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1 Introduction

In 1964, John Bell wrote a paper [1] on the possibility of hidden variables [2] causing the

entanglement correlation E(a, b) between two particles. In the present paper, an inconsistency

in the starting formula will be demonstrated.

Bell, based his hidden variable description on particle pairs with entangled spin, originally

formulated by Bohm [3]. Bell used hidden variables λ that are elements of a universal set

Λ and are distributed with a density ρ(λ) ≥ 0. Suppose, E(a, b) is the correlation between

measurements with distant A and B that have unit-length, i.e. ||a|| = ||b|| = 1, real 3 dim

parameter vectors a and b.

Then with the use of the λ we can write down the classical probability correlation between

the two simultaneously measured spins of the particles. This is what we will call Bell’s formula.

E(a, b) =

∫
λ∈Λ

ρ(λ)A(a, λ)B(b, λ)dλ (1.1)

The spin measurement functions are, A(a, λ) ∈ {−1, 1} and B(b, λ) ∈ {−1, 1}. The probability

density is normalized,
∫
ρ(λ)dλ = 1. The equation (1.1) will be specified a little bit more in

the section below.

2 Bell formula

Suppose, λ = (λ1, λ2, . . . , λn). Equation (1.1) is then rewritten as

E(a, b) =

∫
λ∈Λ

ρ(λ)A(a, λ)B(b, λ)dλ1dλ2 . . . dλn (2.1)

Nothing much changed. We have, Λ = Λ1 × Λ2 × . . .Λn. If the ρ is defined on a restricted

sub ”interval”, outside this ”interval” the values do not add to the integral. Therefore, we may
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write: Λ = Rn. Suppose for continuous hidden variables λ.

ρ(λ) = ρ(λ1, λ2, . . . , λn) =
∂

∂λm
Rm(λ1, λ2, . . . , λn) (2.2)

For m = 1, 2 . . . n.As an example we may look at

ρGauss(x) =
1√
2π

∂

∂x

∫ x

−∞
e−y

2/2dy

Returning to the main line of argument, this implies e.g.

E1(a, b) =

∫
Rn

(
∂

∂λ1
R1(λ)

)
A(a, λ)B(b, λ)dλ1dλ2 . . . dλn (2.3)

Suppose, we abbreviate the 2, 3, . . . n integration with∫ ∞
−∞

dλ2 . . .

∫ ∞
−∞

dλnf(λ) = 〈f(λ)〉2,3,...n (2.4)

When we use continuous hidden variables λ. we are allowed to employ partial integration.

Partial integration on E1 in (2.3), introducing the angular notation for
∫∞
−∞ dλ2 . . .

∫∞
−∞ dλn

gives

E1(a, b) =
〈
R1(λ)A(a, λ)B(b, λ)|λ1=+∞

λ1=−∞

〉
2,3...n

(2.5)

−
〈∫

R
R1(λ)

(
∂

∂λ1
A(a, λ)B(b, λ)

)
dλ1

〉
2,3...n

=
〈
R1(λ)A(a, λ)B(b, λ)|λ1=+∞

λ1=−∞

〉
2,3...n

−
〈∫

R
R1(λ)

(
B(b, λ)

∂

∂λ1
A(a, λ) +A(a, λ)

∂

∂λ1
B(b, λ)

)
dλ1

〉
2,3...n

Note that when A ∈ {−1, 1} then 1
A ∈ {−1, 1} and, of course, B ∈ {−1, 1} then 1

B ∈ {−1, 1}.
Hence, we can write

E2(a, b) =

∫
Rn

(
∂

∂λ1
R1(λ)

)
1

A(a, λ)

1

B(b, λ)
dλ1dλ2 . . . dλn (2.6)

And by definition of the measurement functions A and B we must have E1(a, b) = E2(a, b). If

we are allowed to employ partial integration in (2.3), there is no reason why this operation is

disallowed in (2.6). Hence,

E2(a, b) =

〈
R1(λ)

1

A(a, λ)

1

B(b, λ)
|λ1=+∞
λ1=−∞

〉
2,3...n

(2.7)

−
〈∫

R
R1(λ)

(
∂

∂λ1

1

A(a, λ)

1

B(b, λ)

)
dλ1

〉
2,3...n

=

〈
R1(λ)

1

A(a, λ)

1

B(b, λ)
|λ1=+∞
λ1=−∞

〉
2,3...n

−
〈∫

R
R1(λ)

(
1

B(b, λ)

∂

∂λ1

1

A(a, λ)
+

1

A(a, λ)

∂

∂λ1

1

B(b, λ)

)
dλ1

〉
2,3...n

If we take the A and B as functions that can, in the series, be approximated with Ak(a, λ) and

Bk(b, λ), with k = 1, 2 . . . , then we may write for e.g. differentiation of 1
A

∂

∂λ1

1

A(a, λ)
= − 1

{A(a, λ)}2
∂

∂λ1
A(a, λ) (2.8)
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Because, {A(a, λ)}2 = 1 when A(a, λ) ∈ {−1, 1}, we have

∂

∂λ1

1

A(a, λ)
= − ∂

∂λ1
A(a, λ) (2.9)

If we again note A = 1
A etc, then

E2(a, b) =
〈
R1(λ)A(a, λ)B(b, λ)|λ1=+∞

λ1=−∞

〉
2,3...n

(2.10)

+

〈∫
R
R1(λ)

(
B(b, λ)

∂

∂λ1
A(a, λ) +A(a, λ)

∂

∂λ1
B(b, λ)

)
dλ1

〉
2,3...n

Generally speaking we may assume that〈∫
R
R1(λ)

(
B(b, λ)

∂

∂λ1
A(a, λ) +A(a, λ)

∂

∂λ1
B(b, λ)

)
dλ1

〉
2,3...n

(2.11)

=

∫
Rn

R1(λ)

(
B(b, λ)

∂

∂λ1
A(a, λ) +A(a, λ)

∂

∂λ1
B(b, λ)

)
dλ1 . . . dλn 6= 0

with λ = (λ1, . . . , λn). Therefore, E1(a, b) 6= E2(a, b) whereas because of A = 1
A and B = 1

B

the result should have been E1(a, b) = E2(a, b).

3 Conclusion

From the previous considerations one can conclude that Bell’s formula and the inequalities

derived thereof are not so very general as is widely claimed. In fact the Bell formula allows

inconsistencies in concrete mathematics. Note that in the derivation of the inconsistency, use is

made of perfect measurement, i.e. leaving out the possibility that A = 0 or B = 0 representing

”missed” measurements.
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