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§1. Introduction

Let G = (V,E) be a simple graph, having at most one isolated vertex and no component of

order 2. A map that carries vertex set (edge set or both) as domain to the positive integers

{1, 2, · · · , k} is called vertex k-labeling (edge k-labeling or total k-labeling). Well-known param-

eter irregularity strength of a graph introduced by Chartrand et al. [6]. A simple graph G

is called irregular if there exists an edge k-labeling λ : E(G) → {1, 2, · · · , k} such that the

weight of a vertex v under the labeling defined by wλ(v) =
∑
λ(uv), are pairwise distinct. The

minimum value of k, for which G is irregular, called irregularity strength of G denoted by s(G).

The parameter irregularity strength of a graph is attracted by numerous authors. Aigner

and Triesh [1] proved that s(G) 6 n− 1 if G is a connected graph of order n, and s(G) 6 n+ 1

otherwise. Nierhoff [15] refined their method and showed that s(G) 6 n− 1 for all graphs with

finite irregularity strength, except for K3. This bound is tight e.g. for stars. In particular

Faudree and Lehel [8] showed that if G is d-regular (d > 2), then
⌈

n+d−1
d

⌉
6 s(G) 6

⌈
n
2

⌉
+ 9,

and they conjectured that s(G) 6
⌈

n
d

⌉
+ c for some constant c. Przybylo in [16] proved that

s(G) 6 16n
d + 6. Kalkowski, Karonski and Pfender [12] showed that s(G) 6 6n

δ + 6, where δ

is the minimum degree of graph G. Currently Majerski and Przybylo [13] proved that s(G) 6

(4 + o(1))n
δ + 4 for graphs with minimum degree δ >

√
n lnn. Other interesting results on the

irregularity strength can be found in [3, 4, 5, 7, 9]. For recent survey of graph labeling refer

the paper [10].
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Ali Ahmad et al.[2] introduced edge irregularity strength of a graph as follows: Consider

a simple graph G together with a vertex k-labeling χ : V (G) → {1, 2, · · · , k}. The weight

of an edge xy in G, denoted by wt(xy) = χ(x) + χ(y). A vertex k-labeling is defined to be

an edge irregular k-labeling of the graph G if for every two different edges e and f there is

wt(e) 6= wt(f). The minimum k for which the graph G has an edge irregular k-labeling is called

the edge irregularity strength of G, denoted by es(G). The lower bound of es(G) was given by

the following inequality

es(G) > max{
⌈
E(G) + 1

2

⌉
,∆}

where ∆ is the maximum degree of graph G. Ibrahim Tarawneh et al. [11], determined the

exact value of edge irregularity strength of corona graphs of path Pn with P2, Pn with K1 and

Pn with Sm.

Martin Bac̆a et al. [14] introduced modular irregularity strength of a graph. An edge

labeling ψ : E(G)→ {1, 2, · · · , k} is called modular irregular k-labeling if there exists a bijective

weight function σ : V (G)→ Zn defined by σ(x) =
∑
ψ(xy) called modular weight of the vertex

x, where Zn is the group of integers modulo n and the sum is over all vertices y adjacent to

x. They defined the modular irregularity strength of a graph G, denoted by ms(G), as the

minimum k for which G has a modular irregular k-labeling.

Motivated by the edge irregularity strength of graphs we introduce a new parameter,

an even modular edge irregularity strength of graph, a modular version of edge irregularity

strength.

LetG = (V,E) be a (n,m)-graph together with a vertex k-labeling ρ : V (G)→ {1, 2, · · · , k}.
Define a set of edge weight W = {wt(uv) : wt(uv) = ρ(u) + ρ(v), ∀ uv ∈ E}. Vertex labeling

ρ is called even modular edge irregular labeling if there exists a bijective map σ : W → M

defined for each edge weight wt(uv) there corresponds an element x ∈M such that wt(uv) ≡ x
(mod 2m), where M = {0, 2, 4, · · · , 2(m − 1)}. We define the even modular edge irregularity

strength of a graph G, denoted by emes(G), as the minimum k for which G has an even modular

edge irregular labeling. If there doesn’t exist an even modular edge irregular labeling for G, we

define emes(G) = ∞. Generally, if M = {0, p, 2p, · · · , (m− 1)p} for a prime number p, such a

modular edge irregular labeling is called a Smarandache p-modular edge irregular labeling and

the minimum k for which G has a Smarandachely p-modular edge irregular labeling is denoted

by emesp(G). Clearly, emes2(G) = emes(G).

The main aim of this paper is to show a lower bound of the even modular edge irregularity

strength and determine the precise values of this parameter for some families of graphs.

§2. Main Results

Following theorem gives the lower bound of even modular edge irregularity strength of a graph.

Theorem 2.1 Let G be a (n,m)-graph. Then emes(G) ≥ m.

Proof Let G be a (n,m)-graph together with an even modular edge irregular labeling
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ρ : V (G)→ {1, 2, · · · , k}. Consider the even edge weights of G, there should be an edge e such

that wt(e) ≡ 0 (mod 2m). Since the weight of e must be at least 2m, emes(G) ≥ m. 2
Lemma 2.1 Let (d1, d2, · · · , dn) be the degree sequence of a graph G and let (l1, l2, . . . , ln)

be the corresponding vertex labels of an even modular edge irregular labeling of G. Then the

sum of all the edge weights denoted as S is equal to the sum of the product of degree with its

corresponding labels, that is,

S =
∑

e∈E

wt(e) =
n∑

i=1

dili.

Lemma 2.2 In any even modular edge irregular labeling of Cn, labels of all vertices are of same

parity.

Proof By definition, weight of an edge is sum of the labels of its end vertices. To obtain

an even edge weight, both the labels must be either odd or even, and hence all the vertex labels

of Cn are of same parity. 2
Theorem 2.2 Let Cn be a cycle of order n ≥ 3. Then

emes(Cn) =






n+ 1, if n ≡ 0 (mod 4),

n, if n ≡ 1 (mod 4),

n+ 2, if n ≡ 3 (mod 4),

∞, if n ≡ 2 (mod 4).

Proof Let V (Cn) = {vi : i = 1, 2, · · · , n} be the vertex set and let E(Cn) = {ei =

vivi+1 : i = 1, 2, · · · , n} be the edge set of the cycle Cn. Define the vertex labeling ρ : V →
{1, 2, · · · , n+ 2} as follows:

ρ(vi) = 2i− 1, 1 ≤ i ≤
⌈n

2

⌉

If n ≡ 0, 1 (mod 4), then, for 1 ≤ i ≤
⌊

n
2

⌋
,

ρ(vn+1−i) =





2i− 1, i is odd

2i+ 1, i is even

If n ≡ 3 (mod 4), then for 2 ≤ i ≤
⌈

n
2

⌉
,

ρ(vn+2−i) =





2i− 1, i is odd

2i+ 1, i is even

We can easily check that the above labeling ρ, is an even modular edge irregular labeling

of Cn. Thus,
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emes(Cn) ≤





n+ 1, if n ≡ 0 (mod 4)

n, if n ≡ 1 (mod 4)

n+ 2, if n ≡ 3 (mod 4)

Now let us find the lower bound of emes(Cn) as follows:

Case 1. Suppose n ≡ 0 (mod 4). Consider the set of even edge weights W (Cn) = {2, 4, 6, · · · ,
2n}. To obtain the weight 2 for an edge, we must assign label 1 to both of its end vertices, and

hence all the vertices of Cn must receive odd labels by Lemma 2.2. Since the heaviest weight

is 2n, emes(Cn) ≥ n+ 1.

Case 2. Suppose n ≡ 1 (mod 4). By Theorem 2.1, emes(Cn) ≥ n.

Case 3. Suppose n ≡ 3 (mod 4). Assume that the cycle Cn has the set of even edge weights

W (Cn) = {2, 4, · · · , 2n}, then S
2 is even, where S is the sum of the weights. Since the least

weight is 2, by Lemma 2.2 all the vertex labels of Cn must be odd and hence
∑n

i=1 li is odd,

which is a contradiction to
∑n

i=1 li = S
2 by Lemma 2.1.

Assume that Cn has the set of even edge weights W (Cn) = {4, 6, · · · , 2n + 2}. Now the

sum of the labels,
n∑

i=1

li =
S

2
=

(n+ 1)(n+ 2)

2
− 1

is odd and hence each label must odd. Heaviest weight 2n+2 can be obtained by assigning the

label at least n+ 2. Thus, emes(Cn) ≥ n+ 2.

Case 4. Suppose n ≡ 2 (mod 4). If the cycle Cn has an even modular edge irregular labeling,

then the sum of the edge weights S ≡ 2 (mod 4), and hence S
2 is odd. When n ≡ 2 (mod 4),

sum of the labels
∑n

i=1 li is even, which is a contradiction to
∑n

i=1 li = S
2 . Thus, emes(Cn) =∞,

if n ≡ 2 (mod 4). 2
Theorem 2.3 Let Pn be a path of order n ≥ 2. Then

emes(Pn) =




n, if n is odd

n− 1, if n is even.

Proof Let V (Pn) = {vi : i = 1, 2, · · · , n} be the vertex set and let E(Pn) = {ei = vivi+1 :

i = 1, 2, · · · , n} be the edge set of the path Pn.

Define the vertex n-labeling θ : V → {1, 2, · · · , n} as follows:

For 1 ≤ i ≤ n,

θ(vi) =





i, i is odd

i− 1, i is even.

Clearly, θ is an even modular edge irregular labeling of Pn. Thus, the upper bound of
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emes(Pn) can be obtained as follows:

emes(Pn) ≤




n, if n is odd

n− 1, if n is even.

Let us find the lower bound of emes(Pn).

Case 1. Assume that n is odd. Consider the optimal even edge weight W (Pn) = {2, 4, · · · ,
2(n− 1)}. Since the least weight is 2, all the vertices of Pn must receive odd labels. To obtain

the heaviest weight 2(n− 1), we must assign vertex label at least n. Thus, emes(Pn) ≥ n.

Case 2. Assume that n is even. In this case, the lower bound can be obtain directly from

Theorem 2.1. 2
Theorem 2.4 Let K1,n be a star graph of order n+ 1, n ≥ 1. Then emes(K1,n) = 2n− 1.

Proof Let V (K1,n) = {x, vi : i = 1, 2, · · · , n} be the vertex set and let E(K1,n) = {ei =

xvi : i = 1, 2, · · · , n} be the edge set of the path K1,n.

Define the vertex labeling λ1 : V → {1, 2, · · · , 2n− 1} as follows:

λ1(x) = 1,

λ1(vi) = 2i− 1, 1 ≤ i ≤ n.
From the above even modular edge irregular labeling λ1, upper bound of emes(K1,n) is

obtained as follows, emes(K1,n) ≤ 2n− 1.

Consider the optimal even edge weights W (K1,n) = {2, 4, . . . , 2n}. Since the least weight

is 2, the vertex x must be label with 1. To obtain the heaviest weight 2n, we must assign label

at least 2n− 1 to other end vertex. Thus, emes(K1,n) ≥ 2n− 1. Hence the theorem. 2
Theorem 2.5 Let K2,n be the complete bipartite graph of order n+2, n ≥ 2. Then emes(K2,n) =

2n+ 1.

Proof Let V (K2,n) = {x, y, vi : i = 1, 2, · · · , n} be the vertex set and let E(K2,n) =

{xvi, yvi : i = 1, 2, · · · , n} be the edge set of the complete bipartite graph K2,n.

Define the vertex labeling λ2 : V → {1, 2, · · · , 2n+ 1} as follows:

λ2(x) = 1, λ2(y) = 2n+ 1

λ2(vi) = 2i− 1, 1 ≤ i ≤ n.
From the above even modular edge irregular labeling λ2, upper bound of emes(K2,n) is

obtained as follows: emes(K2,n) ≤ 2n+ 1.

Consider the even edge weights of K2,n as 2, 4, · · · , 4n. Since the least edge weight is 2, all

the vertices must receive odd labels. Therefore, we must assign label at least 2n+ 1, to obtain

the heaviest weight 4n. Hence emes(K2,n) ≥ 2n+ 1. 2
A rectangular graph Rn, n ≥ 2, is a graph obtained from the path Pn+1 by replacing each
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edge of the path by a rectangle C4. Let

V (Rn) = {vi : i = 1, 2, · · · , 2n}
⋃
{uj : j = 1, 2, · · · , n+ 1}

be the vertex set and let

E(Rn) = {v2i−1v2i : i = 1, 2, · · · , n}
⋃
{uiui+1 : i = 1, 2, · · · , n}

⋃
{v2i−1ui : i = 1, 2, · · · , n}

⋃
{v2i−2ui : i = 2, 3, · · · , n+ 1}

be the edge set of the the rectangular graph Rn. The following theorem gives the precise value

of even modular edge irregularity strength of rectangular graph.

Theorem 2.6 Let Rn be a rectangular graph of order 3n+1, n ≥ 2. Then emes(Rn) = 4n+1.

Proof Define the vertex labeling α : V → {1, 2, · · · , 4n+ 1} as follows:

α(vi) = 2i− 1, 1 ≤ i ≤ 2n,

α(ui) = 4i− 3, 1 ≤ i ≤ n+ 1.

Upper bound emes(Rn) ≤ 4n+ 1 can be obtained from the above labeling α.

Consider the even edge weights of Rn as 2, 4, · · · , 8n. Since the least weight is 2, all the

vertex labels must be odd. Therefore, we must assign label at least 4n+1, to obtain the heaviest

weight 8n. Hence, emes(Rn) ≥ 4n+ 1. 2
Theorem 2.7 Let tP4, t ≥ 1, denote the disjoint union of t copies of path P4. Then

emes(tP4) = 3t.

Proof Let V (tP4) = {uij : 1 ≤ i ≤ t, 1 ≤ j ≤ 4} be the vertex set and let E(tP4) =

{ui1ui2, ui2ui3, ui3ui4 : 1 ≤ i ≤ t} be the edge set of tP4. Define the vertex labeling β : V →
{1, 2, · · · , 3t} as follows:

β(ui1) = β(ui2) = 3i− 2, 1 ≤ i ≤ t,
β(ui3) = β(ui4) = 3i, 1 ≤ i ≤ t.
Clearly, β is an even modular edge irregular labeling of tP4 and hence emes(tP4) ≤ 3t.

The lower bound emes(tP4) ≥ 3t can be obtained directly from Theorem 2.1. Hence, we get

that emes(tP4) = 3t. 2
Theorem 2.8 Let tC3, t ≥ 2, denote the disjoint union of t copies of cycle C3. Then

emes(tC3) = 3t+ 2.

Proof Let V (tC3) = {vij : 1 ≤ i ≤ t, 1 ≤ j ≤ 3} be the vertex set and let E(tC3) =

{vi1vi2, vi2vi3, vi1vi3 : 1 ≤ i ≤ t} be the edge set of tC3. Define the vertex labeling θ : V →
{1, 2, · · · , 3t+ 2} as follows:

θ(vi1) =





1, i = 1

3t, 2 ≤ i ≤ t,
θ(vi2) = 3i+ 2, 1 ≤ i ≤ t, and θ(vi3) =





3, i = 1

3i+ 1, 2 ≤ i ≤ t,



Even Modular Edge Irregularity Strength of Graphs 81

Clearly, θ is an even modular edge irregular labeling of tP4 and hence emes(tC3) ≤ 3t+ 2.

Consider the optimal edge weights of tC3 as 4, 6, 8, · · · , 6t + 2. Since any two adjacent

vertices of tC3 can not receive the same labels, we must assign label at least 3t+ 2 to get the

heaviest label 6t+ 2. Hence, emes(tC3) ≥ 3t+ 2. 2
Ladder graph Ln = K2 × Pn, n ≥ 3 is formed by taking two isomorphic copies of Pn and

joining the corresponding vertices by an edge. Let V = {ui, vi : 1 ≤ i ≤ n} be the vertex set

and let

E = {uiui+1 : 1 ≤ i ≤ n− 1}
⋃
{vivi+1 : 1 ≤ i ≤ n− 1}

⋃
{uivi : 1 ≤ i ≤ n}

be the edge set of Ln. The following theorem gives the precise value of even modular edge

irregularity strength of ladder graph.

Theorem 2.9 Let Ln = K2 × Pn, n ≥ 3 be the ladder graph. Then

emes(Ln) =





3n− 2, if n is odd,

3n− 1, if n is even.

Proof Defined the vertex labeling φ : V → {1, 2, · · · , 3n− 1} as follows:

φ(ui) =





3i− 2, if i is odd

3i− 3, if i is even
1 ≤ i ≤ n,

φ(vi) =





3i− 2, if i is odd

3i− 1, if i is even.
1 ≤ i ≤ n.

Clearly, φ is an even modular edge irregular labeling of Ln and hence

emes(Ln) ≤





3n− 2, if n is odd,

3n− 1, if n is even.

Lower bound emes(Ln) ≥ 3n− 2, can be obtained directly from Theorem 2.1, when n is

odd.

Suppose n is even. Consider optimal edge weights of Ln as 2, 4, · · · , 6n− 4. Since Ln has a

span cycle, all the vertices of Ln must receive the labels of same parity. Furthermore, to obtain

the edge weight 2, the corresponding end vertices must be label 1, and hence all the labels must

be odd. Thus emes(Ln) ≥ 3n− 1. Hence the theorem. 2
§3. Conclusion

In this paper we introduced a new graph parameter, the even modular edge irregularity

strength, emes(G), as a modular version of edge irregularity strength. We determined the exact

value of even modular edge irregularity strength of some families of graphs and a lower bound

of emes is obtained. However, the determination of upper bound is still open.
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