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Abstract

In the conventional approach of renormalization, divergent loop integrals are

regulated and combined with counterterms consistent with a set of renormal-

ization conditions. While successful, the process of regularization is tedious and

must be applied judiciously to ensure gauge-invariant results. In this Letter,

I show that by recasting the renormalization conditions as initial conditions of

differential equations, the need for regularization disappears because the process

of differentiating under the loop integrals renders them finite. I apply this ap-

proach to successfully renormalize scalar φ4 theory and QED to one-loop order.

Beyond considerable technical simplifications, the ability to perform renormal-

ization without introducing a regulator or counterterms may lead to a more

fundamental description of quantum field theory free of ultraviolet divergences.
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1. Introduction

Divergences are considered an unavoidable part of quantum field theory

[1, 2, 3, 4]. Scattering amplitudes for processes involving one or more loops are

evaluated by integrating over internal momenta, resulting in formally divergent

quantities. To obtain finite physical results, divergent integrals are regulated by

introducing an arbitrary regulator parameter, and then combined with countert-
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erms in the process of renormalization to obtain finite quantities independent

of the regulator. This process of regularization and renormalization has proved

very successful, and forms the basis of the standard model [5, 6, 7, 8, 9].

Several regularization methods have been developed and applied [10, 11, 12,

13, 14, 15, 16, 17, 18, 19]. They can be evaluated based on their convenience

and preservation of symmetries. The simplest is cutoff regularization, which

imposes an upper limit on the loop momentum [15]. While simple, cutoff reg-

ularization breaks translation invariance, making it difficult to apply Feynman

parametrization. It is also difficult to maintain gauge invariance when imposing

a cutoff on the gauge-covariant derivative. Related methods such as Gaussian

or higher-derivative cutoff can be gauge invariant [16, 19], but suffer from lack

of translation invariance. Pauli-Villars regularization [10], which introduces a

divergent integral with much larger mass, maintains translation and gauge in-

variance, but is not gauge covariant, so it cannot be applied to QCD [20]. The

most common approach is dimensional regularization, in which the spacetime

dimension is treated as a continuous parameter [11, 12]. Dimensional regu-

larization maintains translation and gauge invariance, but is difficult to apply

to dimension-specific quantities, such as the Dirac gamma matrices [13], and

is insensitive to quadratic divergences, which are important for understanding

scaling behavior [21, 17].

Beyond technical distinctions, the need for regularization of any form raises

doubts about the logical foundations of quantum field theory [22, 23, 24]. In this

article, I address this head on by developing a method of renormalization that

does not require regularization or counterterms, and preserves all properties of

the original theory. The approach is based on differentiation under the integral

and the fact that any loop integral can be rendered finite by taking a sufficient

number of derivatives with respect to external momenta. This process leads to

simple ordinary differential equations for the amplitudes which can be readily

integrated to obtain the original amplitude up to integration constants. By

imposing initial conditions, traditionally referred to as renormalization condi-

tions, the renormalized amplitude is obtained without introducing counterterms.
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I apply this method to reproduce the results of dimensional regularization for

several common loop integrals, and then apply it to renormalize scalar φ4 theory

and QED. The ability to evaluate loop effects without introducing counterterms

can greatly simply the calculation of higher-order processes, and more impor-

tantly, provide a more fundamental description of quantum field theory free of

ultraviolet divergences.

2. Approach

The approach derives from the observation that the degree of divergence of

a loop integral can be reduced by differentiating with respect to the external

momenta. For example, consider the following integral often encountered in

one-loop calculations

I1(∆) =

∫
d4`

(2π)4
1

(`2 −∆)2
, (1)

where Wick rotation is assumed. This integral is formally divergent, with a

degree of divergence of zero. However, differentiating with respect to ∆ gives

dI1(∆)

d∆
=

d

d∆

∫
d4`

(2π)4
1

(`2 −∆)2

=

∫
d4`

(2π)4
∂

∂∆

1

(`2 −∆)2

=

∫
d4`

(2π)4
2

(`2 −∆)3

= − 1

16π2

1

∆
. (2)

This is a consequence of the Leibniz rule of differentiation under the integral

[25], which is perfectly valid because the integration limits are independent

of ∆. The original divergent loop integral has been transformed into a finite

differential equation for I1(∆), which can be readily integrated to obtain

I1(∆) = − 1

16π2
log ∆ + c1, (3)

where c1 is an integration constant. Equation (3) is equivalent to the result

obtained by dimensional regularization with the replacement

c1 →
1

16π2

[
2

ε
− γ + log(4π)

]
, (4)
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where ε = 4 − d and γ is the Euler-Mascheroni constant [3, 4]. Thus, what

are normally understood as counterterms become initial conditions in the new

approach. Consider another divergent integral often encountered in one-loop

mass renormalization

I2(∆) =

∫
d4`

(2π)4
1

(`2 −∆)
. (5)

In this case, the degree of divergence is two, so to obtain a finite result we must

differentiate twice to obtain

dI22 (∆)

d∆2
=

d2

d∆2

∫
d4`

(2π)4
1

(`2 −∆)

=

∫
d4`

(2π)4
∂2

∂∆2

1

(`2 −∆)

=

∫
d4`

(2π)4
2

(`2 −∆)3

= − 1

16π2

1

∆
. (6)

Thus, I2(∆) satisfies a second-order differential equation with the solution

I2(∆) = − 1

16π2
∆ log ∆ + c2∆ + c1, (7)

which, up to integration constants, also agrees with the result obtained by di-

mensional regularization [3, 4]. Lastly, consider the common divergent integral

I3(∆) =

∫
d4`

(2π)4
`2

(`2 −∆)2
, (8)

which is also quadratically divergent. To render it finite, we must again differ-

entiate twice to obtain

d2I3(∆)

d∆2
= − 1

8π2

1

∆
, (9)

which can be integrated to obtain

I3(∆) = − 1

8π2
∆ log ∆ + c2∆ + c1, (10)

again in agreement with the result from dimensional regularization [3, 4]. I now

proceed to apply the method to renormalize scalar φ4 theory and QED.
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3. Application to φ4 theory

Consider scalar φ4 theory with the Lagrangian

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4. (11)

In conventional quantum field theory, the coupling constant, mass, and propaga-

tor residue are fixed at a particular momentum scale by a set of renormalization

conditions. In the new formalism, renormalization conditions become the initial

conditions of the theory.

Wavefunction and mass renormalization are derived from the one-loop am-

plitude [3, 4]

−iM2 = −iλ
2

∫
d4`

(2π)4
1

`2 +m2
. (12)

Coupling constant or vertex renormalization is calculated from the two-particle

scattering amplitude [3, 4]

iM = −iλ+ (−iλ)2[iV (s) + iV (t) + iV (u)], (13)

where s, t, and u, are the Mandelstam variables, and

V (p2) = −1

2

∫ 1

0

dx

∫
d4`

(2π)4
1

[`2 −∆]2
, (14)

where ∆ = x(1−x)p2−m2. Requiring the propagator pole to be at m with unit

residue, and setting iM = −iλ at zero momentum leads to the initial conditions

M2(p2)
∣∣
p2=m2 = 0,

d

dp2
M2(p2)

∣∣
p2=m2 = 0, (15)

iM
∣∣
s=4m2,t=u=0

= −iλ.

Since M2(p2) has two initial conditions, it obeys a second-order differential

equation. From Eq. (12),

−i d
2

dp4
M2 = −iλ

2

∫
d4`

(2π)4
∂2

∂p4
1

`2 +m2

= 0, (16)

with the solution

M(p2) = c1 + c2p
2. (17)
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The first two conditions in Eq. (15) imply c1 = c2 = 0 and M(p2) = 0. Thus, in

φ4 theory there is no wavefunction or mass renormalization at one-loop order.

The three initial conditions on M lead to three first-order differential equa-

tions of the form

dV (p2)

d∆
= −1

2

∫ 1

0

dx

∫
d4`

(2π)4
∂

∂∆

1

[`2 −∆]2

=
1

32π2

1

∆
(18)

with the solution

V (p2) =
1

32π2

∫ 1

0

dx log[m2 − x(1− x)p2] + c1. (19)

Imposing the initial condition in Eq. (15) gives,

c1 = −(−iλ)2[iV (4m2) + i2V (0)]. (20)

Thus, the renormalized amplitude is

iM = −iλ− iλ2

32π2

∫ 1

0

[
log

(
m2 − x(1− x)s

m2 − x(1− x)4m2

)
+ log

(
m2 − x(1− x)t

m2

)
+ log

(
m2 − x(1− x)u

m2

)]
, (21)

which agrees with the result obtained by dimensional regularization [3, 4]. This

completes the one-loop renormalization of scalar φ4 theory.

4. Application to QED

I now apply the method to QED with the Lagrangian

L = −1

4
(Fµν)2 + ψ̄(i/∂ −m)ψ − eψ̄γµψAµ. (22)

The renormalization conditions are

Σ(/p)
∣∣
/p=m

= 0,
d

d/p
Σ(/p)

∣∣∣∣
/p=m

= 0,

Π(q2)
∣∣
q2=0

= 0,
dΠ(q2)

dq2

∣∣∣∣
q2=0

= 0, (23)

−ieΓµ(q2)
∣∣
q2=0

= −ieγµ,

6



where the first and second lines fix the mass and propagator residue of the elec-

tron and photon, respectively, and the last condition fixes the vertex coupling.

The first two conditions involve the electron self energy, which after applying

Feynman parametrization and dropping the term linear in ` takes the form [4]

−iΣ2(p) = −e2
∫ 1

0

dx

∫
d4`

(2π)2
−2x/p+ 4m

(`2 −∆)2
, (24)

where ∆ = −x(1− x)p2 + (1− x)m2. Since Σ2(p) has two initial conditions, it

obeys a second order differential equation. Taking the second derivative,

−id
2Σ2(p)

d/p
2 = −e2

∫ 1

0

dx

∫
d4`

(2π)4

{
16/p(1− x)x2

(`2 −∆)3
+ (4m− 2x/p)

×
[

24p2(1− x)2x2

(`2 −∆)4
− 4(1− x)x

(`2 −∆)3

]}
. (25)

All integrals have been rendered finite by differentiation. Integrating over `,

−id
2Σ2(p)

d/p
2 = − e2

8π2

∫ 1

0

dx

{
−

4/p(1− x)x2

∆
+ (4m− 2x/p)

×
[

2p2(1− x)2x2

∆2
+

(1− x)x

∆

]}
, (26)

and then solving for Σ2(p),

−iΣ2(p) = − e2

8π2

∫ 1

0

dx
[
(x/p− 2m) log(m2 − xp2) + c1 + c2/p

]
. (27)

Applying the initial conditions in Eq. (23)

c1 = m(2− x) log[m2(1− x)] +m

{
2x(2− x)

1− x
+ x log[m2(1− x)]

}
,

c2 = −2x(2− x)

1− x
− x log[m2(1− x)]. (28)

The final renormalized expression for Σ2(p) is

−iΣ2(p) = − e2

8π2

∫ 1

0

dx

{
(m− /p)

[
2x(2− x)

1− x
+ x log[m2(1− x)]

]
−(2m− x/p) log(m2 − xp2) +m(2− x) log[m2(1− x)]

}
, (29)

in agreement with the result obtained by dimensional regularization [3, 4]. The

second two conditions in Eq. (23) involve the photon self energy [3, 4],

iΠµν
2 (q2) = −4ie2

∫ 1

0

dx

∫
d4`

(2π)4
gµν [ 12`

2 +m2 + x(1− x)q2]− 2x(1− x)qµqν

(`2 +m2 − x(1− x)q2)2
.

(30)
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Differentiating twice with respect to q2 and using the relation qµqν = 1
4g
µνq2,

i
d2Πµν

2 (q)

dq4
= −i e

2

2π2

∫ 1

0

dx

∫
d4`

(2π)4
gµν [x(1− x)]2

[
1

m2 − x(1− x)q2

+
1

2

(m2 + 1
2x(1− x)q2)

[m2 − x(1− x)q2]2

]
. (31)

Integrating twice with respect to q2,

iΠµν
2 (q) = −i e

2

2π2

∫ 1

0

dx
3

4
gµν
[
m2 log(−1) + c1 + c2q

2

−x(1− x)q2 log[m2 − x(1− x)q2]

]
. (32)

Imposing the renormalization conditions in Eq. (23),

c2 = x(1− x) log(m2), c1 = −m2 log(−1). (33)

Thus, the final expression for the photon self energy is

iΠµν
2 (q) = i

e2

2π2
(q2gµν − qµqν)

∫ 1

0

dxx(1− x) log

[
m2 − x(1− x)q2

m2

]
, (34)

consistent with the Ward identity and in agreement with the standard result

[2, 3, 4]. The last condition involves the electron vertex function

δΓµ(∆) = 2ie2
∫ 1

0

dxdydzδ(x+ y + z − 1)

∫
d4`

(2π)4
2

(`2 −∆)3

(
γµ
[

1

2
`2

+(1− x)(1− y)q2 + (1− 4z + z2)m2

]
+
iσµνqν

2m

(
2m2z(1− z)

))
, (35)

where ∆ = −xyq2 + (1 − z)2m2. Differentiating once with respect to ∆, and

integrating over `

d

d∆
δΓµ(∆) =

e2

8π2

∫ 1

0

dxdydzδ(x+ y + z − 1)

(
γµ
[
− 1

∆
− 1

∆2

(
(1− x)(1− y)q2

+(1− 4z + z2)m2
)]
− iσµνqν

2m

[
1

∆2
2m2z(1− z)

])
. (36)

Integrating with respect to ∆,

δΓµ(∆) =
e2

8π2

∫ 1

0

dxdydzδ(x+ y + z − 1)

(
γµ
[
− log ∆ + c1 +

1

∆

(
(1− x)(1− y)q2

+(1− 4z + z2)m2
)]

+
iσµνqν

2m

[
1

∆
2m2z(1− z)

])
. (37)
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Imposing the initial condition gives

c1 = log[(1− z)2m2]− 1− 4z + z2

(1− z)2
. (38)

Thus, the final renormalized expression for the electron vertex is

δΓµ(∆) =
e2

8π2

∫ 1

0

dxdydzδ(x+ y + z − 1)

(
γµ
[
− log ∆ + c1

+
1

∆

(
(1− x)(1− y)q2 + (1− 4z + z2)m2

)]
+
iσµνqν

2m

[
1

∆
2m2z(1− z)

])
, (39)

in agreement with the standard result [2, 3, 4]. Thus, by reinterpreting renor-

malization conditions as initial conditions and applying differentiation under the

integral, I have shown that QED can be successfully renormalized to one-loop

order without introducing a regulator or counterterms.

5. Summary

In the traditional approach of renormalization, divergent loop integrals are

regulated by introducing an arbitrary parameter, and then combined with coun-

terterms and renormalization conditions to obtain a renormalized physical re-

sult independent of the regulator. While successful, this approach is tedious and

must be applied with caution to ensure gauge-invariant results. More impor-

tantly, the need for regularization of any form raises questions about the logical

foundations of quantum field theory. In this article, I address this issue head

on by showing that when renormalization conditions are recast as initial condi-

tions for differential equations, the need for regularization disappears because

the process of differentiation under the integral renders the loop integrals finite.

I applied this method to successfully renormalize scalar φ4 theory and QED

without introducing a regulator or counterterms. Beyond considerable techni-

cal simplifications, the ability to perform renormalization without introducing

a regulator or counterterms may provide a more fundamental formulation of

quantum field theory free of ultraviolet divergences.
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