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Abstract: This paper introduces equal degree graphs of simple existed graphs. These
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graphs for which their equal degree graphs are connected, completed, disconnected but not

totally disconnected. We also obtain several properties of equal degree graphs and spec-
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graphs. Furthermore, the relation between equal degree graphs and degree Prime graphs is

determined.

Key Words: Parameters of the graph, simple graphs, equal degree graphs, degree prime

graphs, degree graph isomorphism, Smarandachely k-degree graph, Smarandachely degree

graph.

AMS(2010): 05C25.

§1. Introduction

The evaluations of new graphs are involving sets of objects and binary relations among them.

So the construction and preparation of graphs varies author to author, and thus it is difficult to

pin point its formulation to a single source. Thus the graphs discovered many times, and each

discovery being independent of the other. For this reason, there are various types of graphs

each with its own definition.

Many authors, starting from 2003, the parameters vertex degree and degree sequence of

graphs were used again in Graph theory, and several types of graphs have been introduced. In

this sequel we have introduced equal degree graphs of various simple graphs and characterized

their properties.

For any finite group G, the definition and notation of degree graph of a simple group was

introduced by Lewis and white [5]. This graph is defined as follows: Let G be a finite group

and let cd(G) be the set of irreducible character degrees of G. Then the degree graph △ (G)

is the graph whose set of vertices is set of primes that divide degrees in cd(G), with an edge

between p and q if pq divides a for some a ∈ cd(G).
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In [6], the authors introduced the degree pattern of a finite group G and denoted by D(G),

where D(G) = (deg(p1), deg(p2), · · · , deg(pk)), here p1 < p2 < · · · < pk are distinct primes in

prime decomposition of n. Further, the authors S.F.Kapur, Albert and Curtiss [7] introduced

the notation D(G) for degree sets of connected graphs, trees, planner and outer planner graphs.

According to these authors, the notation D(G) is a degree set of degrees of vertices of G.

The authors Manoussakis, Patil and Sankar [8] was proved that for any finite non empty

set S of non negative integers, there exist a disconnected graph G such that D(G) = S, and

also the minimum order of such a graph is determined.

There are several ways to produce new graphs from the existing graphs in Graph theory.

Recently the authors M.Sattanathan and R.Kala [1] introduced a special way to produce the

degree prime graph DP (G) for any finite simple undirected graph G. The PD(G) of a graph

G having the same vertex set of G and two vertices are adjacent in PD(G) if and only if their

unequal degrees are relatively prime in G. By the motivation of these degree prime graphs,

we construct and study the equal degree graphs of simple graphs with usual notation D(G).

We suspect that these graphs will be used to solve many computational problems in computer

engineering and applied sciences.

Throughout this paper, G and D(G) represent finite simple undirected graphs having

without loops and without multiple edges of same order. We have introduced degree graphD(G)

of G, which is defined as a graph with same vertex set as G and two vertices of G are adjacent

in D(G) if and only if their degrees are equal in G. In this paper we studied interrelations

between G and D(G), and hence we obtain several properties and their consequences of D(G)

with illustrations and examples. Further we characterize G for which D(G) either is connected,

disconnected, totally disconnected or complete.

§2. Basic Definitions and Notations

In this section we consider basic definitions and their graph theoretical notations. Throughout

the text, we consider G is an abstract graph structure which is a finite undirected graph without

loops and multiple edges. We represent G as G = G(V,E) with vertex set V = V (G) and edge

set E = E(G). We are only going to deal with finite graphs, so we define |V | = n to the order

of G and |E| = m to be the size of G where n and m are called graph parameters. Further if

there is an edge e in G between the vertices u and v, we briefly write e = uv or e = (u, v) and

say edge e joins the vertices u and v. A vertex is said to be isolated if it is not adjacent to any

other vertex.

The complement of a graph G(V,E) is the graph Gc(V,Ec) having the same vertex set as

G, and its edge set Ec is the complement of E, that is, uv is an edge of Gc if and only if uv is

not an edge of G. A complete graph of order n is denoted by Kn. A graph of order n with no

edges in an empty graph and is denoted by Nn = Kc
n which isomorphic to totally disconnected.

A path of length n is denoted by Pn. A cycle of length n(n > 3) is a cycle of length n and is

denoted by Cn.

We now turn to graphs whose vertex sets can be partitioned in special ways. A graph G

is a partite graph if V (G) can be partitioned into subsets, called partite sets. A graph G is
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a k−partite graph if V (G) can be partitioned into k subsets V1, V2, · · · , Vk (partite sets) such

that uv is an edge of G if u and v belongs to different partite sets. In addition, if every two

vertices in different partite sets are joined by an edge, then G is a complete k−partite graph.

If |Vi| = ni for 1 6 i 6 k, then we denote this complete k−partite graph by Kn1,n2,··· ,nk
. Thus

(1) K1,1,··· ,1 ∼= Kn;

(2) Kn,n is a complete bipartite;

(3) K1,n is a Star;

(4) Kn1,n2 is a complete bipartite.

In a graph G, the degree of a vertex u is the number of edges of G which are incident

to u and denoted by d(u), deg(u) or degG(u). A graph is regular if all its vertices are of the

same degree and r−regular if all of its vertices are of degree r. A 3−regular graph is a cubic

graph Q8. If di, 1 6 i 6 n, be the degree of the vertices vi of a graph G then the sequence

d(G) = (d1, d2, · · · , dn) is the degree sequence of G. Usually, we order the vertices so that the

degree sequence is monotonically increasing, that is, δ(G) = d1 ≤ d2 ≤ · · · ≤ dn = △(G). Also

two graphs with the same degree sequence are said to be degree equivalent.

We need the following results for preparing equal degree graphs.

Theorem 2.1([2]) The sum of the degrees of graphs is even, being twice the number of edges.

Theorem 2.2([2]) In any graph there is an even number of vertices of odd degree.

Theorem 2.3([2]) If d1, d2, · · · , dn is the degree sequence of some graph, then, necessarily∑n
i=1

di is even, and 0 ≤ di ≤ n− 1 for 1 ≤ i ≤ n. But converse is not true.

Theorem 2.5([2]) Let G be a graph of order n ≥ 2, then d(G) contains at least two numbers

are same.

Theorem 2.6([2]) Let G be a r-regular graph of order n. Then |E(G)| = rn

2
.

Theorem 2.7([3]) Let G be a r-regular graph of order n. Then Gc is (n− r− 1)-regular graph

of order n.

Theorem 2.8([3]) A graph is 1−regular if and only if it is of even order and is the disjoint

union of some K
′

2s.

If n = 1, then G is called trivial graph, otherwise G is called non-trivial graph. In this

paper we consider non-trivial graphs only. For further details and notations we refer [4].

§3. Equal Degree Graphs

We have already mentioned that the best known parameters of a graph are order and size. But

another parameter of a graph is degree of a vertex which is a meaningful to have a term for the

number of edges meeting at a vertex. By using this parameter we define equal degree graph as

follows.
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Definition 3.1 Let G be a simple graph with vertex set V = {1, 2, · · · , n}, n > 1, Then the

equal degree graph of G is D(G) having the same vertex set as G and two vertices u, v ∈ V are

adjacent in D(G) if and only if degG(u) = degG(v).

Generally, we know Smarandachely k-degree graphs DkG of a graph G in which vertices

u, v ∈ V are adjacent if and only if |degG(u)− degG(v)| = k for integers k ≤ ∆(G)− δ(G) and

Smarandachely degree graph SG in which u, v are adjacent if |degG(u)− degG(v)| ≥ 1. Clearly,

D0G = DG. The definition of equal degree graphs should be noted that the following.

1. D(G) is a non-trivial graph;

2. D(G) has at least one edge;

3. D(G) is also a simple undirected graph having without multiple edges.

The following Fig.1 shows that simple graphs and their equal degree graphs of order 4.

Fig.1 Graphs and their equal degree graphs

We now characterize graphs G for which D(G) is either regular or not. The following

propositions are immediate.

Proposition 3.2 For any graph G, the graph D(G) is never a 0−regular graph.

Proof Suppose D(G) is a 0−regular graph. Then its degree sequence is d(D(G)) =

(0, 0, · · · , 0) for any graph G. This shows that D(G) is isomorphic to empty graph, and thus

D(G) is a trivial graph, which is a contradiction to the definition of equal degree graphs. Thus

the result follows. 2
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Remark 3.3 (i) D(G) is 1-regular if and only if D(G) is a graph of order 2. (ii) D(G) is

1-regular if and only if G is a graph of order 4 and d(G) = (0, 0, 1, 1) or (2, 2, 3, 3).

Proposition 3.4 For any graph G of order n > 4, D(G) is never 1−regular. In particular,

D(G) is never 2, 3, · · · , (n− 2)-regular.

Proof Suppose G is a graph with size n > 4. We show that D(G) is not 1−regular. Assume

that D(G) is 1−regular. Then the degree sequence of G is d(D(G)) = (1, 1, · · · , 1)(n times).

(1 + 1 + · · ·+ 1)(n times) =





even, if n is even

odd, if n is odd

Case 1. If n is odd, then 1 + 1 + · · ·+ 1(n times) is odd, which contradicts to the Theorem

2.2. So in this case the result is not true.

Case 2. If n is even, then 1 + 1 + · · · + 1(n times) is odd, which is impossible because the

graph D(G) does not contain an even number of vertices of same odd degree.

From the above cases our assumption is not true, and hence D(G) is never 1−regular for

any graph G of order n > 4. 2
Remark 3.5 Similarly we can show that D(G) is never 2-regular, 3-regular,· · · , (n−2)-regular

but it should be (n− 1)-regular.

Theorem 3.6(Fundamental Theorem) For any graph G of order n, the degree graph D(G) is

either complete or disconnected but not totally disconnected.

Proof Suppose D(G) is totally disconnected. Then obviously D(G) is isomorphic to Nn.

But by the definition of degree graph, D(G) is never isomorphic to Nn. Hence D(G) is not

totally disconnected.

Now we prove thatD(G) is either complete or disconnected. SupposeD(G) is disconnected.

Then there is nothing to prove. If possible assume that D(G) is connected, then the Proposition

3.4 and Remark 3.5 shows that D(G) is (n− 1)-regular, and hence D(G) is complete. 2
§4. Complete Equal Degree Graphs

In this section we are going to prove that the equal degree graphs are complete. Further we

characterize graphs G for which D(G) is complete and also we show that G ∼= D(G).

Proposition 4.1 The degree graph of regular graph is complete.

Proof Let V be a vertex set of r-regular graph G. Then the degree sequence of G is

d(G) = (r, r, · · · , r), that is, d(i) = r for each 1 ≤ i ≤ n. We show that D(G) is complete. For

this let i, j ∈ V , i 6= j, then deg(i) = r and deg(j) = r. Therefore, deg(i) = deg(i), for all

i 6= j in V (G). Thus i and j are adjacent in D(G). This shows that every two distinct pair of
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vertices is joined by an edge in D(G). Hence D(G) is complete. 2
This proposition has a number of useful consequences.

Corollary 4.2 Let G be a connected graph of order n > 4. Then D(G) is either complete or

disconnected.

Proof The proof is divided into cases following.

Case 1. Suppose G is a connected regular graph of order n > 4. Then, by the Proposition

4.1, D(G) is complete.

Case 2. Suppose G is a connected but not regular. Then the degree sequence of G contains

at least two distinct positive integers, say s and t. That is, if u, v ∈ G, then deg(u) 6= deg(u)

implies u is not adjacent to v in D(G). Hence D(G) is disconnected. 2
Corollary 4.3 For each n > 1, we have

(i) D(Kn) = Kn;

(ii) D(Cn) = Kn;

(iii) D(Nn) = Kn;

(iv) D(Kn,n) = K2n;

(v) D(Q8) = K8.

Proof (i) The complete graph Kn is (n− 1)-regular, and thus D(Kn) = Kn.

(ii) For each n ≥ 3, the cycle Cn is 2-regular. Hence D(Cn) = Kn.

(iii) For each, the empty graph Nn is 0-regular graph. Hence D(Nn) = Kn.

(iv) Since the completed bipartite graph Kn,n is n-regular and the order of Kn,n is 2n.

Thus D(Kn,n) = K2n.

(v) Q8 is 3-regular of order 8, and thus D(Q8) = K8. 2
Corollary 4.4 Let Gc be the complement of r-regular graph G of order n, then D(G) =

D(Gc) ∼= Kn.

Proof We deduces this consequence from the Theorem 2.6 and Proposition 4.1 as follows.

We know that G is r-regular graph of order n if and only if Gc is (n− r− 1)-regular graph

of same order n. Thus the Proposition 4.1 shows that D(G) ∼= Kn if and only if D(Gc) ∼= Kn.

Hence D(G) = D(Gc) ∼= Kn. 2
Corollary 4.5 Let G be any graph of order n. For fixed m ∈ Z, if there exists an integer n

such that deg(v) = mn for each vertex v of G. Then, D(G) = Kn.

Proof Obviously follows from Proposition4.1, since G is mn-regular graph of order n.

We now characterize the graphs G which attain bounds for |E(D(G))|. We know that

0 ≤ |E(G)| ≤ n(n− 1)

2
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for any simple graph G of order n ≥ 1. But the following result specifies that the bounds for

|E(D(G))|. 2
Theorem 4.6 If G is any graph of order n > 1, then 0 < |E(G)| ≤ n(n− 1)

2
.

Proof From the definition of equal degree graphs, |V (G)| = |V (D(G))| = n, and n > 1.

For any non-trivial graph G, we have degGu ≤ (n− 1) for each u ∈ V (G). This is also true in

D(G), that is, degD(G)u ≤ (n− 1) for each u ∈ V (D(G)). From Theorem2.1 we have

2|E(D(G))| =
∑

d∈V (D(G))

deg(u)⇒ 2|E(D(G))| 6 n(n− 1)⇒ |E(D(G))| 6 n(n− 1)

2
.

It is one extreme of the required inequality. At the other extreme, a degree graph D(G)

may possess at least one edge at all. That is, |E(D(G))| 6= 0. Hence

0 < |E(G)| ≤ n(n− 1)

2
. 2

Remark 4.7 The above inequality says that the following two specifications for D(G):

(1) D(G) or D(Gc) has at least one edge or at most
(
n
2

)
edges;

(2) D(G) is never totally disconnected. In particular, D(G) ≇ Nn for each G of order

n > 1.

Corollary 4.8 Let G be a r-regular graph of order n > 1. Then

|E(G)| = rn

2
and |E(D(G))| =

(
n

2

)
.

Proposition 4.9 Let G be a graph of order n. Then |E(G)| = |E(D(G))| if and only if G and

D(G) are (r − 1)-regular graphs.

Proof Let G be a r-regular graph of order n > 1. By the Corollary 4.7,

|E(G)| = rn

2
and |E(D(G))| =

(
n

2

)
.

Therefore,

|E(G)| = |E(D(G))| ⇔ rn

2
=

(
n

2

)
⇔ rn

2
=
n(n− 2)

2
⇔= n− 1⇔ G

is (n− 1)-regular, and hence D(G) is also (n− 1)-regular. 2
Proposition 4.10 If Gc is a complement of G, then D(Gc) = D(G).

Proof Let Gc be the complement of a graph G of order n > 1. Then the following cases

arise on the regularity of G.
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Case 1. Suppose G is a regular graph. Then the result obviously follows from Proposition

4.1.

Case 2. Suppose G is not a regular graph. We show that D(Gc) = D(G). If possible assume

that D(Gc) 6= D(G), then the following three subcases arise.

Subcase 2.1 If V (D(Gc)) 6= V (D(G)) then obviously V (Gc) 6= V (G), which is a contra-

diction to the fact that V (Gc) = V (G).

Subcase 2.2 If E(D(Gc)) 6= E(D(G)), then V (D(Gc)) +V (D(G)) = n(n−1)
2 . This shows

that either D(G) or D(Gc) has at most n(n−1)
4 edges, which is a contradiction to the fact that

D(G) or D(Gc) has at most n(n−1)
2 edges.

Subcase 2.3 If V (D(Gc)) 6= V (D(G)), E(D(Gc)) 6= E(D(G)), then trivially it is not true

from cases 2.1 and 2.2.

From the above three subcases 2.1, 2.2 and 2.3, we conclude that D(Gc) 6= D(G) is not

true. Hence D(Gc) = D(G). 2
Remark 4.11 The converse of the above result is not true. For example, D(Nn) = D(N c

n) but

Nn 6= N c
n.

Theorem 4.12 Let G1 and G2 be same regular graphs of order n. Then D(G1) = D(G2). But

converse is not true.

Proof Suppose G1 and G2 be regular graphs of same order n > 1. By the Proposition 4.1,

D(G1) ∼= Kn and D(G2) ∼= Kn, and thus D(G1) = D(G2). But converse of this result is not

true. This illustrates the Figure 2. Consider the graphs G1 and G2 on four vertices and their

degree graphs. 2
Fig.2 Graphs G1, G2, D(G1) and D(G2).

Theorem 4.13 Let G1 and G2 be graphs of same order n > 1 such that d(G1) = d(G2). Then

D(G1) = D(G2). But converse is not true.

Proof Suppose G1 and G2 be non-regular degree equivalent graphs of same order n > 1.

Then their degree sequences are equal. That is, d(G1) = d(G1) = (d1, d2, · · · , dn) where

d1 6 d2 6 · · · 6 dn, 0 6 di 6 n− 1 for each 1 6 i 6 n. By the definition of degree graphs, G1

and G2 (G1 6= G2) are both realize same degree graph, that is, D(G1) = D(G2).
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Converse of the Theorem 4.13 is not true, in general. For the degree sequences d(G1) =

(2, 2, 2, 2) and d(G2) = (3, 2, 3, 2), we have D(G1) = D(G2) implies that d(G1) 6= d(G2). 2
Theorem 4.14 If G1 and G2 are two graphs such that G1

∼= G2, then D(G1) ∼= D(G2). But

the converse is not true.

Proof Suppose G1
∼= G2. Then there exists an isomorphism ϕ from G1 onto G2. We show

that D(G1) ∼= D(G2). For this let (u, v) ∈ E(D(G1)), then by the definition of degree graphs,

degG1u = degG1v ⇒ degG2ϕ(u) = degG2ϕ(v) ⇒ (ϕ(u), ϕ(v)) ∈ E(D(G2)) ⇒ D(G1) ∼= D(G2).

But converse of this result is not true. For example, D(N4) ∼= D(C4) but N4 ≇ C4. 2
§5. Disconnected Equal Degree Graphs

In this section we characterize the graphs G for which D(G) is disconnected.

Theorem 5.1 Let G be a graph of order n+ k. Then D(G) ∼= Kn ∪Nk where n is the number

of vertices of same degree and k is the number vertices of unequal degree.

Proof Let |V (G)| = n+k.Then V can be partitioned into two subsets S1 and S2 such that

S1 = {u1, u2, · · · , un} and S2 = {v1, v2, · · · , vk} where degGui = degGuj for all 1 6 i 6= j 6 n

and degGvi 6= degGvj for all 1 6 i 6= j 6 k. By the definition of Degree graphs, < S1 >∼= Kn

and < S2 >∼= Nk. Hence D(G) ∼= Kn ∪Nk. 2
This theorem gives the following consequences.

Corollary 5.2 D(Pn) =< S1 > ∪ < S2 > where < S1 >∼= K2 and < S2 >∼= Kn−2.

Proof Let v1 and vn+1 be the internal and external vertices of the path Pn : v1e1v2e2v3

· · · vnenvn+1. Then the vertex set V = V (Pn) can be partitioned two disjoint sets S1 and S2

such that S1 = {v1, vn+1} and S2 = {v1, v2, · · · , vn}.

Case 1. In this case degGv1 = degGvn+1 6= degGvj for j = 2, 3, .., n. This shows that there

exists only one edge between v1 and vn+1 in S1, and which are not adjacent to the vertices in

S2. Thus the degree graph of S1 is an induced sub graph < S1 > which is isomorphic to K2.

Case 2. Suppose vi, vj ∈ S2 for every i 6= j. Then degGvi = degGvj = 2 6= 1 = degGv1 =

degGvn+1 for each i 6= j such that 2 6 i, j 6 n. Thus the degree graph of S2 is also an induced

subgraph < S2 > which is isomorphic to Kn−2.

Case 3. Suppose u ∈ S1 and v ∈ S2. Then there is no edge between u and v in the equal

degree graph whose vertex set is V = S1 ∪ S2 since degGu = 1 6= 2 = degGv.

From the cases 1, 2 and 3 we conclude that D(Pn) is disconnected with two disjoint

components < S1 > and < S2 >. 2
The proofs of the following consequences are obvious.

Corollary 5.3 The following results on D(G) are true:
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(1) D(K1,n) = K1 ∪Kn−1;

(2) D(Kn1,n2,··· ,nk
) = Kn1 ∪Kn2 ∪ · · · ∪Knk

;

(3) D(Wn) = K1 ∪Kn−1.

Corollary 5.4 Let G be a graph of order p+ q. Then D(G) = Kp ∪Kq where p is the number

of vertices of same degree and q is the number of vertices of another same degree.

Corollary 5.5 Let T be a tree of order n1 + n2 + n3. Then D(T ) = Kn1 ∪Kn2 ∪Kn3 where

n1 is the number of pendent vertices, n2 is the number of non-pendent vertices of same degree

and n3 is another non-pendent vertex of another same degree.

Theorem 5.6 Let D be a connected Euler graph. Then D(G) is either complete or disjoint

union of complete components.

Proof Consider the two cases on the regularity and non-regularity of a connected Euler

graph G.

Case 1. Let G be a regular graph. The Proposition 4.1 shows that D(G) is complete.

Case 2. Let G be a non- regular graph of order n1 + n2 + · · · + nk. Then n1 is the number

of vertices of degree 2, n2 is the number of vertices of degree 4, and so on nk is the number of

vertices of degree 2k. The Theorem 5.1 shows that D(G) is isomorphic to the disjoint union of

complete components Kn1 ,Kn2 , · · · ,Knk
. Hence D(G) = Kn1 ∪Kn2 ∪ · · · ∪Knk

. 2
Example 5.7 For each n > 3, the cycle Cn is a regular Euler graph, and thus D(Cn) = Kn.

Example 5.8([3]) The graphs D12 and M16 are the Davids and Mohammeds graphs of order

12 and 16 respectively, which are non-regular Euler graphs, and their Degree graphs D(D6) =

K6 ∪K
′

6 and D(M11) = K4 ∪K
′

7, which are disconnected graphs.

Theorem 5.9 Let G be a simple graph of order n > 4. Then D(D(G)) ∼= D(G) ⇔ G is

r-regular graph.

Proof For any simple graph G of order n > 4, we have G is r-regular ⇔ D(G) ∼= Kn,

by the Proposition 4.1 ⇔ D(D(G)) ∼= D(Kn) ⇔ D(D(G)) ∼= Kn(since D(Kn) = Kn) ⇔
D(D(G)) ∼= D(G). 2
§6. Relation Between D(G) and DP (G)

In [1], the authors M. Sattanathan and R. Kala introduced Degree prime graphs and studied

their characterizations. According to these authors DP (G) is a graph whose vertex set is same

as V (G) and u, v ∈ V (G) are adjacent in DP (G) if and only if

degGu 6= degGv, gcd(degGu, degGv) = 1.

In this paper, we are going to study the relation betweenD(G) andDP (G). Fundamentally

we observe that the following:
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For any graph G, we have

(1) D(G) 6= DP (G);

(2) D(DP (G)) 6= DP (D(G)).

But the following result specifies that the relation between D(G) and DP (G) for some

graphs G.

Theorem 6.1 If G is either totally disconnected, regular or complete, then D(G) ∼= (DP (G))c.

Proofv For any totally disconnected, regular or complete graph G, we know that D(G) ∼=
Kn and DP (G) ∼= Nn. But Kn = N c

n. This shows that the required result is obviously true.

Box

Here, we present an open problem following:

Problem 6.2 Let G be a graph. Then

(1) Find the cardinality of the set S = {G : D(G) is complete };
(2) Find the cardinality of the set S = {G : D(D(G)) = D(G)};
(3) For the finite family of graphs {Gi}, show that

n⋃

i=1

D(Gi) = D

(
n⋃

i=1

Gi

)
and

n⋂

i=1

D(Gi) = D

(
n⋂

i=1

Gi

)
;

(4) Find the graph G such that D(D(· · · (D(G)) · · · ))(n times)= G.
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