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"Entia non sunt multiplicanda praeter necessitatem" (Ockam,
W.)

�There are just a tiny number of �rst rate mathematicians. Luck-
ily, an army can't move forward if it consists only of generals. It
takes a broad spectrum of mathematicians with all kinds of di�erent
talents to propel the subject forward. Also, the most critical need in
mathematics is for truly creative ideas - and these can come from
anyone." (Casazza, P.G.)

Abstract

In this paper it is proved Fermat's Last Theorem using only elementary

methods.
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1 Introduction

Fermat's Last Theorem can be stated as follows:

Fermat's Last Theorem. The equation

An +Bn = Cn

Where A,B,C, n are positive integer numbers, has a solution only for n ≤ 2.

In this paper, we approach a short and elementary proof through the following
steps:

• We start considering that An + Bn = Cn has some solution for n > 2
being n some odd prime number.

• Using elementary Lemmas, we �nd necessary conditions for the equation
to be true.

• We reach contradictions through some elementary methods, proving that
one necessary condition can not exist for n > 2 being n some odd prime
number. As a result, we prove Fermat's Last Theorem for n > 2 being n
some odd prime number.

• We generalize this result to every n > 2, proving Fermat's Last Theorem
for every n > 2.
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2 Proof

2.1 Basic Lemmas and corolaries

• Lemma 1. If An +Bn = Cn then C < A+B < 2C

Proof.

If A + B = C, then Cn = (A+B)
n
. As by Binomial Expansion (A+B)

n
>

An +Bn, then An +Bn = Cn only holds if A+B > C.

If A > C or B > C, then An > Cn or Bn > Cn. Thus, An + Bn = Cn only
holds if A < C and B < C, and thus A+B < 2C.

Subsequently, An +Bn = Cn only holds if C < A+B < 2C.

• Corollary 1. C - A+B and A+B - C

As by Lemma 1 we have that C < A+B < 2C, then it follows inmediately that
C - A+B and A+B - C.

• Lemma 2. A+B | A2n+1 +B2n+1.

Proof.

To prove that A+B | A2n+1 +B2n+1, we apply the induction method.

For n = 1,

A2n+1 +B2n+1 = A3 +B3

A3 +B3 = (A+B)(AB + (B −A)2)

A+B | A3 +B3

We assume as induction hypothesis that A+B | A2n+1 +B2n+1, and we prove
that the Lemma holds also for n+ 1.

For n+ 1,

A2(n+1)+1 +B2(n+1)+1 = A2(A2n+1) +B2(B2n+1) =

= A2(A2n+1) + (B2 +A2 −A2)(B2n+1) =

= A2(A2n+1 +B2n+1) + (B2 −A2)(B2n+1) =

= A2(A2n+1 +B2n+1) + (B −A)(B +A)(B2n+1)
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The �rst additive part A2(A2n+1 + B2n+1) is divisible by A + B if we apply
the inductive Hypothesis A+B | A2n+1 +B2n+1, and the second additive part
(B − A)(B + A)(B2n+1) is a product of factors, one of which is A+B, so it is
also divisible by A+B.

Therefore, the entire expression is divisible by A + B, and it is proved that
A + B | A2n+1 + B2n+1 for the case n + 1 if it is true for the case n. As it is
true for the case n = 1, it is true for all the natural numbers.

2.2 Main proof

Applying Lemma 2, we get that, if n is some odd prime number, A+B | An+Bn.

AsA+B | An+Bn, then we can state that

An +Bn = (A+B)R

Where R is the result from dividing An +Bn by A+B.

IfAn+Bn = Cn, then Cn | An+Bn, and thus

Cn | (A+B)R

As C - A+B and A+B - C, we have two di�erent cases:

• gcd (A+B, C) = 1

• gcd (A+B, C) = d

In the �rst case, as A + B and C have no common factor except of 1, we get
that

Cn | R

Thus,

R = CnS

Where S is the result from dividing R by Cn.

Therefore, substituting,

An +Bn = (A+B)CnS

As (A+B)CnS > Cn unless A + B = 1 and S = 1, which is impossible if A
and B are positive integer numbers, the equation An +Bn = Cn cannot hold if
gcd (A+B, C) = 1.
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In the second case, as A + B and C have some greatest common divisor d, we
can establish that

A+B = dy

C = dx

As gcd (A+B, C) = d, then d | A+B, but dm - A+B, where m is any number
such that m > 1. As gcd (A+B, C) = d, then x - A+B.

Therefore, substituting, we get necessarily that

dn−1xn | R

Thus,

R = dn−1xnS

Substituting, we get that

An +Bn = dydn−1xnS

An +Bn = CnyS

As CnyS > Cn unless y = 1 and S = 1, which would imply that A + B | C
and therefore would contradict Corollary 1, the equation An+Bn = Cn cannot
hold if gcd (A+B, C) = d.

Thus, it is proved false that An + Bn = Cn has some solution for n > 2 being
n some odd prime number.

2.3 Conclusion
By expansion and considering the Fundamental Theorem of Arithmetic, it is
easy to prove that Fermat's Last Theorem is true for every integer which ex-
ponent is not a power of 2. If the exponent n is some composite number n =
p1p2...pk with some odd prime number p > 2, the equation An+Bn = Cn can be
reexpresed with another equivalent equation in which the exponent is any prime
number composing the exponent n, as it follows:

An +Bn = Cn =

= Ap1p2...pk +Bp1p2...pk = Cp1p2...pk =

= (Ap2...pk)
p1 + (Bp2...pk)

p1 = (Cp2...pk)
p1 =

= (Ap1...pk)
p2 + (Bp1...pk)

p2 = (Cp1...pk)
p2 = ...

= (Ap1p2...)
pk + (Bp1p2...)

pk = (Cp1p2...)
pk
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As for exponents being a power of 2, it was proved by Fermat himself (using
elementary methods) that An+Bn = Cn has no solution for n = 4 . As the equa-
tion A2n+B2n = C2n for n ≥ 3 can be reexpresed with another equivalent equa-
tion in which the exponent is 4, as it follows:

A2n +B2n = C2n =

=
(
A2n−2

)4

+
(
B2n−2

)4

=
(
C2n−2

)4

Then we conclude the proof of Fermat's Last Theorem, q.e.d., D.G.
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