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Abstract

I show how many connections of Γ are presently existing from R to β
as they are being inputted simultaneously through tensor products. I
plan to address the Quantum state of this tensor connection step by
step throughout the application presented. Also, I will show you how
to prove that the tensor connection is true through its output method
using a wide variety but small amount of tensor calculus methods and
number theory. You will patently see the formations of operator func-
tions throughout the application as these two mathematical methods
work together.

Keywords: Tensors Products, Tensor connections, Number Theory, Tensor
Calculus, Input, Output, Quantum State

1 Introduction

Partial Quantum Tensors in summary, are network connections within the
quantum networks. These connections can be well understood using tensor
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calculus and even number theory. Tensor Calculus for one example, can be
used to analyze the flow of electrons and to verify the movement within the
electrons directions. Well, the reason why this application is called, “Partial
Quantum Tensors” is because we only need to use partial methods within
tensor calculus to analyze and verify the flow of quantum input and output
connections. The reason being is that Tensor Calculus can only verify the flow
of particles or electrons that are perceptible through Euclidean space as this
was first thought of by Neugebauer (1969), [1]. But in Quantum Networking,
particles or electrons could be in two places at once. So how does that work?
Well, with quantum connections we can’t just use only tensor calculus to
prove my application, we will have to use a reliable mathematical method
that works well with quantum mechanics, which will be number theory in this
case. Number Theory combined with Tensor Calculus should give off effective
results with this application because the many methods of Number Theory
are extremely useful in relation to Quantum Mechanics such as the Riemann
Zeta functions expressed within the Quantum Circuits. I will first start off
this application by introducing definitions, theories and propositions to make
this application come alive within the Quantum Networks as described by
the methods of mathematical physics, applications of Tensor calculus and
number theory which in return will naturally form beautiful functions of
operators for the tensor connection.

2 The Formulation of Quantum Networks

1.0 Definition: The tensor connection Γ2(R)β holds a double input connec-
tion with Γ2 clearly in conjunction with of course R and β.
1.0 Theorem: Now, we can only locate the connections through tensor pro-
cessing of all individual connections

⋃
. Only then will we be able to send

input signals Σ, to R and β.
1.1 Definition: Let

⊗
equals stable input connection and

⊕
equals unsta-

ble but working input connection. These are the main mechanisms for the
tensor input connections.
1.2 Definition: Out of an arbitrary instance, γ will indicate the best signal
Σ possible.
1.0 Proposition: Assume that ε and ξ are the quantum network areas that
allow for a constant simultaneous connection for the tensor input methods.
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1.3 Definition: We have to now assume that once our connection is in
working order, we have to verify

⋃
‘s simultaneous tensor connections of R

and β for
∑

’s latency.
1.4 Definition: Let † and ‡ equal 5 and 4 if input connection results are
precise.
1.5 Definition: Let n substitute for Γ if first connection is effective.

3 Verifying the Flow of the Quantum

Connections

Γ2(R)β =

{
∞⋃

Γ=1

Σ(R
⊗
β) · Σ2

γ(Σ− Σ)

}
+
∞⋃
n=1

nε + 2(5) + Σ︸ ︷︷ ︸
n

=
2nξ

R + (β)γ†
(1)

As we can see from above in expression (1), we used the tensor methods to
find the stable connection between R and β. To make things more coherent,
we used .︸︷︷︸ to carry out our mixed functional input connection and used 5
to balance both R and β into the stable first wave of connections as presented
above.

4 Pinpointing the Network Groups

We will be using tensor group theory to verify the result of the first wave
of connections 2nξ

R+(β)γ† over R for Γ2(R)β. Lo-keng Hua, Luogeng Hua, Yuan

Wang, Springer-Verlag, (1981), made great contributions to understanding
this mathematical method by using Number Theory to pinpoint the operator
groups of numerical analysis’s which we use today in Quantum Mechanics
and such as this application [2]. M. Hassani (2004) helped us draw a path
in understanding the connection made on network graphs by unique ways of
using number Theory and Integer sequences combined [3]. Bombieri, Enrico
(1990), helped form min/max of bounded finite and infinite sets for Mordell’s
revised conjecture which created new mathematics for understanding the
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limits and bounds of Quantum group sets and operators [4].

Γ2(R)β =
∑
n

n2

β
+
∑
n

{∑
n

Γ
25+Σ
ξ2·(γ

⊗
R)2

n−1

+
∑

Γ

R− ξ
γ2 + Σ

}
=

Σ · Σ(β
⊕

R)

γ + Σ
(2)

Σ · Σ(β
⊕

R)

γ + Σ
+ Γ2(R)β (3)

5 Acquiring Network Efficiency

1.1 Theorem: As seen in expression (2) and (3), first wave of connections
for the tensor product inputs yielded effective but not the best of tensor
connections ' due to there not being † but instead 5. First wave connection
results: Σ·Σ(β

⊕
R)

γ+Σ
= R will have to overlap with the second wave connection

results β to gain a more precise input connection to verify that R of Γ2(R) will
indeed benefit from the convergence of the second wave input connections β.
Halmos, Paul (1974) first sought out an overview of this with his findings in
vector calculus based off of finite dimensions [5]. We can see this working
out precisely in expression (4).

Σ · Σ(β
⊕

R)

γ + Σ
+ Γ2(R)β '

∞⋃
n=1

nε + 2(5) + Σ︸ ︷︷ ︸
n

(4)

6 Input Connections Start to Conjoin

Simultaneously

1.2 Theorem: As the transition is taking place in expression (4) and (5),
⋃

will be redundant because all futile input connections have just been eradi-
cated from the input source of the quantum network areas and will only be
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left with solving for the exact product of β which in return will help with
solving the exact connection of R or Γ2(R). Faltings, Gerd (1994), found
that in algebraic geometry, algebra and geometry gave input to simultaneous
expressions to explain elliptic systems that conjoined together [6]. Aguiar,
M, Mahajan, S. (2010) used Monoidal Functors to understand The Schubert
Statistic which in return helped us understand the inverse function of such
connections that were made in his mathematical experiment and this also
helped us form our input connection for the quantum networks [7].

Γ2(R)β = (5)2

∞∏
n=1

{
β · γn− Σ

R + ξ

}
+ 2Γ(5)(γn2 − R2)‡ + β (5)

Due to there being ‡ for both R and β in expression (5), means we have
found a precise input connection for both first wave connections and second
wave connections. Also, γ over Σ in our tensor input product verifies that
both of these connections are indeed truly accurate.

Γ2(R)β =
∞∏
n=1

{
Σ(n)

R2

}
+ Γ(β) (6)

Γ + [β]

(
Σ(n)

R2

)
≡ Γ2(R)β (7)

7 Both Connections Verified

1.0 Lemma: Expression (6) is unraveling to us how R benefited from β and
while expression (7) is showing us how the effectiveness of the connections n
has remained constant throughout both first and second wave connections.
Also, it’s showing us that the first and second wave connection of R and β
do indeed have a precise verifiable simultaneous connection with the double
input tensor connection Γ2(R)β that we have evaluated within the quantum
networks.
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8 Proving that the Verified Networks are

True

To prove that the input connection is correct even further, we will trace it

from the source of its output connection Through: Γ+[β]

(
Σ(n)
R2

)
with respect

to n and Γ over Σ for the output tensor method of integration for Γ2(R)β.
These results based on quantum Mechanics can be scrutinized thoroughly in
a similar manner using, (2007) Grillet Pierre’s methods of abstract algebra
where he helps us understand his advanced workings of group Theory which
then shaped the way we apply tensor calculus and number theory [8].

n =

∫
Σ

Γ(β)2R
{
n2
}
4 n

R2
+

∫
Σ

{
R4
γ2 + β

+
n∑
n=1

2γ

ξ2 + ε(β·R)

}
(8)

=

{∫
Σ

n∑
n=1

4(2ξε − n2+(β)R)
[2− γ2

R4

]}
dΓ (9)

1.1 Lemma: So far, the imbalance and balance between n
R2 of expression

(8) has yielded a semi stable number of connections for n with respect to Γ
over Σ. Though β second wave of output connections seem to be providing
the most fluent output signals γ with respect to the integration of Σ while
R is showing signs of balance 4 for its first wave of output connections
but it does not have the best response signal for its output connection γ
as precisely shown in expression (9). However, it’s still showing signs as
an effective output source in relation to its input connection described in
expression (7) due to n being constant overall with R and which can be seen
here unraveling in expression (10).

n =
n2

R

∫
Σ

4ε2 + γξ + β

(n− 24)
dΓ (10)
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9 Verifying the Output Source of the Input

Connections

1.3 Theorem: We can clearly see that n is conjoining with β to increase the

output sources speed and fluency of R to indeed prove that: Γ + [β]

(
Σ(n)
R2

)
input source measures the effectiveness of it’s stable output source: n2

R and to
prove its original network connection Γ2(R)β. This can be seen in expression
(10) and expression (11).

n2

R
+

{∫
Σ

Γ · (Rε − 2ξ(β+γ))
†

n42

}
' R
n

(Γ(2−γ) · 42) + β (11)

Now that we have the integration of our output connections reaching fluent
and efficient stability for R, we can see that our first output source has a
precise reading ‡ with the help of the accurate output readings from β’s sec-
ond output source. Koshlyakov (1964), made this methodology possible by
giving a clear and thorough understanding of second order partial differen-
tial equations and now we can formulate a better understanding of how the
Quantum states work [9].

n ≈
∫

Σ

R2

n
+ (Γ2 −4)βdΓ (12)

10 Stable Output Source of the Input

Connections has been Achieved

We can now clearly see that after much stability balancing between both
output connections 4 with much respect to n, Γ has found the best stable
output connection readings for R and with β’s output source connections:
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Γ + [β]

(
Σ(n)
R2

)
with respect to Γ2(R)β as seen in expression (12).

∫
Σ

R2

n
+ (Γ2 −4)β ≡ Γ + [β]

(
Σ(n)

R2

)
≡ Γ2(R)β (13)

1.4 Theorem: Since n has shown the effectiveness of both R and β, we
can clearly see the accuracy between our input and output sources that are
feeding off of the connections simultaneously and with the fluency of both
output readings that lead back to our main tensor connection Γ2(R)β without
any latency as seen above in expression (13). This is our final answer.

11 Conclusion

It was Gregorio Ricci who first invented tensor calculus and Pierre de Fermat
who invented number theory. But it became very interesting when Quantum
Mechanics grabbed a chair to sit next to his friends, “Tensor Calculus and
Number Theory.” Now we came up with new mathematical expressions and
notations. It’s The very same reason why I was inspired to do this paper
and especially the mathematical expressions of (1) – (13) in which I used
some tensor product applications but mostly number theory to prove the
connections of both input and output scenarios. I made sure my methods
of explanations are as clear and concise as possible for the reader. I would
also like to mention on a side note that I’m hoping this manuscript will be
possibly used in other mathematical applications in the near future. To back
up my hopefulness, the reason being is because you can yield results with
my formula using basic mathematics. Not just for finding the input and
output sources of a quantum network. Here’s a great example of what I’m
talking about. My equation formula: Γ2(R)β used as a basic mathematical
operation would look like this: 72(3)4 = 7(6)4 = (117649)4 = 470, 596 - This
is our answer. It can also be written as: (72(3)) · 4 = 470, 596 - to make the
process quicker but still yielding the same answer as the first formula that
I presented. I firmly believe that this application of mathematical physics
will open up new understandings of the quantum world for physicists and
mathematicians in the near future. I take pleasure in the creation of this
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paper. Thank you for reading.
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