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Abstract: We have considered the S—change of Finsler metric L given by L = f(L, 3)
where f is any positively homogeneous function of degree one in L and 3. Here 8 = b;(z,y)y’,
in which b; are components of a covariant h-vector in Finsler space F" with metric L. We
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81. Introduction

Let (M™, L) be an n-dimensional Finsler space on a differentiable manifold M™, equipped with
the fundamental function L(z,y). In 1971, Matsumoto [2] introduced the transformation of

Finsler metric given by

L(z,y) = L(z,y) + B(z,y), (1.1)
I (z,y) = L*(2,y) + B(z, y), (1.2)

where 3(z,y) = bi(x)y® is a one-form on M™. He has proved the following.

Theorem A. Let (M", L) be a locally Minkowskian n-space obtained from a locally Minkowskian
n-space (M™, L) by the change (1.1). If the tangent Riemannian n-space (M2, g,) to (M™, L) is

x

of imbedding class v, then the tangent Riemannian n-space (M",g,) to (M™, L) is of imbedding

x

class at most r + 2.

Theorem B. Let (M™, L) be a locally Minkowskian n-space obtained from a locally Minkowskian
n-space (M™, L) by the change (1.2). If the tangent Riemannian n-space (M2, g;) to (M™, L) is

of imbedding class 7, then the tangent Riemannian n-space (M?,g,) to (M™, L) is of imbedding
class at most r + 1.

Theorem B is included in theorem A due to the phrase “at most”.

In [6] Singh, Prasad and Kumari Bindu have proved that the theorem A is valid for Kropina
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change of Finsler metric given by

2 X
e = 558

In [3], Prasad, Shukla and Pandey have proved that the theorem A is also valid for expo-

nential change of Finsler metric given by
L(z,y) = LeP/L.

Recently Prasad and Kumari Bindu [5] have proved that the theorem A is valid for
[B—change [7] given by
L(z,y) = f(L. ),

where f is any positively homogeneous function of degree one in L, § and § is one-form.

In all these works it has been assumed that b;(z) in [ is a function of positional coordinate
only.

The concept of h—vector has been introduced by H.Izumi. The covariant vector field

b,
OyJ

bi(z,y) is said to be h—vector if is proportional to angular metric tensor.

In 1990, Prasad, Shukla and Singh [4] have proved that the theorem A is valid for the

transformation (1.1) in which b; in 3 is h—vector.

All the above S—changes of Finsler metric encourage the authors to check whether the

theorem A is valid for any change of Finsler metric by h—vector.

In this paper we have proved that the theorem A is valid for the —change of Finsler metric
given by
L(z,y) = f(L, B), (1.3)

where f is positively homogeneous function of degree one in L, 3 and
Blx,y) = bi(z,y)y". (1.4)
Here b;(x,y) are components of a covariant h—vector satisfying

Ob;
Oyl

= phij, (1.5)

where p is any scalar function of z,y and h;; are components of angular metric tensor. The
homogeneity of f gives

Lfv+Bf2= 1, (1.6)
where the subscripts 1 and 2 denote the partial derivatives with respect to L and 3 respectively.

Differentiating (1.6) with respect to L and [ respectively, we get

Lfii+Bfi2=0 and Lfia+ Bf=0.
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Hence, we have

Ji Si2  fao

3 BL L?
which gives
fu=pw, fao=Lw, fi2=-FLuw, (1.7)

where Weierstrass function w is positively homogeneous function of degree —3 in L and (.
Therefore
Lwi + Pws + 3w = 0. (1.8)

Again wy and ws are positively homogeneous function of degree - 4 in L and 3, so
Lwyi + Bwio +4w1 =0 and  Lwsi + Bwas + 4wy = 0. (19)

Throughout the paper we frequently use equation (1.6) to (1.9) without quoting them.

82. An h—Vector

Let b;(x,y) be components of a covariant vector in the Finsler space (M™, L). It is called an
h—vector if there exists a scalar function p such that

Ob;
Oyl

= phij, (2.1)
where h;; are components of angular metric tensor given by

0?L

Differentiating (2.1) with respect to y*, we get

5]‘31@1)1‘ = (&Cp)hij + pL_l{L23i3j5kL + hijlk}a

o)

where 81 stands for P97

The skew-symmetric part of the above equation in j and k gives
(Okp + pL ) his — (Djp + pL™ ;) hi, = 0.
Contracting this equation by ¢/, we get
(n —2)[Okp + pL™ 1] = 0,

which for n > 2, gives
(91€p = —%lk, (2'2)

where we have used the fact that p is positively homogeneous function of degree —1 in 7, i.e.,
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o ==

We shall frequently use equation (2.2) without quoting it in the next article.

§3. Fundamental Quantities of (M", L)

To find the relation between fundamental quantities of (M™, L) and (M™, L), we use the fol-
lowing results
0iB=0b;, OL=1;, 0l =L "hy. (3.1)

The successive differentiation of (1.3) with respect to 3 and y7 give

l; = fili + fabs, (3.2)
ﬁ~—fph~—i—fL2 M
i = T hig wm;ms, (3.3)
where 5
p=Jf1+ Lfap, mi:bi_zli-

The quantities corresponding to (M", L) will be denoted by putting bar on the top of those

quantities.

From (3.2) and (3.3) we get the following relations between metric tensors of (M™, L) and
(M",L)

9y = %gij — L™ HB(f1f2 — fBLw) + Lpf fa}lil,
+H(fLPw+ f3)bibj + (f1f2 — fBLw)(Libs + 1;bs). (3.4)

The contravariant components of the metric tensor of (M", L) will be obtained from (3.4)
as follows: . )
. L .. Lv .. L*w_ . . L°u, . . .
g7 = —g" + ="V — —b"V — — (') +1’b"), 3.5
fp fpt fpt f2pt( ) (85)

where, we put b* = ¢g”b;, 1" = gl;, b*> = ¢g"/b;b; and

u = fifo— fBLw+ Lpf3,
v o= (fufe— fBLw)(fB+ AfL?) + Lofo{f(f + L?pf2)
+L2A(fF + fLPw)}

and
2

t = f1 + L3wA + Lfap, A:b2—ﬁ. (3.6)
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Putting ¢ = f1f2 — fBLw + Lp(f3 + fL*w), s = 3fow + fws, we find that

(a)  Oif = %li + fam;
(b) 0; f1 = —BLwm;
(c)  Oifo=LPwm;
(

(

d) dip = —Lw(B — pL*)m;

: 3
e) &w = —Twll “+ wom;
(f) 811)2 =-2C ; 4+ 2pm;

: 2
(8) %S ==2C—15(8—pL*)mi, (3.7)

(a) 51‘(1 =—-(B- PL2)5Lmi
(b) it = —2L%wC. ; + [L? Aws — 3(8 — pL?) Lw]m;
(C) (918 = —%li + (4f2w2 +3w?L? + fwzg)mi (3.8)

where “.” denotes the contraction with b%, viz. C_; = Cjx;b'bF.

Differentiating (3.4) with respect to y* and using (d that
mili = 0, mimi =N = mibi, hijmj = hub] = m;, (310)

D i i B
where m' = g"“m; =b" — 71"

To find 62,6 =G"C i we use (3.5), (3.9), (3.10) and get

c, = C: ——(hjpm" + R him; —m; —C;
ik e T 2fp( gkm’ 4 hymy 4 hpmy) + 2fpn”zjmkm 7 kN
LgA ; 2Lg+ L*As p
_% jETL — ijmkn s (311)

where n' = fL2wb® 4 ul’.

Corresponding to the vectors with components n’ and m!, we have the following:
Cijkmi = C,jk, Cijkni = fL2wC,j;€, mmi = szwA. (3.12)

To find the v-curvature tensor of (M™, L) with respect to Cartan’s connection, we use the

following:
Clhnk = Ciji,  hpht =hi, hyn' = fL%wm;. (3.13)

The v-curvature tensors ghijk of (M ",Z) is defined as
Shijk = CrrChjr — Ch;Cikr. (3.14)

From (3.9)—(3.14), we get the following relation between v-curvature tensors of (M™, L)
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and (M"™, L):
Shijk = %Shijk + dnjdir — dnidi; + Eni By — EnjEi, (3.15)
where
dij = PC.ij — Qhij + Rmim;, (3.16)
p—p (! i o R o L@wa—sp)
t ’ 202/ fpwt’ 2/ fwpt

202\/fw’  2p/Tw
84. Imbedding Class Numbers

The tangent vector space M) to M™ at every point x is considered as the Riemannian n-
space (M, g,;) with the Riemannian metric g, = g;;(z,y)dy’dy’. Then the components of the
Cartan’s tensor are the Christoffel symbols associated with g,:

A U . .
ik =39 "(Okgin + 0jgnk — Ongijn)-

Thus C’; . defines the components of the Riemannian connection on M’ and v-covariant deriva-
tive, say
: h

is the covariant derivative of covariant vector X; with respect to Riemannian connection C’; L on
M. Tt is observed that the v-curvature tensor Sp,j, of (M™, L) is the Riemannian Christoffel
curvature tensor of the Riemannian space (M", g,) at a point x. The space (M™, g,) equipped

with such a Riemannian connection is called the tangent Riemannian n-space [2].

It is well known [1] that any Riemannian n-space V" can be imbedded isometrically in a
Euclidean space of dimension w If n + r is the lowest dimension of the Euclidean space
in which V™ is imbedded isometrically, then the integer r is called the imbedding class number
of V™. The fundamental theorem of isometric imbedding ([1] page 190) is that the tangent
Riemannian n-space (M7, g..) is locally imbedded isometrically in a Euclidean (n + r)—space if

and only if there exist r—number ep = &1, r—symmetric tensors Hp);; and T(T; D covariant

vector fields Hp g); = —H(q,p)i; P,Q = 1,2, ,r, satisfying the Gauss equations

Snijk = Y ep{HpynH(pyix — Hpyis Hipynr}s (4.1)
P

The Codazzi equations

Hpyijli — Hpyirli = Y co{HqyijHo.py — H@ieHiq.p)i}s (4.2)
Q
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and the Ricci-Kiihne equations

Hpoili — Heajli + D en{HmpriHre; — Harr);Hrgil

R
+  ¢""{HpyniHQry — HpynHiyri} = 0-

(4.3)

The numbers ep = &1 are the indicators of unit normal vector Np to M™ and H(py;; are

the second fundamental tensors of M™ with respect to the normals Np. Thus if g, is assumed

to be positive definite, there exists a Cartesian coordinate system (z¢,u?) of the enveloping

Euclidean space E™*" such that ds? in E™"*" is expressed as

ds* = Z(dzi)2 + Z ep(duP)?.

1 p

85. Proof of Theorem A

In order to prove the theorem A, we put

(a)
(b)
()

(P)ij:\/%H(P)ija ep=¢€p, P=1,2,---,r

bzl
H iy = dij, €1 =1
H(,19)i; = Eij, €2 =—1.

Then it follows from (3.15) and (4.1) that

r+2
Shijk = ZEA{F(,\)th(A)ik — HooneH (05}
A=1

which is the Gauss equation of (M, g,).

Moreover, to verify Codazzi and Ricci Kithne equation of (M*,g,), we put

The Codazzi equations of (M, g,) consists of the following three equations:

F(P,Q)i = _H(QP)'L = H(P,Q)'L'a P7 Q = 17 27 yrr T
_ — L/ Lw
Hpriyi=—H@Epi1,pi = TH(P).i, P=12--,r

|

(Pr+2)i = _F(r+2,P)i =0, P=1,2,---,r
- sp — 2qw
(r+1,r+2)i = _H(T+2,r+1)i = mmi.

=

(@) Hpyijlle = Hepyirly =D eo{H @i H@.rk — H@uinHq.r);}

Q
+ Er—i—l{ﬁ(rJrl)ijﬁ(rJrl,P)k - ﬁ(rJrl)ikF(rJrl,P)j}
+ Er+2{ﬁ(r+2)ijﬁ(r+2,P)k - ﬁ(r+2)ikﬁ(r+2,P)k}

(5.1)

(5.2)

(5.3)
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) Hisnille = Hogninli = D e{H @i H@rrnr — H@uwH (@i}
Q

+€ri2 {ﬁ(r+2)ijﬁ(r+2,r+1)k - F(r+2)ikﬁ(r+2,r+1)j b

(¢) Hiroijlle — Hogoyll; = ZEQ{H(Q)UH(Q,T-{Q)I@ — HgyinH (0,r+2);}
Q

+€rta1 {F(r+1)ijﬁ(r+l,r+2)k - F(r+1)ikﬁ(r+1,r+2)j }-

where ||; denotes v-covariant derivative in (M™, L), i.e. covariant derivative in tangent Rieman-

nian n-space (M2,g,) with respect to its Christoffel symbols G}k. Thus
: —h

To prove these equations we note that for any symmetric tensor X;; satisfying X;;I' =
X;;19 =0, we have from (3.11),

L (ha X5 — hiy X 1)

Xijlle — Xikll; = Xijle — Xikls — 571

L3w q

+T(C.ikX.j —CiiX k) — %(Xijmk — Xigm;)
L3(2qw — sp)
W(X]mk —X,kmj)mz. (54)

Also if X is any scalar function, then X||; = X|; = 9; X.

Verification of (5.3)(a) In view of (5.1) and (5.2), equation (5.3)a is equivalent to

(\/?H(P)ig) Hk - <\/¥H(P)ik>

fp LvL
=\ 2 celH@iH.r — HoumHq.r;} - i “{dijHip) = dicHip) 5} (5.5)
Q
Since <‘/pr> Hk =0 <\/%) = %m myg, applying formula (5.4) for Hpy;;, we get
fr fr
( L H (P)ij H H(P H {H(P ZJ|k P)ik|j}

fp _“’
T2t 7 thiHp) 5 — hijHepy i} + {CzkH — CijHp) .1}
L*V/L(2qw — sp)
TN {H(p).jme = Hpy km;pm. (5:6)

Substituting the values of (1 / %H(pm) Hk — (\/%H(P)ik) H ~from (5.6) and the values
j

of d;; from (3.16) in (5.5) we find that equation (5.5) is identically satisfied due to equation
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(4.2).

Verification of (5.3)(b) In view of (5.1) and (5.2), equation (5.3)b is equivalent to

fop
dijlk = dirll = L[ == co{H@yiiHq). = Hi@ynH(q).i}
Q

sp — 2qw
+p q

To verify (5.7), we note that

Cijlk — Carlj = —b"Shijn (5.8)

hijle — hiklj = L™ (hijle — hirlj), (5.9)
milg = —Cli, — (% — p) hir, — %limk. (5.10)
Or(fwp) = —2L 7 fuply + (quw + fpwa)my. (5.11)

Contracting (3.16) with b* and using (3.10), we find that

3 N 73
d, =1/ {Pc 4 1CLWE —p) _ LB (5.12)
t 212/ fwpt

Applying formula (5.4) for d;; and substituting the values of d ; from (5.12) and d;; from
(3.16), we get

Lqvfwp
2f13/2
L*w(2qw — sp)
o Fontd/2 \/prt?»ﬂ(c-dmk — C pymj)m;
Liw\/fwp
T(Czkcg - CUC]C)
L*wA(3qw — sp)

2/ fwp.t3/2

LqA(3qw — sp)

T afTapre ks higm). (5.13)

dijllk — dirll=  dijle — dirlj — (hirC_j — hijC )

(Cigmj — Ciymy)

From (3.16), we obtain

dijlk — dirl; = P(Cijle — Clarl;) — Q(hajlk — harl;)
+R(mi|km; + mglems — mi|jme — muljmg)
+(OkP)C.ij — (0;P)C.it — (Ok@Q)hij + (0;Q)hir)
+ (O R)mym; — (9; Rymimy). (5.14)
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Since,
op - BovTep, [ Liplpws +3Le(8 — pL%))
k +3/2 -k o Tap 2
" Lqw m
92 /—prt ks
G — P o P
2/ fwpt3/2 " 213/ Fuwpt
(B pL)(qw + sp) o Palgw + fpon)
2L Jwpt AL2(fwp)P/2
pa{3w(B — pL?) — L*Awy}
* AL\/Fapt3/2 Mk (5.15)
and

SR — L*w(2qw — sp) _ 2qw —sp
» 2/ fwp.t3/2 ok 24/ fwpt

where we have used the equations (3.6), (3.7) and (3.8).

i, 4+ term containing my,

From equations (5.8)—(5.15), we have

w
dijlk — dixl; = Ly %(_bhshijk)

LAwA(3qw —
wh (3qw — sp) (C.iymy — Cipmy)

2/ fwp.t3/2
L*w/fwp
+T(chk - Olkcj)
Lwpq
+27 W(hikc,j — hi;C. 1)
| palawt + F(LPA + {3168 — pL?) + pun}]
4L2(fwpt)3/?
L*w(2qw — sp)

(hijmi — hikmy;) + (C pmj —C_jmg)m;.  (5.16)

2/ fwp.t3/2

Substituting the value of d;;|x — dix|; from (5.16) in (5.13), then value of d;j||x — dix||;
thus obtained in (5.7), and using equations (4.1) and (3.17), it follows that equation (5.7) holds
identically.

Verification of (5.3)(c) In view of (5.1) and (5.2), equation (5.3)c is equivalent to

sp — 2qw
Eijlle — Eill; = W(dijmk — digmy). (5.17)

Contracting (3.17) by b° and using equation (3.10), we find that

_ pg+ LPA(sp — qu)

7 2L2p\/fw m

(5.18)
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Applying formula (5.4) for F;; and substituting the value of E ; from (5.18) and the value
of E;; from (3.17), we get

qLA(sp — 2qw)

Eijllk — Eill; = Eijlx — Eixl; + (hijmy — hipmy)

dfpty/fw
Lo{pg+ L*A(sp — qw)}
2pt\/f_w (C,ikmj — Cumk) (5.19)

From (3.17), we get

Eijlk — Eixl; = S(hijlk — hiklj) + T{mi|km; + m;[xm;
—my|jmy — mylim;} + (3kS)hZ—j
—(9;)hir, + (OKT)ymim; — (0;T)mimy. (5.20)

Now,
(B—=pL?)s | q(fws + fow) (5.21)

Co 4
O8) = =™ ™ | 2nvre T alGepn | ™

and

Sp — qw

2pV/fw

where we have used the equations (3.7) and (3.8).

(OnT) =

i + term containing my,

From equation (5.9)—(5.11), (5.20) and (5.21), we get
L(sp — qw)
2py/ fw

q(sp — 2qw
_W(h/ijmk — hikmj). (522)

Eijlk — Eikl; = (Ciymy — Cipmy)

Substituting the value of E;j|x — Ei|; from (5.22) in (5.19), then the value of E;;||x — Eix ||
thus obtained in (5.17), and then using (3.16) in the right-hand side of (5.17), we find that the
equation (5.17) holds identically.

This completes the proof of Codazzi equations of (M,7,). The Ricci Kithne equations of

(M2,g,) consist of the following four equations

(a) Hpili — Hepgylli + Z er{H r,r)iH (r0);
R

—H (g pyiHrq)it + e+1{H+1,p)iH (r11,0);
—H (o1, H (r11,0)i} + Ers2{H (r12,p)iH (r+2,0);
_ﬁ(r+2,P)jﬁ(r+2,Q)i} + 7" {F(P)hiﬁ(Q)kj

—HppyniHrit =0, P.Q=12--r (5.23)
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() Hpriyilli — Hprgrlli + ZER{F(R,P)iH(R,rH)j — H(rpy;H(Rrt1)i}
R

+ ET+2{F(r+2,P)iﬁ(r+2,r+l)j - F(r+2,P)jF(r+2,r+1)i}
+9""{H pyniH i)k — HpynjH gy} =0, P=1,2,---,r

=

(¢) Hprsoyili = Hprsayslli + Y er{HnpyHrr+2); — Hrp)iH(rrs2)i}

R
+ Er—i-l{ﬁ(rJrl,P)iﬁ(rJrl,rJrQ)j - F(r+1,P)jF(r+1,r+2)i}
+ 3" H pyniH 2k — HpynjH(rypi} =0, P=1,2,---,r

@) Hisros2ili = Hosrossli + O er{H (rrsniH (Ros2)j — H(Rrs1);
R

XH (pyri2)i} + ghk{ﬁ(r+1)hiﬁ(r+2)kj — H(ry1yniH (ry2)kit = 0.
Verification of (5.23)(a) In view of (5.1) and (5.2), equation (5.23)a is equivalent to

Hepgyill; — Hpoilli + > er{Hr,pyiH () — Herp)iHr,o)i}
R

LPw —hk
+——{Hp).H @ — Hp)Hgat + 7 {Hen

p
_H(P)th(Q)ki}ff = 0. P,Q: 1,2,...,7”. (524)
Since H(p)ijli =0= H(p)jl‘li, from (3.5), we get
—hk{H ‘H _H ‘H }@: hk{H H .
g (P)hitH(Q)kj (P)hjHH(@kis g (P)hit 1 (Q)kj
3

Liw
—HepynHquy — =~ Hwp).il@. — Hep).iH )i}

Also, we have Hpoyill; — Hp,)illi = Hpgyili — Hipo);li- Hence equation (5.24) is
satisfied identically by virtue of (4.3).

Verification of (5.23)(b) In view of (5.1) and (5.2), equation (5.23)b is equivalent to

LvLw LvLw
(B ) |, (55 |

Vi Vit
LvILw
+ ZER{H(R,P)iH(R).j — Hr,p)jH(r).i}
Vi G
_hk ) _ fo - .
+g {H(P)hidkj - H(P)hjdkl} f =0. Pa Q - 15 27 T (525)

Since b"|; = g"*C jy, H(p)hili =0, we have

Hpyillj = Hepyjlli = Hpyili = Hpygli = {Hpynily = Hipynglib"
—g"" {HpyniC.kj — HpynjCri} (5.26)
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LV Lw H _5 LVILw
i L=\t
:L4w\/mc LVLw

£3/2 A WYs

_ D L
9" {H(pynide; — Hpynidii 1/ ff =/ Eghk x

L3wVL
tVfp

After using (3.16) and (5.12) the equation (5.28) may be written as

fp L\/nghk %

{pws + 3Lw?(B — pL?)} m; (5.27)

and
{H pynidr; — H(pynjdri} —

———={Hp).id; — Hep) jd.i}. (5.28)

ghk{H(P)hidkj - H(P)hgdkz}

L Vit
LAwvVLw
{HpyniCrj — HpyniCri} — T{H(P).io..j — H(p;C i}
L\/
EWEYE) > [pws + 3Lw?(8 — pL*){H pyim;j — H(p) jm}. (5.29)

From (4.2), (5.26)—(5.29) it follows that equation (5.25) holds identically.

Verification of (5.23)(c) In view of (5.1) and (5.2), equation (5.23)c is equivalent to

LvVLw(2qw — sp)
2fwt\/p

+g" {H(pyniBrj — H(pyn; Bri 1y % =0, (5.30)

{Hpy.im; — H(py jmi}

Since Ey;l* =0 = E;.I*, from (3.5), we find that the value of ghk{H(P)hiEkj — Hpyp; Eri}

| L L3wVL
%.ghk{H(P)hiEkj — HpynjEri} — T {HpyiEj — Hpy;Ei},

is

which, in view of (3.17) and (5.18), is equal to

B LVLw(2qw — sp)
2fwt\/p

Hence equation (5.30) is satisfied identically.

{Hpy.im; — H(pyjm;}.

Verification of (5.23)(d) In view of (5.1) and (5.2), equation (5.23)d is equivalent to
(Nmi)ll; — (Nmy)lli + 3" (dniErj — dnjBri) = 0, (5.31)

_ sp—2qw
where N = TN
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Since d;l" = 0, Ey;1* = 0, from (3.5), we find that the value of §"*{dp,; Ey; — dp; Ex:} is

L L*w
Eghk{dhiEkj —dpjBri} — m{d.z'E.j —d B},

which, in view of (3.16), (3.17), (5.12) and (5.18), is equal to

L3(2qw — sp)

2f e \Camy = Clymik.

Also,
(Nma)ll; = (Nmy)lli = N(mill; — myll:) + (9;N)m; — (0:N)m;.

Since mi||j — mj||l = mi|j — mj|i = L_l(ljmi — llm]) and

2qw — sp . L3(sp — 2qw)

N — .
8] 2wa\/ﬁ3 2f\/]3t3/2 C,.Jv
we have 5 )
L°(sp — 2qw
(Nmi)l; — (Nmy)l = W(C..jmi - C.imj). (5.32)

Hence equation (5.31) is satisfied identically. Therefore Ricci Kithne equations of (M?,7,)
given in (5.23) are satisfied.
Hence the Theorem A given in introduction is satisfied for the S—change (1.3) of Finsler

metric given by h—vector. |
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