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Abstract 

Probability distributions play a very important role in many applications. This paper describes a 

modeling approach for distributional time series. Probability density functions (PDFs) are 

approximated by real-valued vectors via successively applying the log-quantile-density (LQD) 

transformation and functional principal component analysis (FPCA); state-space models (SSMs) for 

real-valued time series are then applied to model the evolution of PCA scores, corresponding results 

are mapped back to the PDF space by the inverse LQD transformation. 
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1. Introduction 

Functional time series modeling is receiving increased interest in statistics, finance and other related 

fields. Unlike ordinary functions, probability density functions (PDFs) of distributions need to 

satisfy two important constrains: (1) non-negative; (2) unit integral [1]. For PDF-valued functional 

data, directly applying a statistical modeling method for general functions may encounter problems 

in insuring corresponding results automatically satisfy the two constrains of PDFs. Inspired by the 

seminal work in [1], this article describes an approach for modeling distributional time series using 

state-space models (SSMs) on the basis of converting PDFs to ordinary functions. Another related 

work is [2], where a SSM-based method was developed for forecasting ordinary functional data. 

2. Modeling method 

Consider a time series formed by probability density functions (of a stochastic distribution process), 

denoted by {𝑓௧(𝑥)}௧ୀଵ
௡ , which is termed the distributional time series in this study. Without loss of 

generality, all PDFs are assumed to be finitely supported on [0,1]; PDFs with general finite support 

can be easily tackled by scale transformation. 

To release the constraints of PDFs, the newly proposed log-quantile-density (LQD) 

transformation [1] is employed to covert PDFs to ordinary functions, i.e. 

𝜓௧(𝑠) = log൫𝑞௧(𝑠)൯ = −log൛𝑓௧൫𝑄௧(𝑠)൯ൟ,ࣟࣟࣟ𝑠 ∈ [0,ࣟ1] (1) 

where 𝑄௧(𝑠)  and 𝑞௧(𝑠)  are, respectively, the quantile function and quantile density function 

corresponding to the PDF 𝑓௧(𝑥); 𝜓௧(𝑠) ∈ 𝐿ଶ[0,1] is an ordinary function, which can be converted 

back to the PDF form by the inverse LQD transformation [1] as follows:  

𝑓௧(𝑥) = 𝜃ట೟
exp൛−𝜓௧൫𝐹௧(𝑥)൯ൟ,ࣟࣟࣟ𝐹௧

ିଵ(𝑠) = 𝜃ట೟

ିଵ න 𝑒ట೟(ఛ)𝑑𝜏
௦

଴

 (2) 
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where 𝜃ట೟
= ධ 𝑒ట೟(ఛ)ଵ

଴
𝑑𝜏. 

The functional time series {𝜓௧(𝑠)}௧ୀଵ
௡  are further converted to real-valued time series by 

applying the principal component analysis (FPCA) [3]. FPCA is an effective dimension reduction 

method for functional data, the main point is approximating the continuous function by the truncated 

Karhunen–Loève representation [3], i.e. 

𝜓௧(𝑠) ≈ 𝜇ట(𝑠) + ෍ 𝜉௧,௝𝜑௝(𝑠)

௠

௝ୀଵ

ࣟ,ࣟࣟࣟ𝑡 = 1,2,⋅⋅⋅, 𝑛 (3) 

where 𝜇ట(𝑠) is the mean function of the functional dataset {𝜓௧(𝑠)}௧ୀଵ
௡ ; 𝜑௝ are the eigenfunctions 

of the covariance operator estimated from the functional dataset {𝜓௧(𝑠)}௧ୀଵ
௡ ; 𝜉௧,௝ are PCA scores; 

𝑚 is the truncation order. By using Eqs. (1) and (3), the distributional time series can be converted 

to 𝑚 real-valued time series denoted by ൛𝜉௧,௝ൟ
௧ୀଵ

௡
,ࣟࣟ𝑗 = 1,2, ⋯ , 𝑚.  

The state-space models (SSMs) [4,5] for the real-valued time series ൛𝜉௧,௝ൟ
௧ୀଵ

௡
(𝑗 =

1,2, ⋯ , 𝑚) can be generally defined as 

ቐ
𝜉௧,௝ = ℎ௧,௝൫𝛼௧,௝൯ + 𝜀௝ ,ࣟࣟࣟ𝜀௝~𝑁 ቀ0, 𝜎ఌೕ

ଶ ࣟቁ    

𝛼௧ାଵ,௝ = 𝑢௧,௝൫𝛼௧,௝൯ + 𝜂௝ ,ࣟࣟࣟ𝜂௝~𝑁 ቀ0, 𝜎ఎೕ

ଶ ቁ
ࣟ,ࣟࣟ   𝑗 = 1,2, ⋯ , 𝑚 (4) 

where 𝑢௧,௝ are differentiable functions for characterizing the dynamic behavior of the latent state 

process (represented by ൛𝛼௧,௝ൟ
௧ୀଵ

௡
); ℎ௧,௝ are differentiable functions for describing the observation 

process given the states; 𝜀௝ and 𝜂௝ represent noise effects. As a special case, the linear SSMs [4,5] 

for the real-valued time series are rewritten as follows: 

ቐ
𝜉௧,௝ = 𝑍௧,௝𝛼௧,௝ + 𝜀௝ ,ࣟࣟࣟ𝜀௝~𝑁 ቀ0,ࣟ𝜎ఌೕ

ଶ ቁ    

𝛼௧ାଵ,௝ = 𝑇௧,௝𝛼௧,௝ + 𝜂௝ ,ࣟࣟࣟ𝜂௝~𝑁 ቀ0,ࣟ𝜎ఎೕ

ଶ ቁ
ࣟ,ࣟࣟ  𝑗 = 1,2, ⋯ , 𝑚 (5) 

where 𝑍௧,௝ and 𝑇௧,௝ are real matrixes or real numbers (only for univariate case). 

On the basis of the SSMs given in Eqs. (4) and (5), filtering, smoothing and forecasting can 

be realized for distributional time series in the Kalman filtering (KF) setting (including its expanded 

version in considering nonlinearities, such as EKF, UKF, etc.) [4-6]. In addition, particle filtering 

algorithms [7] can also be employed to solve the inference problems for the above SSMs.  

3. Simulation study 

The following random walk model is used to simulate the distributional times series for 

investigation:  

ቐ

𝑎௧ = 𝑎௧ିଵ + 𝜀௔ ,ࣟࣟ𝜀௔~𝑁(0,ࣟ𝜎௔
ଶ) and 𝑎଴ = 14,  𝜎௔ = 0.6

𝑏௧ = 𝑏௧ିଵ + 𝜀௕ ,ࣟࣟ𝜀௕~𝑁(0,ࣟ𝜎௕
ଶ) and 𝑏଴ = 12,  𝜎௕ = 0.8

𝑓௧(𝑥) = 0.5𝑔௧(𝑥) + 0.5 where 𝑔௧~Beta(𝑎௧, 𝑏௧)     

 (6) 

Note that parameters in the Beta distribution should be positive; if any element in series {𝑎௧}௧ୀଵ
௡  

and {𝑏௧}௧ୀଵ
௡  takes negative value, the corresponding series is rejected and re-simulated. Given 𝑎௧ 

and 𝑏௧ , 300 random samples from each Beta distribution Beta(𝑎௧, 𝑏௧)  are first generated, then 



𝑔௧(𝑥)  is estimated by using the kernel density estimator, thus resulting in the observed 

distributional time series denoted as ൛𝑓መ௧(𝑥)ൟ
௧ୀଵ

௡
  with 𝑓መ௧(𝑥) =𝑔ො௧(𝑥) + 0.5  (𝑔ො௧(𝑥)  is the kernel 

density estimate of 𝑔௧(𝑥)).  

The linear SSM given in Eq. (5) is employed to model the corresponding real-valued time 

series ൛𝜉௧,௝ൟ
௧ୀଵ

௡
(𝑗 = 1,2, ⋯ , 𝑚)  by setting 𝑍௧,௝ = 𝜉௧ିଵ,௝ , 𝑇௧,௝ = 1  and 𝑚 = 10 . The remaining 

undetermined parameters ࣟ𝜎ఌೕ
  and 𝜎ఎೕ

  are estimated by the likelihood method (see [4,5] for 

detailed descriptions).  

For visual comparison, PDFs are organized as a matrix form, i.e. 

𝐀 =

⎣
⎢
⎢
⎡

𝑓ଵ(𝑥ଵ)ࣟ⋯ 𝑓௧(𝑥ଵ) ⋯ 𝑓௡(𝑥ଵ)

𝑓ଵ(𝑥ଶ) ⋯ 𝑓௧(𝑥ଶ) ⋯ 𝑓௡(𝑥ଶ)
⋮ ࣟࣟࣟࣟࣟࣟࣟࣟࣟࣟࣟࣟࣟ ⋮ ࣟࣟࣟࣟࣟࣟࣟࣟࣟࣟࣟࣟࣟ ⋮

𝑓ଵ൫𝑥௣൯ ⋯ 𝑓௧൫𝑥௣൯ ⋯ 𝑓௡൫𝑥௣൯⎦
⎥
⎥
⎤
 (7) 

where 1 20 1px x x       are evenly spaced points within [0,1] . Using the graphical 

representation of matrix 𝐀, Figure 1 illustrates the result comparison between the true PDF-series 

and the estimated PDF-series obtained by using the Kalman smoothing algorithm on the basis of 

the dynamic model given in Eq. (5). It can be seen from Figure 1 that the model-based estimates of 

PDFs agree well with true PDFs.  

 

 

(a) 

 

(b) 

Figure 1. Results comparison for PDF-series in terms of the image of matrix A defined in Eq. (7). (a) True PDFs. 

(b) Estimated PDFs by using the Kalman smoothing algorithm based on the model given in Eq. (5). 

 

 

4. Conclusions 

A dynamic modeling approach is introduced for distributional time series. By virtue of the log-

quantile-density transformation and functional principal component analysis, distributional time 

series are modeled in the state-space modeling framework. 
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