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Abstract 
 

A monochromator optical design is described, which comprises a grazing-incidence 
reflection grating and two grazing-incidence mirrors, one on each side of the grating.  The 
grating operates in conical diffraction mode and has an exponential phase function, so that the 
wavelength can be scanned by translating the grating surface in the phase-gradient direction.  
The wavelength can be continuously tuned over a wide spectral range while maintaining zero-
aberration performance over the full range, and perfect blazing is also achieved over the full 
illumination aperture at all wavelengths. 
 
*** 
 

Aspnes [1, 2] developed a monochromator design that uses an exponential diffraction 
grating to achieve wavelength tunability via translational displacement of the grating.  As a result 
of the exponential phase distribution on the grating surface, a surface translation along the 
exponential gradient direction is equivalent to a uniform dimensional scaling of the local grating 
period, so the monochromator’s selected wavelength is similarly scaled.  However, Aspnes’ 
design has limited utility for grazing-incidence EUV and X-ray gratings because the grating 
would have to be excessively long in the translation direction.  (The illumination area on the 
grating is greatly elongated due to the shallow grazing angle, and the grating aperture would 
need to be even longer to accommodate the scan range.) 
 

Hettrick [3] developed an alternative exponential grating design in which the scan 
direction is transverse, not parallel, to the illumination spot’s long dimension, so scanning can be 
achieved with a grating of practical size.  But Hettrick’s design requires curved grating lines, 
which cannot be easily manufactured for EUV/X-ray applications. 
 

An alternative monochromator grating design that overcomes the limitations of Aspnes’ 
and Hettrick’s designs is illustrated in Figures 1A (plan view) and 1B (side view).  The grating is 
planar and will be described with reference to 1x , 2x , 3x  Cartesian coordinates with the 1x  and 

2x  axes parallel to the grating plane.  The grating substrate is in the plane 3 0x  .  The grating 

lines are straight and orthogonal to the 1x  axis, and wavelength tuning is achieved by translating 

the grating along a scan direction parallel to the 1x  axis.  The grating operates in conical 

diffraction mode, with the incidence plane transverse to the scan direction.  The incident beam 
and diffracted beam cover an illumination spot that is greatly elongated in the 2x  direction due to 

the shallow grazing incidence. 
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Figure 1A 

 
 

 
Figure 1B 

 
The grating profile has a blazed, sawtooth form, as illustrated schematically in Figure 2.  

The grating “lines” are boundaries between grating facets.  The grating structure is defined by a 
phase function 1 2[ , ]x x , a continuous function of 1x  and 2x  that takes on integer values on the 
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grating lines.  (In this description, function arguments are delimited by square braces “[ ] ” 
while round braces “ ( ) ” are reserved for grouping.  Phase quantities are defined in cycle units; 

1 cycle = 2  radian.)  The grating phase is an exponential function of 1x , 

 0 1( / ) (exp[ ] 1)g c c x      (1) 

The grating line density (phase gradient) is 

   0 1
1 2

, , 0 , exp[ ]g g g c x
x x

       
   (2) 

(The local grating period is 1 / g .) 
 

 
 

Figure 2 
 

 
The grating design will be described for a particular wavelength  , which is selected by 

the monochromator slit at a particular grating position.  As a result of the grating’s exponential 
phase, a lateral translation of the grating in the 1x  direction is equivalent to a uniform scale 

change of the local grating period, so the selected wavelength will be scaled by the same factor. 
 

The incident beam has an optical phase function 1 2 3[ , , ]x x x , for wavelength   

originating from a particular source point.  The incident electromagnetic field amplitude is 
proportional to exp[ 2 ]i   .  The field’s spatial frequency vector f  (aka. “wave vector”) is the 
phase gradient, 

  1 2 3
1 2 3

, , , ,f f f
x x x

         
f    (3) 

The field satisfies the “eikonal equation” (which is the basis of geometric optics), 
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The diffracted field is similarly characterized by its phase   and phase gradient f , 

  1 2 3
1 2 3

, , , ,f f f
x x x

              
f    (5) 

 2 2 2
1 2 3f f f f        (6) 

 
The diffracted beam’s phase function is defined by the relation      in the grating 

plane ( 3 0x  ), 

 1 2 1 2 1 2[ , ,0] [ , ,0] [ , ]x x x x x x     (7) 

The additive relation applies to the phase gradient ( 1x  and 2x  derivatives of Eq. (7)), 

    1 2 1 2, ,f f f g f     (8) 

(Eq’s. (7) and (8) are for order-1 diffraction; for order- m  diffraction replace   and g  by m  

and m g .)  3f  and 3f   are determined from Eq’s. (4) and (6) (with square root signs consistent 

with the diffraction geometry illustrated in Figure 1B), 

 2 2 2
3 1 2f f f f       (9) 

 2 2 2
3 1 2f f f f        (10) 

 
The output beam can be focused to a point in the monochromator’s exit slit by means of a 

grazing-incidence mirror following the grating.  The optics need only be designed to provide 
zero-aberration focusing for a single wavelength; it will automatically also exhibit the same zero-
aberration performance for all other wavelengths. 
 

The incident wave geometry can be defined to achieve perfect blazing over the full beam 
aperture at the design wavelength, and based on the wavelength-scaling property of the 
exponential grating perfect blazing will also be achieved at all other wavelengths. 
 

Figure 3 shows an optical schematic of the monochromator.  Broadband radiation is 
spatially filtered by an entrance slit, is reflected by a curved mirror, diffracted by the grating, and 
focused by a second curved mirror onto the exit slit.  The two mirrors provide sufficient degrees 
of freedom to achieve optimal, full-aperture blazing and zero-aberration point imaging at any 
selected wavelength. 

 
Figure 3 

 
The blaze condition, which generally maximizes diffraction efficiency, is satisfied when 

the diffracted wave vector f  determined from Eq’s. (8) and (10) coincides with the ray direction 
defined by geometric optics for reflection at the grating facets.  The facet surface normal vector 
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n  at any particular grating point is determined from the incident and reflected wave vectors f  
and f  according to geometric optics, 

 
 

 
2 2 2 2 2 2

1 2 1 20 ( )
sin 0 cos

| | | |

g f f g f f f f
 

      
  

 
f f

n
f f 

 (11) 

where   is the blaze angle, which is constant across the full grating.  Eq. (11) implies the 
following relation, from which   can be determined, 

 2 2 2 2 2 2
1 2 1 2( ) cotf f g f f f f g         (12) 

With   predefined and g  specified by Eq. (2), we will use Eq. (12) to determine 1f  and 2f . 

 
 Eq. (12) is solved for 1f   

 2 2 21 1
1 22 2( / sin ) cosf g f f g        (13) 

(The square root sign is a design choice.)  1f  and 2f  are derivatives of   (Eq. (3)), so Eq. (13) 

amounts to a partial differential equation for  .  A solution can be obtained by defining   so 
that 2f  is a constant, 

 1 2 1 2 2[ , ,0] [ ,0,0]x x x f x     (constant 2f  ) (14) 

This makes the right side of Eq. (13) a function of only 1x  (not 2x ), which can be directly 

integrated to obtain  . 
 

2f  is defined in terms of the conic angle   (for conical diffraction), 

 2 cosf f   (15) 

Eq’s. (2), (3), (14), and (15) are substituted into Eq. (13) to obtain the differential equation 

 2 2 21 1
1 0 1 0 12 2

1

[ ,0,0] exp[ ] sin ( exp[ ] / sin ) cos
d

x g c x f g c x
dx

        (16) 

Eq. (16) is integrated to obtain 
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 (17) 

Eq. (17) is combined with Eq. (14) to obtain 1 2[ , ,0]x x , and then with Eq. (7) to obtain 

1 2[ , ,0]x x .  The full phase functions 1 2 3[ , , ]x x x  and 1 2 3[ , , ]x x x  can then be obtained by 

integrating the phase from the grating surface along optical rays, and the curved mirror shapes 
3.2 and 3.3 can be determined by phase matching between incident and reflected beams. 
 

The above design outline represents just one of a broad class of possible exponential 
grating designs.  For a flat grating with scanning via translation in the 1x  direction, the phase 

function 1 2[ , ]x x  can be an exponential function of 1x  times an arbitrary function of 2x ,   

 1 2 1 2[ , ] exp[ ] [ ]x x c x u x   (18) 



6 
 

The grating need not be flat; it can have any curved substrate shape that has translational 
symmetry in the 1x  direction, as illustrated in Figure 4.  The substrate surface comprises 

1 2 3( , , )x x x  coordinate points defined by a surface height function, h , which is a function only of 

2x , 

 3 2[ ]x h x  (19) 

 
Figure 4 

 
The grating can alternatively be scanned via rotation around a fixed axis, provided that 

the substrate surface has rotational symmetry around the axis.  For example, Figure 5 illustrates a 
cylindrical grating with grating lines parallel to the cylinder axis.  Other possible shapes include 
toroidal, conical, or planar (with the plane orthogonal to the rotation axis).  The surface can be 
parameterized in terms of two non-Cartesian coordinates   and p , where   is the rotational 

angle around the symmetry axis.  (Surface point coordinates 1 2 3( , , )x x x  are functions of   and 

p .)  The constant- p  contours are orthogonal to the axis so that as the surface is rotated around 
the axis, each surface point’s   coordinate changes but p  does not change.  The grating phase 
function is separable in   and p  and has an exponential   dependence, 
 [ , ] exp[ ] [ ]p c u p    (20) 
With this type of phase function, axial rotation of the grating has the effect of applying a uniform 
scale change to  . 
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Figure 5 

 
 All of these grating types can be used with two mirrors, as illustrated in Figure 3, to 
provide aberration-free point imaging and optimize full-aperture blazing.  The grating shape and 
curvature can be selected to simplify the mirror design, or to possibly eliminate the need for one 
or both mirrors. 
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