (221)

In the hyperbolic formulation, the details of the Lorentz transformation of Ψ gives

Ψ
L =

 (Ψ1)L

(Ψ2)L

=

 cosh(ψ

2 )1̂ sinh(ψ

2 )σI

sinh(ψ

2 )σI cosh(ψ

2 1̂

 Ψ1

Ψ2

=

 cosh(ψ

2 )1̂Ψ1 + sinh(ψ

2 )σIΨ
2

cosh(ψ

2 )1̂Ψ2 + sinh(ψ

2 )σIΨ
1

 .
(222)

What we see here is that the Lorentz transformation of the Dirac spinor mixes the two twin Pauli

spinors Ψ1 and Ψ2. As a consequence, one cannot Lorentz transform a single Pauli spinor in the

Dirac representation, so a Lorentz transformation of the Pauli equation without the full Dirac twin

is impossible. The Pauli equation on its own cannot possibly be relativistic. So where the Pauli

equation describes an electron in either spin up or spin down situation, its Dirac twin does the same

with the positron in either spin up or spin down. This means that in the Dirac representation giving

an electron a relativistic boost necessarily involves the positron. Giving an electron a boost can be

done by letting it absorb a photon, thus realizing a quantum jump. So the quantum jump of the

electron necessarily involves its antiparticle, the positron. As a consequence, in the Schrödinger

and the Pauli environment quantum jumps must remain a mystery. In other words, it is a useless

waist of time to try to fully understand and analyze the intrinsic aspects of quantum jumps in the

Schrödinger and the Pauli theories. This can only be achieved on the Dirac level, by including

both Ψ1 and Ψ2 (and Aν , as for example in the form of a Feynman vertex).

The Lorentz transformation of the Dirac representation momentum four vector goes as

/PL
d = SΛ

−1S−1/PdSΛS−1. (223)

In this transformation, /Pd = Pµβ µ . Because the operators only work on the matrix aspect of β µ

the Lorentz transformation can also be written as

/PL
= SΛ

−1S−1Pµβ
µSΛS−1 = PµSΛ

−1S−1
β

µSΛS−1 (224)

and we can focus on

(β µ)L = SΛ
−1S−1

β
µSΛS−1 (225)

thus interpreting the Lorentz transformation as a boost of the metric. As with the Lorentz trans-

formation of the spinors, where we expressed the operator combinations SΛ−1S−1 and SΛS−1 in
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terms of the rapidity and the hyperbolic trigonometric expressions, we can calculate the result on

the bèta matrices of the SΛ−1S−1 and SΛS−1 operators. After some calculations this results in

(β µ)L = SΛ
−1S−1

β
µSΛS−1 = Λ

ν
µ β

µ = β
ν (226)

with, given the usual Lorentz boost γ = 1√
1−β 2

and β = v
c ,

(β µ)L =


β0

β1

β2

β3



L

= Λ
ν

µ β
µ =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1




β0

β1

β2

β3

=


γβ0−βγβ1

γβ1−βγβ0

β2

β3

= β
ν .

The Lorentz transformation of /P can then be given as

/PL
= PµSΛ

−1S−1
β

µSΛS−1 = Pν(Λ
ν

µ β
µ) = Pνβ

ν . (227)

This result allows us to return to the original interpretation of the Lorentz transformation as a

change of the coordinates against the background of a fixed metric, because

/PL
= Pν(Λ

ν
µ β

µ) = (PνΛ
ν

µ )β µ = Pµβ
µ . (228)

In the space-time Weyl representation the results were the same, giving

(β µ)L = Λ
−1

β
µ

Λ = Λ
ν

µ β
µ = β

ν (229)

For the spinors however, it is impossible to switch between the classical Lorentz transformation

with Λ ν
µ and the matrix Lorentz transformation with SΛ−1S−1 and SΛS−1 because Λ ν

µ cannot be

split in two halves.

D. The Klein Gordon equation in its full potential

Given the general Lagrangian density L = 1
m0

Ψ†(/̂P/̂P− /E /E)Ψ in the space-time Dirac repre-

sentation one gets the Klein Gordon equation from

∂L

∂Ψ† −∂µ

(
∂L

∂ (∂ µΨ†)

)
= 0 (230)

resulting in
1

m0
(/̂P/̂P− /E /E)Ψ = 0. (231)
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In the canonical version we get

1
m0

(/̂P+q/A)(/̂P+q/A)Ψ =
1

m0
/E /EΨ. (232)

leading to
1

m0
/̂P/̂PΨ+

q
m0

/̂P/AΨ+
q

m0
/A/̂PΨ+

q2

m0
/A/AΨ =−U0/1Ψ (233)

and using /̂P =−ih̄/∂ we get

− h̄2

m0
/∂ /∂Ψ− iqh̄

m0
/∂ /AΨ− iqh̄

m0
/A/∂Ψ+

q2

m0
/A/AΨ =−U0/1Ψ (234)

and, including a multiplication by a factor 1
2 ,

− h̄2

2m0

(
∇∇∇

2− 1
c2 ∂

2
t

)
/1Ψ− iqh̄

2m0

(
/∂ /AΨ+ /A/∂Ψ

)
+

q2

2m0

(
AAA2− 1

c2 φ
2
)
/1Ψ =−1

2
U0/1Ψ. (235)

The
(
/∂ /AΨ+ /A/∂Ψ

)
part of the equation needs detailed examining. Using the chain rule for the

derivation, we get (
/∂ /AΨ+ /A/∂Ψ

)
=
(
(/∂ /A)Ψ+~/∂ /AΨ+ /A/∂Ψ

)
(236)

in which the arrow in ~/∂ means that the derivation skips /A and only applies to Ψ. Due to the

non-commutative character of the math, this is the best way to encode the chain rule.

The term /∂ /A produces the electromagnetic field leading to

/∂ /A =

 −1
c ∂tT̂ ∇∇∇ ·K

−∇∇∇ ·K 1
c ∂tT̂

 1
c φ T̂ AAA ·K

−AAA ·K −1
c φ T̂

= (237)

 ( 1
c2 ∂tφ +∇∇∇ ·AAA)1̂− (∇∇∇×AAA) ·K −1

c ∂tAAA · T̂K− 1
c ∇∇∇φ · T̂K

−1
c ∂tAAA · T̂K− 1

c ∇∇∇φ · T̂K ( 1
c2 ∂tφ +∇∇∇ ·AAA)1̂− (∇∇∇×AAA) ·K

= (238)

 −BBB ·K 1
c EEE · T̂K

1
c EEE · T̂K −BBB ·K

=−BBB ·

 iσσσ 0

0 iσσσ

+ 1
c

EEE ·

 0 −σσσ

−σσσ 0

=−iBBB ·ΣΣΣ− 1
c

EEE ·ααα. (239)

The terms ~/∂ /AΨ+ /A/∂Ψ leads to a cancellation of all the parts that are anti-commutative and a

doubling of the commutative parts. In the above, that would mean cancellation of the EM field

and retaining the Lorenz gauge part. It result in the survival of the norm 1̂ parts, so to

/A/∂ =

 1
c φ T̂ AAA ·K

−AAA ·K −1
c φ T̂

 −1
c ∂tT̂ ∇∇∇ ·K

−∇∇∇ ·K 1
c ∂tT̂

= (240)

 ( 1
c2 φ∂t +AAA ·∇∇∇)1̂ 0

0 ( 1
c2 φ∂t +AAA ·∇∇∇)1̂

= (241)
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and so
~/∂ /AΨ+ /A/∂Ψ = 2

1
c2 φ /1∂tΨ+2/1AAA ·∇∇∇Ψ. (242)

The result of the closer analysis is that we have

− iqh̄
2m0

(
/∂ /AΨ+ /A/∂Ψ

)
=− iqh̄

2m0

(
−iBBB ·ΣΣΣΨ− 1

c
EEE ·αααΨ+2

1
c2 φ /1∂tΨ+2/1AAA ·∇∇∇Ψ

)
= (243)

− qh̄
2m0

BBB ·ΣΣΣΨ+
iqh̄

2m0c
EEE ·αααΨ− iqh̄

m0c2 φ /1∂tΨ−
iqh̄
m0

/1AAA ·∇∇∇Ψ = (244)

−BBB ·µµµsΨ+ iEEE ·πππsΨ−
iqh̄

m0c2 φ /1∂tΨ−
iqh̄
m0

/1AAA ·∇∇∇Ψ (245)

The complete Klein Gordon equation then results in

− h̄2

2m0
/1∇∇∇

2
Ψ+

h̄2

2m0c2
/1∂

2
t Ψ− iqh̄

m0c2 φ /1∂tΨ−
iqh̄
m0

/1AAA ·∇∇∇Ψ (246)

+
q2

2m0
AAA2/1Ψ− q2φ 2

2m0c2
/1Ψ =−1

2
U0/1Ψ+BBB ·µµµsΨ− iEEE ·πππsΨ. (247)

This can be rearranged into

− h̄2

2m0
/1∇∇∇

2
Ψ+

q2

2m0
AAA2/1Ψ− iqh̄

m0
/1AAA ·∇∇∇Ψ−BBB ·µµµsΨ = (248)

q2φ 2

2m0c2
/1Ψ+

iqh̄
m0c2 φ /1∂tΨ−

h̄2

2m0c2
/1∂

2
t Ψ− 1

2
U0/1Ψ− iEEE ·πππsΨ. (249)

This wave equation has a probability tensor for which the closed system condition is met, one that

includes the Dirac current continuity equation. It has a linear in time derivative damping term,

it has a quadratic in time derivative harmonic term and it has a Hooke’s law term. In the above

arrangement one has the familiar terms on the left and the terms that are ignored, misrepresented

or that have never been derived on the right. In case of a stationary state, we get

iqh̄
m0c2 φ /1∂tΨ =−Uqφ

m0c2
/1Ψ'−qφ /1Ψ =−V /1Ψ (250)

Using this we can now rearrange the equation into

− h̄2

2m0
/1∇∇∇

2
Ψ+

q2

2m0
AAA2/1Ψ− iqh̄

m0
/1AAA ·∇∇∇Ψ−BBB ·µµµsΨ+V /1Ψ = (251)

q2φ 2

2m0c2
/1Ψ− h̄2

2m0c2
/1∂

2
t Ψ− 1

2
U0/1Ψ− iEEE ·πππsΨ. (252)

In the classic interpretation, all the terms on the right hand side are reduced to EΨ, giving

− h̄2

2m0
/1∇∇∇

2
Ψ+

q2

2m0
AAA2/1Ψ− iqh̄

m0
/1AAA ·∇∇∇Ψ−BBB ·µµµsΨ+V /1Ψ = EΨ. (253)
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The left hand side is then dubbed the Hamiltonian of the system and that abbreviates the equation

to ĤΨ = EΨ.

For stationary states it is also possible to reduce another term as

− iqh̄
m0

/1AAA ·∇∇∇Ψ =−qppp
m0
·AAA/1Ψ'−qvvv ·AAA/1Ψ =−JJJ ·AAA/1Ψ (254)

In a stationary magnetic field for which AAA =−1
2rrr×BBB, this term can also be rewritten as

− iqh̄
m0

/1AAA ·∇∇∇Ψ =− q
2m0

/1LLL ·BBBΨ, (255)

see (70, Schwalb, 2007, p. 144).

The two first order derivative terms can be combined into

− iqh̄
m0c2 φ /1∂tΨ−

iqh̄
m0

/1AAA ·∇∇∇Ψ = qφ /1Ψ− JJJ ·AAA/1Ψ = JµAµ /1Ψ. (256)

These terms are the particle field interaction terms. Together with Ψ† we get an interaction proba-

bility term as

Ψ
†JµAµ /1Ψ. (257)

Together with the BBB and EEE terms we have the charge-EM-field interaction terms

− iqh̄
2m0

(
/∂ /AΨ+ /A/∂Ψ

)
=−BBB ·µµµsΨ+ iEEE ·πππsΨ+qφ /1Ψ− JJJ ·AAA/1Ψ (258)

=−BBB ·µµµsΨ+ iEEE ·πππsΨ+ JµAµ /1Ψ (259)

We have the two terms

− iqh̄
m0

/1AAA ·∇∇∇Ψ−BBB ·µµµsΨ =− q
2m0

/1LLL ·BBBΨ− q
m0

BBB ·SSSΨ = (260)

−/1µµµL ·BBBΨ−BBB ·µµµsΨ =−BBB · (µµµL/1+µµµs)Ψ (261)

with orbital magnetic momentum µµµL and spin magnetic momentum µµµs, so with total magnetic

momentum µµµJ = µµµL/1+µµµs. These are the known terms. But parallel to these we have

qφ /1Ψ+ iEEE ·πππsΨ (262)

as integral part of the relativistic
(
/∂ /AΨ+ /A/∂Ψ

)
. In the Hydrogen atom, the first term determines

the main quantum number n, and the second term should be that radius plus or minus the reduced

Compton wavelength. As a two valued zitter variation on the main quantum number. If a constant

external electric field is applied, these two terms should be observable as the linear Stark effect.
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In the same line of reasoning, the diamagnetic term containing AAA2 should have its quadratic Stark

effect term containing q2φ 2 as its relativistic companion.

Interestingly, the main quantum number term V Ψ= qφ /1Ψ was derived from the original damp-

ing term − iqh̄
m0c2 φ /1∂tΨ. Quantum jumps might then be connected to −Ψ† iqh̄

m0c2 φ /1∂tΨ, when inter-

preted in a Feynman manner. A quantum jump as a relativistic boost of spinors and enclosed four

vectors should be analyzed using the complete Klein Gordon Lagrangian at the Dirac level, as

L = 1
m0

Ψ†(/̂P/̂P− /E /E)Ψ. Such a quantum jump of an electron, even inside the Hydrogen atom,

should include the positron at some level. A quantum jump should always be fast enough to allow

virtual positrons to participate in the process of emitting or absorbing a photon. It is my opinion

that a fusion of relativistic QFT and the usual Schrödinger-Pauli analysis of atomic physics should

be realized in order to get a grip on the internal dynamics of quantum jumps. On the Schrödinger-

Pauli level of two by two spin matrices and two valued spinors, the intrinsics of quantum jumps

will remain a mystery.

Quantum jumps in the Hydrogen atom should be analyzed intrinsically on a relativistic quantum

field level using the Lagrangian L = 1
m0

Ψ†(/̂P/̂P− /E /E)Ψ and the related inertial probability/field

tensor Φ ν
µ = Ψ†γµγνΨ with inertial probability/field closed system condition

∂νΦ
ν

µ = ∂νΨ
†
γµγ

ν
Ψ = 0. (263)

Of course, a quantum jump implies an open system, due to its photon exchange and its inevitable

momentary virtual positron appearance and disappearance, a consideration that should temper

expectation. A system with a primary electron that includes the photon that is being emitted or

absorbed during a time interval in which a positron appears on the scene as well might again be

considered closed.

What should be avoided at all times in the fermion domain is to reduce the Klein Gordon

equation as derived in this section to a Pauli level equation or a scalar equation on the Schrödinger

level. On the Pauli level, the spinors cannot be properly boosted, only stationary states are allowed

and the intrinsics of the quantum jumps will be lost.

E. Closing in on gravity

As for the Lorentz transformation of the usual Lagrangian current density element L =Ψ/PΨ=

Ψ†γ0/PΨ, this is part of the general Lagrangian density element L = 1
m0

Ψ†/P/PΨ, the Lorentz

62



invariance of which I have demonstrated. Given the Lorentz invariance of the general L , the

Lorentz covariance of the closed system condition for the general Lagrangian density ∂νL = 0 is

obvious, because ∂ν is a four-vector in all reference systems. This includes the Lorentz covariance

of the continuity equation for the Dirac current as m0c∂νΨγνΨ = 0, as its time-like part.

The gamma tensor γµγν is given by

γµγ
ν =

[
γ0 γ1 γ2 γ3

]


γ0

γ1

γ2

γ3

=


γ0γ0 γ1γ0 γ2γ0 γ3γ0

γ0γ1 γ1γ1 γ2γ1 γ3γ1

γ0γ2 γ1γ2 γ2γ2 γ3γ2

γ0γ3 γ1γ3 γ2γ3 γ3γ3

=


/1 −α1 −α2 −α3

α1 −/1 −iΣ3 iΣ2

α2 iΣ3 −/1 −iΣ1

α3 −iΣ2 iΣ1 −/1

 .(264)

The probability density tensor is given by

Φ
ν

µ = Ψ
†
γµγ

ν
Ψ =


Ψ†/1Ψ −Ψ†α1Ψ −Ψ†α2Ψ −Ψ†α3Ψ

Ψ†α1Ψ −Ψ†/1Ψ −Ψ†iΣ3Ψ Ψ†iΣ2Ψ

Ψ†α2Ψ Ψ†iΣ3Ψ −Ψ†/1Ψ −Ψ†iΣ1Ψ

Ψ†α3Ψ −Ψ†iΣ2Ψ Ψ†iΣ1Ψ −Ψ†/1Ψ

 . (265)

In the space-time bèta matrices representation, we have βµ = iγµ , so βµβ ν = iγµ iγν =−γµγν .

So in the space-time representation, we have

Φ
ν

µ = Ψ
†
βµβ

ν
Ψ =−Ψ

†
γµγ

ν
Ψ (266)

For the proper velocity, we know that /U /U =−c2/1. Using /U =Uµβ µ we can write this as

/U /U =Uµβ
µUνβ

ν =UµUν
βµβ

ν =−UµUν
γµγ

ν =−c2/1 (267)

So we have

Ψ
† /U /UΨ =−UµUν

Ψ
†
γµγ

ν
Ψ =−UµUν

Φ
ν

µ =−c2
Ψ

†
Ψ (268)

The Dirac current can be arrived at by using the coordinate velocity’s rest system coordinates

as V ν to get

Jν = Φ
ν

µ V µ =


Ψ†/1Ψ −Ψ†α1Ψ −Ψ†α2Ψ −Ψ†α3Ψ

Ψ†α1Ψ −Ψ†/1Ψ −Ψ†iΣ3Ψ Ψ†iΣ2Ψ

Ψ†α2Ψ Ψ†iΣ3Ψ −Ψ†/1Ψ −Ψ†iΣ1Ψ

Ψ†α3Ψ −Ψ†iΣ2Ψ Ψ†iΣ1Ψ −Ψ†/1Ψ




c

0

0

0

=


cΨ†/1Ψ

cΨ†α1Ψ

cΨ†α2Ψ

cΨ†α3Ψ

 . (269)
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The generalized Lagrangian probability density element L = 1
m0

Ψ†/P/PΨ can be written as

L =
1

m0
Ψ

†/P/PΨ = Ψ
† /U/PΨ = m0Ψ

† /U /UΨ =−m0c2
Ψ

†
Ψ (270)

but then we also have the stress-energy probability density Lagrangian product

L =
1
mi

Ψ
†/P/PΨ = Ψ

†/V /PΨ =−1
γ

m0c2
Ψ

†
Ψ = Ψ

†LΨ =VµPν
Φ

ν
µ = T ν

µ Φ
ν

µ . (271)

Because I already proved the Lorentz invariance of this Lagrangian density, the Lorentz invariance

of Φ ν
µ is now proven too, and thus also the Lorentz covariance of the closed system condition.

We also get
∂L

∂ (Pµ)
=VνΦ

ν
µ , (272)

∂L

∂ (VνΦ ν
µ )

= Pµ (273)

and
∂L

∂Φ ν
µ

= T ν
µ . (274)

For a system with external forces applied, the last equation also leads to

∂ν

(
∂L

∂Φ ν
µ

)
= ∂νT ν

µ = Fµ . (275)

And for closed systems we get

∂ν

(
∂L

∂Φ ν
µ

)
= ∂νT ν

µ = 0. (276)

We can reverse the order for closed systems and get

∂ν

(
∂L

∂T ν
µ

)
= ∂νΦ

ν
µ = 0. (277)

The created environment, including the closed system condition for the above product, closes in

on General Relativity’s concepts and basic elements, as the symmetric stress-energy tensor density

and its closed system condition is.

The Klein Gordon probability equation in my space-time bèta matrices environment is

Ψ
†(/P/P− /E /E)Ψ = Ψ

†(/P− /E)(/P+ /E)Ψ = 0 (278)

and can be split into two Dirac equations as

Ψ
†(/P− /E) = 0 (279)

(/P+ /E)Ψ = 0 (280)
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These two equations have the same solutions, but, in the Weyl representation the roles of the twin

spinors are reversed. In terms of the Dirac fields, the role of particle and anti-particle are reversed.

If one then goes from the Weyl representation to the Dirac representation using the S operator, the

particle and anti-particle fields will be mixed in both Dirac spinor twins. In terms of the space-

time basis, the S operator adds a time-reversal to one half of the dual space-time basis. The lower

version is the standard Dirac equation. Its Lagrangian then is given as

L = Ψ
†
γ0(/P+ /E)Ψ = Ψ(/P+ /E)Ψ (281)

with the Dirac adjoint. This Lagrangian is like the primary hub of the Standard Model. By going

backwards in this section, this primary hub can be generalized into a Lagrangian that closes in

on gravity. In the process, the Dirac current is generalized into a probability/field density tensor

and the Dirac current continuity condition is encapsulated in the closed system condition for this

tensor.

F. Regarding Dirac’s vision

In the canonical Klein Gordon equation we had the term /∂ /A. It introduces the electromagnetic

field and leads to a −iqh̄
mc

(/∂ /A)Ψ term in the wave equation, which can be turned into a Lagrangian

spin-energy energy probability density −iqh̄
mc

Ψ†(/∂ /A)Ψ. For /∂ /A we found, using the Lorenz gauge,

/∂ /A =−BBB · iΣΣΣ− 1
c

EEE ·ααα. (282)

The product /∂ /A can also be written as ∂µAνβµβ ν =−∂µAνγµγν so we have

/∂ /A = ∂µAν
βµβ

ν =−∂µAν


/1 −α1 −α2 −α3

α1 −/1 −iΣ3 iΣ2

α2 iΣ3 −/1 −iΣ1

α3 −iΣ2 iΣ1 −/1

=−BBB · iΣΣΣ− 1
c

EEE ·ααα (283)

and with the probability/field tensor we get

−iqh̄
mc

Ψ
† /∂ /AΨ =

−iqh̄
mc

∂µAν
Φ

ν
µ =− qh̄

m0
Ψ

†BBB ·ΣΣΣΨ+
qh̄

m0c
Ψ

† 1
c

EEE · iαααΨ (284)

so what is called EM-field spin interaction term can also be framed as an interaction between the

EM field ∂µAν and the inertial probability/field density tensor Φ ν
µ , an interaction also determined

by the quanta of charge, rest mass and action. So lets connect the charge quantum to q∂µAν and
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the rest mass quantum to m0Φ ν
µ and the interaction to h̄. The influence of the complex number

is to switch between space-time and norm-space representations. Then spin can be interpreted as

being an intrinsic element of the Lorentz invariant rest mass probability/field tensor as

m ν
µ = m0Φ

ν
µ . (285)

If we multiply the rest mass tensor with the proper velocity tensor as UµUν we get the general

Lagrangian energy density as

L =UµUνm ν
µ = m0UµUν

Φ
ν

µ = Ψ
† /U/PΨ. (286)

The closed system condition for the probability/field tensor then can also be interpreted as a closed

system condition for rest mass as

∂νm ν
µ = m0∂νΦ

ν
µ = 0. (287)

The Dirac rest-mass current continuity equation is the time-like part of this closed system condition

and the rest-mass Dirac current is an intrinsic part of this rest-mass tensor. This probability/field

tensor has a space-like part, a spin like part and a norm-like part, which for the EM field is zero due

to the Lorenz gauge. It’s derivative has time-like, norm-like, space-like parts and spin-like parts,

following the Maxwell-Lorentz equations structure. It is my opinion that this probability/field

tensor is, for the moment, the closest on can get to a metric tensor in Quantum Mechanics. In this

interpretation, spin is an interaction between an elementary particle’s rest-mass and this quantum

metric probability/field tensor. Or rest-mass might be the result of an interaction between the

electron as something elementary and this metric tensor. To interpret Φ ν
µ as the RQM vacuum

tensor is in the spirit of Dirac’s vision of spin as being part of the vacuum state.
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