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81. Introduction

Connected almost contact metric manifold was classified by S.Tanno [13], as those automor-

phism group has maximum dimension. He has given following classifications:

(i) Homogeneous normal contact Riemannian manifolds with constant ¢ holomorphic
sectional curvature if the sectional curvature of the plane section containing &, say K (X, &) > 0;

(i1) Global Riemannian product of a line (or a circle) and a Kaehlerian manifold with
constant holomorphic sectional curvature, if K(X,¢) = 0;

(#4i) A warped product space RX;C,, if K(X,&) < 0.

Manifold of class (¢) has Sasakian structure. The manifold of class (i7) are characterized
by a tensorial relation admitting a cosymplectic structure. The manifold of class (iii) are
characterized by some tensorial equations, attaining a Kenmotsu structure.

An almost paracontact structure (¢, &,7n) satisfying ¢ = I —n ® € and n(§) = 1 on a
differentiable manifold was introduced by Sato [11] in 1976. After him Takahashi [14] in 1969,
gave the notion of almost contact manifold equipped with an associated pseudo-Riemannian
metric. Later on, motivated by these circumstances, M.M.Tripathi et.al.([15]) has drawn a
relation between a semi-Riemannian metric ( not necessarily Lorentzian ) and an almost para-

contact structure, and he named this indefinite almost paracontact metric structure an (e)-
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almost paracontact structure, where the structure vector field £ will be spacelike or timelike
according as € = 1 or e = —1. Authors have discussed (€)- almost paracontact manifolds and
in particular (€)- Sasakian manifolds in([15]).

On the other hand, the study of slant submanifolds in complex spaces was initiated by
B.Y.Chen as a natural generalization of both holomorphic and totally real submanifolds in
([4]). After him, A.Lotta in 1996 extended the notion to the setting of almost contact met-
ric manifolds [8]. Further modifications regarding semislant submanifolds were introduced by
N.Papaghiuc [10]. These submanifolds are a generalized version of CR-submanifolds. After him,
J.L.Cabrerizo et.al. ([2]) extended the study of semislant submanifolds of Kaehler manifold to
the setting of Sasakian manifolds. The idea of hemislant submanifold was introduced by Carri-
azo as a particular class of bislant submanifolds, and he called them antislant submanifolds in
[3]. Recently, B.Sahin extended the study of pseudo-slant submanifolds in Kaehler setting for
their warped product. Totally umbilical proper slant submanifold of a Kaehler manifold has

also been discussed in [12].

This paper contains the analysis about slant and pseudo-slant submanifolds of an (€)-para
Sasakian manifold. Section (1) is introductory. Section (2) gives us a view of (¢)-para Sasakian
manifold. In section (3) we have obtained some results on a totally umbilical proper slant
submanifold M of an (e)-para Sasakian manifold. Finally, in section (4) we have derived some
conditions for the integrability of the distributions on the hemislant submanifolds of an (¢)-para

Sasakian manifold.

§82. Preliminaries

Let M be an n-dimensional almost paracontact manifold [11] endowed with an almost para-
contact structure (¢, &, n) consisting of a tensor field ¢ of type (1, 1), a structure vector field &
and 1-form 7 satisfying:

¢*=1-n®¢, (2.1)
n(§) =1, (2.2)
¢(§) =0 (2.3)
and
no¢=0 (2.4)

for any vector field X,Y € M. A semi-Riemannian metric [9] on a manifold M, is a non-
degenerate symmetric tensor field g of type (0,2). If this metric is of index 1 then it is called
Lorentzian metric ([1]). Let g be semi-Riemannian metric with index 1 in an n-dimensional

almost paracontact manifold M such that,
9(¢X,9Y) = g(X,Y) — en(X)n(Y), (2.5)

where e= +1 or —1. Then M is called an almost paracontact metric manifold associated with

an (e)-almost paracontact metric structure (¢, &,n,g,€)([?]). In case, if index (g) = 1 then an
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(e)-almost paracontact metric manifold is defined as a Lorentzian paracontact manifold and
if the metric is positive definite, then an (e)-almost paracontact metric manifold is the usual
almost paracontact metric manifold [?].

The condition (2.5) is equivalent to

9(X,0Y) = g(6X,Y) (2.6)

equipped with
9(X,§) = en(X). (2.7)

From (2.7), it can be easily observed that

9(&,¢) =€, (2.8)

i.e. structure vector field £ is never lightlike. We define
O(X,Y) = g(X,6Y) (2.9)

and we can obtain

d(X,£)=0. (2.10)
From (2.9), we can also calculate
(Vx®)(Y,2) = g(Vx9)(V, Z) = (Vx®)(Z,Y). (2.11)
An (e)-almost paracontact metric manifold M satisfying
20(X,Y) = (Vxn)(Y) + (Vyn)(X) (2.12)

¥ X,Y € TM, then M is called an (e)-paracontact metric manifold ([15]).

An (€)-almost paracontact metric structure (¢, &, 7, g, €) is called an (€)-S-paracontact met-

ric structure if

Vxé=epX (2.13)

for V X € TM. A manifold endowed with an (€)-S-paracontact metric structure is called

an (€)-S-paracontact metric manifold. Equation (2.13) can be written as
B(X,Y) = g(6X,Y) = eg(Vx&,Y) = (Vxm)(¥) (2.14)

for V X,V € TM.

An (e)-almost paracontact metric structure is called an (¢)-para Sasakian structure if the

following relation holds

(Vxo)(Y) = —g(¢X,9Y)E — en(Y)¢* X, (2.15)

where V is the Levi-Civita connection with respect to g on M. A manifold equipped with an
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(e)-para Sasakian structure is called an (e)-para Sasakian manifold.
From the definition of contact CR-submanifolds of an (e)-paracontact Sasakian manifold

we have

Definition 2.1([7]) An n-dimensional Riemannian submanifold M of an (€)-para Sasakian
manifold M is called a contact CR-submanifold if

(1) & is tangent to M ;

(79) there exists on M a differentiable distribution D : x — D, C T,(M), such that D,
is invariant under ¢; i.e., ¢D, C D,, for each x € M and the orthogonal complementary
distribution D* : & — DX C T, (M) of the distribution D on M is totally real; i.e., D+ C
T-(M), where Tp(M) and T;(M) are the tangent space and the normal space of M at x.
D (resp.Dt) is the horizontal (resp. wertical) distribution. The contact CR-submanifold
of an (€)-para Sasakian manifold is called £-horizontal (resp. &-vertical) if £, € D, (resp.
&, € D) for each x € M.

Let TM and T+M be the Lie algebras of vector fields tangential to M and normal to
M respectively. h and A denote the second fundamental form and the shape operator of the
immersion of M into M respectively. If V is the induced connection on M, the Gauss and

Weingarten formulae of M into M are characterized by
VxY = VxY +h(X,Y), (2.16)

VxV =—-AyX + VN (2.17)

for any X,Y in TM and N in T+M. V+ is the connection on normal bundle and Ay is the

Weingarten endomorphism associated with N by
g(Av X)Y) = g(h(X,Y), V). (2.18)
For any x € M and X € T, M we decompose it as
¢X =TX + NX, (2.19)

where TX € T,M and NX € T;-M.
Similarly for V € T;-M we know

¢V =tV +nV, (2.20)

where tV (resp.nV) is vertical (resp. normal) component of ¢V'.
Now, for any X,Y € T M, comparing the tangential and normal parts of (@X@Y by PxY

and QxY respectively. After having some brief calculation, we obtain
PxY = (VxT)Y — Axy X — th(X,Y), (2.21)

QyY = (VxN)Y + h(X,TY) — nh(X,Y) (2.22)
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for any X, Y € TM.
Again for any V € T+M, denoting tangential and normal parts of (@X@V by PxV and
QxV respectively, we have

PxV = (@Xt)V —Av X+ TA\/X, (223)

QyV = (Vxn)V + h(tV,X) + NAy X, (2.24)

where the covariant derivatives of T', N,t and n are given by

(VxT)Y = VxTY —TVxY, (2.25)

(VxN)Y = VxNY — NVyY, (2.26)

(Vxt)V = VxtV —tV£V, (2.27)

(Vxn)V =VxnV —nVxV V¥V XY € TM,V € T+ M. (2.28)

A submanifold M of an almost contact metric manifold M is called totally umbilical if
hMX,Y)=g(X,Y)H (2.29)

for any X,Y € I'(T'M), where H is the mean curvature. A submanifold M is said to be totally
geodesic if h(X,Y) =0 for each X,Y € I'(T'M) and is minimal if H =0 on M.

§3. Slant Submanifolds

The slant submanifold of a para contact Lorentzian manifold were first defined by [5]. Hereafter,
for a submanifold M of an almost contact manifold, authors in [6] assumed that the structure
vector field ¢ is tangential to the submanifold M, whence the tangent bundle T'M can be

decomposed as

(@)TM =DEH < ¢ >,

where the orthogonal complementary distribution D of < £ > is known as the slant distribution
on M and < € > is the 1-dimensional distribution on M spanned by the structure vector field
&, and they also assumed that (X, X) >0 VX € TM\&. Let M be an immersed submanifold
of M. For any ¢ € M and X € T, M, if the vectors X and £ are linearly independent, then
the angle (X)) € [0,7/2] between ¢X and T, M is well defined, if (X ) does not depend on the
choice of z € M and X € T, M, then M is slant in M. The constant angle (X) is then called
the slant angle of M in M by [5] and which in short we denote by Sla(M). If j is ¢-invariant
of the normal bundle T+M, then

(WT*M =FTM® < > .

Defining the endomorphism P : TM — TM, whose square P2 will be denoted by Q. Then
the tensor fields on M of type (1, 1) determined by these endomorphism will be denoted by the
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same letters, respectively P and Q.

It is proved the following theorem in [6]:

For a proper slant submanifold M of an (€)-para Sasakian manifold M with slant angle 6,
then

QX = A(X —9(X)e). (3.1)

From this theorem we can state our next theorem,

Theorem 3.1 Let M be a submanifold of an (€)-para Sasakian manifold M such that € € TM.
Then, M is slant iff there exists a constant X € [0,1] such that

T2 = MI - n(X)¢). (3.2)

Furthermore, in such case, if 0 is the slant angle of M, then \ = cos*f. Hence for a slant

mamnifold we have

9(TX,TX) = cos*0(g(X,Y) — en(X)n(Y)), (3.3)
g(NX,NY) = sin*0(g(X,Y) — en(X)n(Y)) (3.4)

forY X, Y e TM.
Proof Follows from [5]. O

Assuming M to be totally umbilical proper slant submanifold of an (¢)-para Sasakian

manifold, we can obtain the following theorem.

Theorem 3.2 Let M be a totally umbilical proper slant submanifold of an (€)-paracontact
Sasakian manifold M, then for any X € TM following conditions are equivalent:

(i) H e

(i) g(Vrx&, X) = e[| X[ = n*(X)].

Proof For any X € TM we know h(X,TX) = g(X,TX)H = 0. Then from (2.16) and
(2.17) and the structure equation of (¢)-para Sasakian manifold for any vector field X € T M,
we calculate

0 = ¢(VxX +h(X, X)) - VxTX + AyxX — VxNX (3.5)
—9(6X, 6X)E — en(X)d* X.

After using (2.19), and on comparing the tangential component we obtain

0 = ZTVxX —VxTX +th(X,X)+ Anx X — g(X, X)¢ (3.6)
+2en?(X)€ — en(X) X.

As M is totally umbilical submanifold then the term Ay x X becomes X g(H, NX), so using
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this fact above equation takes the form

0 = TVxX - VxTX +th(X,X)+ Xg(NX, H) + g(X, X)tH (3.7)
+9(X, X)¢ = 2en*(X)€ + en(X) X.

If H € p then from (3.6) we get
TVxX — VxTX = —||X[]*¢ + 2en(X)[2n(X)¢ — X]. (38)
Taking the inner product in (3.7) by £ we obtain
9(VxTX, &) =1*(X) — e | X||". (3.9)
Replacing X by T X, we derive
9(VrxT?X,€) = (TX) — || TX|I" (3.10)
Then from equation (3.3) and (3.4) we calculate
cos*0g(X, Vrx€) — cosIn(X)g(&, Vrx€) = —cos 0[e|| X||* — n*(X)]. (3.11)
Therefore we can conclude that
9(X, Vrx€) —n(X)g(&, Vrx&) = el | X|[* = n*(X). (3.12)

Now we know that g(&, &) = e. Taking the covariant derivative of this equation with respect
to TX for any X € TM, we obtain

which implies g(Vrx&,€) = 0. Hence (3.8) becomes
9(X, Vrx§) = e[ X||* = (X). (3.14)

This proves part (i) of the theorem. If (3.9) holds then equation (3.6) implies H € u. This
proves theorem (3.2).
Now if €||X||* — n2(X) = 0, then from (3.9), we conclude

9(X,Vrx§) =0. (3.15)
Replacing X by TX we have by using (3.3), we get

g(TX7 szXg) = g(vcosze(an(X)E)ga TX) =0. (316)
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Then the above equation becomes
c0s*0g(Vx &, TX) + cos*0n(X)g(Ve&, TX) = 0. (3.17)
From the structure equation (2.4) we have V¢£ = 0. Thus we can write
c0s*0g(Vx&,TX) = 0. (3.18)

Thus from equation (3.10) we get either M is an anti-invariant submanifold or Vx& = 0
i.e. ¢ is a Killing vector field on M or M is trivial. If £ is not Killing then we can take at least
two linearly independent vectors X and T'X to span Dy i.e. the dimM > 3.

From above discussion we can conclude the following theorem.

Theorem 3.3 Let M be a totally umbilical slant submanifold of an e-para Sasakian manifold
M such that || X||> = n2(X) on M then one of the following statements is true:

(i) HeT(w);
(ii) M s an anti-invariant submanifold;
(#3¢) If M is a proper slant submanifold then dimM > 3;
(tv) M s trivial;
(

v) & is a Killing vector field on M.

Next we prove

Theorem 3.4 A totally umbilical proper slant submanifold M of an (€)-para Sasakian manifold
M s totally geodesic if VxH € T'(u) for any X € TM.

Proof As M is an (e)-paracontact Sasakian manifold we have
(Vx@)Y = Vx¢Y — ¢VxY. (3.19)

From the fact that ¢Y = TY + NY and M is an (e)-paracontact Sasakian manifold we

infer

VxTY + VxNY = TVxY + NVxY +¢h(X,Y) — g(¢X,¢Y)¢ (3.20)
—en(Y)¢* X.

Using (2.25), (2.26) and (2.29) we obtain

VxTY +h(X,TY) — AxyX + VxNY =TVxY + NVxY (3.21)
+9(X,Y)oH — g(¢X, 9Y )¢ — en(Y)d* X.

Taking inner product with ¢H and using the fact that H € I'(u), from (2.5) and (2.29) we
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get

9(X,TY)g(H,6H) + g(VxNY,0H) = g¢(X,Y)||H| (3.22)
—g(¢X, 9Y)g(¢H, €) — en(Y)g(¢> X, ¢H).

Now we consider
VxoH = ¢VxH + (Vxd)H. (3.23)

Using the covariant derivative of V

~AygX +VxoH = -TApX — NAgX +tVyH (3.24)
+nVx H — g(¢X, $H)E — en(H)¢* X,

Taking inner product with NY, for any Y € I'(T'M) and as the submanifold considered is

always tangent to & we obtain
9(Vx¢H, NY) = —g(NAp X, NY) + g(nVx H,NY) — en(H)g(¢*X, NY). (3.25)
Since nV% H € T'(1), then by (3.5) the above equation takes the form

g(VxoH,NY) = —sin’ [g(AgX,Y) —en(AuX)n(Y)] (3.26)
—en(H)g(6* X, NY).

Using (2.17), (2.18) and (2.29) and having some brief calculations we obtain

g(VxoH,NY) = —sin®0[g(X,Y) —en(X)n(Y)] || H| (3.27)
—en(H)g(¢* X, NY).

The above equation can be written as

g(VxNY,0H) = sin’0[g(X,Y) —en(X)n(Y)] ||H| (3.28)
+en(H)g(¢” X, NY).

Again using the fact that H € T'(z) and by Weingarten formula we have

g(VXNY,¢H) = sin®0[g(X,Y) —en(X)n(Y)]|| H| (3.29)
+en(H)g(¢*X, NY).

From (3.14) and (3.21) we get

sin?0g(X,Y) — en(X)n(V]||H| + en(H)g(@*X.NY) = g(X,V)|H®  (3.30)
—en(Y)g(¢*> X, ¢H).

The equation (3.22) has a solution if H = 0. Hence M is totally geodesic in M. m
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84. Hemislant Submanifolds

A.Carriazo [3] introduced hemi-slant submanifolds as a special case of bislant submanifolds and
he called them pseudo-slant submanifolds. This section deals with a special case of hemislant

submanifolds which are totally umbilical.

Definition 4.1([5,16]) A submanifold M of an (e)-para Sasakian manifold M is said to be
a hemislant submanifold if there exist two orthogonal complementary distributions D1 and Do

satisfying the following properties:

(i) TM=D1 P D P < & >;
(73) Dy is a slant distribution with slant angle 0 # 7/2;
(iii) Do is totally real i.e., Dy C T+M.

A hemislant submanifold is called proper hemislant submanifold if 6§ # 0, 5. Further if
i is ¢-invariant subspace of the normal bundle T+, then for pseudo-slant submanifold, the

normal bundle T+ M can be decomposed as
T*M =NDi@PND P <>

In this section we will derive some of the integrability conditions of the involved distribu-

tions of a hemislant submanifold, which play a crucial role from a geometrical point of view.

Theorem 4.1 Let M be a hemislant submanifold of an (¢)-paracontact Sasakian manifold M
then g([X,Y],€) =0 for any X,Y € D1 @ Ds.

Proof We know
9(X,0Y) =g(Y,0X), Vx&=epX. (4.1)

Taking inner product with ¥ we obtain

9(Vx&,Y) = eg(9X,Y). (4.2)
We can write

9(VxY,§) = —eg(¢X,Y). (4.3)
Interchanging X, Y we get

9(Vy X, &) = —eg(¢Y, X). (4.4)

Subtracting equations (4.3) and (4.4) and using (4.1) we have
9([X,Y],§) = 0. (4.5)

This completes the proof. O

From Theorem (4.1) we can deduce the following corollaries.
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Corollary 4.1 The distribution D1 @ Da on a hemislant submanifold of an (€)-para Sasakian

manifold M is integrable.

Corollary 4.2 The distribution D1 and Dy on a hemislant submanifold of an (€)-para Sasakian

manifold M is integrable.

Proposition 4.1 Let M be a hemislant submanifold of an (€)-para Sasakian manifold M, then

for any Z, W € Dy, the anti-invariant distribution Do® < & > is integrable iff

ApzW — Ayw Z + V5 ¢oW — Vi ¢ Z — en(W)Z + en(Z)W = 0.

Proof For any Z,W € Dy @ ¢ we know
VoW = (V29W) + VW = (VzW) + ¢V W + ¢h(Z, W).
Using (2.16) and (2.17) we have
—Agw Z + VoW = (Vz0W) + ¢V 2 W = (Vz¢W) + ¢V 2 W + ¢h(Z, W).

Interchanging Z and W, we obtain

—AgzW + ViydZ = (VwoZ) + ¢VwZ = (VwoZ) + ¢Vw Z + oh(W, Z).

Then from (4.7) and (4.8) we calculate
ApzW — Asw Z +V36W = ViyoZ = (Vz6W) — (VwoZ) + 62, W).
From (2.15) we obtain
AgzW — Ayw Z + VoW — Vi ¢ Z = ¢[Z, W] — en(W)$*Z + en(Z) > W.
Taking inner product with ¢X, for any X € D; we obtain

9(ApzW — Agw Z + V5 ¢W — Vi ¢ Z, ¢ X)

Thus from (2.5) the above equation takes the form

9(B[Z, W], 0X) = g(AgzW — AywZ + V3¢W — VipoZ —en(W)Z
+en(Z)W, ¢ X).

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

The distribution Dy @ < £ > is integrable iff the right hand side of the above equation is

Zero.
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Proposition 4.2 Let M be a hemislant submanifold of an (e)-para Sasakian manifold M, then
the anti-invariant distribution D1 @ < & > is integrable iff
(Y, TX)+VyNX — h(X,TY) - VxNY €

forall XY e D1 P < £ >.

Proof For any X,Y € D; @&, we have

X, Y] = ¢[VyX —VxY]=VyTX +VyNX — VxTY
~VxNY —en(Y)$?*X + en(X)o?Y. (4.13)
X, Y] = VyTX+h(Y,TX)— AxnxY + VENX — VxTY — h(X,TY)

+ ANy X — VENY — en(Y)¢? X + en(X)p?Y. (4.14)

Taking the product with ¢Z, for any Z € Dy, we obtain on solving

99X, Y],02) = g(h(Y,TX),02) +g(VyNX,0Z) - g(h(X,TY),$Z)
~9(VxNY,6Z) = en(Y)g(X —n(X)¢, 62)
+en(Y)g(Y —n(Y)E, ¢2). (4.15)
9([X, Y], Z) = g(h(Y,TX) + VENX — h(X,TY) — VENY, 62). (4.16)
Thus our assertion follows from equation (4.16). O

Theorem 4.2 Let M be a hemislant submanifold of an (€)-para Sasakian manifold M, then at

least one of the following statements is true:

(i) dimDy=1;
(ii) H € p;
(7i1) M is proper slant.
Proof For any Z,W € T M, we have

(Vz2oW) + (Vw¢Z) = —29(6Z, 6W)§ — en(Z)p*W + en(W)¢* Z. (4.17)
If we assume the vector fields Z, W € Ds, then the above equation reduces to

(V20)W + (V) Z +29(6Z, dW)E = 0. (4.18)

In particular if we take the above equation for one vector Z € Ds, i.e

(V29)Z + 9(6Z,$2)& = 0. (4.19)
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Again using (2.6) we have
(V29)Z +112][*¢ = 0. (4.20)

Therefore the tangential and normal components of the above equation are Pz Z = || Z]|*¢
and Q;Z = 0 respectively. From (2.21) and tangential component of (4.20) we get
(V2T)Z = =TV 32 = AnzZ +th(Z,Z) — || Z|*¢. (4.21)
Taking the product with W € Dq, we get from (2.18)

9g(TNzZ, W) = g(h(Z,W),NZ) + g(th(Z,Z),W). (4.22)

Using the fact that M is totally umbilical submanifold and for any W &€ Da, then the

above equation takes the form
9(Z,W)g(H,NZ) + || Z|*g(tH,W) = —g(TV 22, W) = 0. (4.23)

Thus the equation (4.10) has a solution if either dimDy = 1 or H € p or Dy = 0, i.e. M is
proper slant. O

From the above conclusions we can obtain the following theorem

Theorem 4.3 Let M be a totally umbilical hemislant submanifold of an (€)-para Sasakian

manifold M. Then at least one of the following statements is true:

(1) M is an anti-invariant submanifold;
(i) g(Vrxé, X) = e[| X|* = n*(X)];
(#i1) M 1is totally geodesic submanifold;
(iv) dim Dy=1;
(v) M is a proper slant submanifold.

Proof If H # 0 then from equation (3.19), we can conclude that the slant distribution
Dy, =0 i.e. M is anti-invariant submanifold which is case (¢). If Dy # 0 and H € p, then
from theorem (3.2) we get (i7) for any X € TM. Again if H € p then by theorem (3.4), M is
totally geodesic. Lastly if H ¢ pu, then the equation (4.23) has a solution if either dimDy = 1
or Doy = 0. Hence the theorem follows. O

Next we have the following theorem.
Theorem 4.4 Let M be a submanifold of an almost contact metric manifold M, such that
Ee€TM. Then M is a pseudo-slant submanifold iff there exists a constant A € (0, 1] such that

(i) D={X € TM|T?X = —\X} is a distribution on M;
(it) For case X € TM, orthogonal to D, TX = 0.

Furthermore in this case A = cos?6, where § denotes the slant angle of D.

Proof: Follows from [11]. O
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Again we prove

Theorem 4.5 Let M be a hemi-slant submanifold of an (e)-para Sasakian manifold M. Then

VQ =0 iff M is an anti-invariant submanifold.
Proof Considering the distribution Dy @ < £ >, from (4.4) we can write
T?X = \(X —n(X)¢). (4.24)
Denoting the slant angle of M by 6. Then, replacing X by VxY, we obtain from (4.24)
QVxY = cos?0[VxY —n(VxY)E]. (4.25)
for any X,Y € Do @ < € >. After taking the covariant derivative of equation (4.24) we have
VxQY = cos’0[VxY —n(VxY)E) = g(Y, Vx&)E = n(Y)VxE]. (4.26)
Adding equations (4.25) and (4.26) we obtain

(VxQ)Y = cos?0[VxY —n(VxY)E)+ g(Y,eTX)E +n(Y)eT X]
—c0s*0V xY + cos?On(VxY )¢ (4.27)

for any X, Y € Do P < € >.
Here we observe that g(Y,TX)é +TXn(Y) # 0. Therefore (VxQ) = 0 iff § = 5 holds in
Dy < £ >. Again D; is anti-invariant by definition. Thus, the theorem follows. |

85. An Example

Let us give an example of a three dimensional submanifold of (e)-paracontact Sasakian manifold
which is pseudo slant so as to verify the above results. Let R® be a 3-dimensional Euclidean

space with a rectangular coordinates (z,vy, z), we put

n=dy &= (5.1)

We define the (1, 1) tensor ¢ as:

0 0 0 0 0
¢(%) =5 ¢(£) = 5 ¢(8—y) =0 (5.2)

z

and we define the Riemannian metric g as



32 Barnali Laha and Arindam Bhattacharyya

Hence we can easily see that (¢,&,n,g) is an (€)-paracontact Sasakian manifold on R?.

The vector fields e; = %, eg = 8%, e3 = %, forms a frame of T M. We have
pe1 =e3, ¢ea =0, ges =e;.

Let D1 =< es >, Dy =< e; > and £ =< e3 >. We know

9(¢X,Y)

COS 4(¢X7 Y) = W

Suppose X € D; and Y € TM. Then we can write X = Kes where K is a scalar and

Y = re; + ses + tes where r, s,t are scalars. Notice that
g(0X,Y) = g(pea, re; + ses + tez) = rg(0,e1) + sg(0, e2) + tg(0,e3) = 0.

Hence cos/(¢X,Y’) = 0 implies § = 7 Hence the distribution D; is anti-invariant.
Again let us assume U € Dy and V € TM. Then we can write U = ae, where «a is a scalar

and V = kej + les + mes where k, [, m are scalars. Using the formula above we get that
g(oU, V) = g(é(aer), ker + leg + mes) = am.

Hence cosZ(¢U,V)=constant. So we have obtained that the distribution Dy is slant.
In this case, the distribution D; is anti-invariant while D5 is slant. Hence the submanifold
under consideration is hemislant.
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