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Abstract: A complex system . consists m components, maybe inconsistence with m > 2,
such as those of biological systems or generally, interaction systems and usually, a system
with contradictions, which implies that there are no a mathematical subfield applicable.
Then, how can we hold on its global and local behaviors or reality? All of us know that there
always exists universal connections between things in the world, i.e., a topological graph 5’)
underlying components in .. We can thereby establish mathematics over graphs 6’)17 627 e
by viewing labeling graphs 6%1,65 2,--- to be globally mathematical elements, not only
game objects or combinatorial structures, which can be applied to characterize dynamic
behaviors of the system . on time ¢t. Formally, a continuity flow 6L is a topological graph 5’)
associated with a mapping L : (v,u) — L(v,u), 2 end-operators AY, : L(v,u) — LAV (v,u)
and A7, : L(u,v) — LA (u,v) on a Banach space Z over a field .# with L(v,u) = —L(u,v)
and A, (—L(v,u)) = —LA% (v,u) for V(v,u) € E <6) holding with continuity equations

S LM (wu) = L(v),  WweV (?;’) .
weNg(v)
The main purpose of this paper is to extend Banach or Hilbert spaces to Banach or Hilbert
continuity flow spaces over topological graphs {61, 62, e } and establish differentials on
continuity flows for characterizing their globally change rate. A few well-known results such
as those of Taylor formula, ’Hospital’s rule on limitation are generalized to continuity flows,
and algebraic or differential flow equations are discussed in this paper. All of these results
form the elementary differential theory on continuity flows, which contributes mathematical
combinatorics and can be used to characterizing the behavior of complex systems, particu-

larly, the synchronization.
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§1. Introduction

A Banach or Hilbert space is respectively a linear space & over a field R or C equipped with a
complete norm || - || or inner product { - , - ), i.e., for every Cauchy sequence {z,} in &7, there
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exists an element x in 7 such that

nlir&||xn—x||%20 or nhj& (xp —x,2p —x),, =0
and a topological graph ¢(G) is an embedding of a graph G with vertex set V(G), edge set
E(G) in a space ., i.e., there is a 1 — 1 continuous mapping ¢ : G — ¢(G) C ¥ with
o(p) # p(q) if p # q for Vp, q € G, i.e., edges of G only intersect at vertices in ., an embedding
of a topological space to another space. A well-known result on embedding of graphs without
loops and multiple edges in R™ concluded that there always exists an embedding of G that all

edges are straight segments in R™ for n > 3 (1221) such as those shown in Fig.1.

Fig.1

As we known, the purpose of science is hold on the reality of things in the world. However,
the reality of a thing .7 is complex and there are no a mathematical subfield applicable unless
a system maybe with contradictions in general. Is such a contradictory system meaningless
to human beings? Certain not because all of these contradictions are the result of human
beings, not the nature of things themselves, particularly on those of contradictory systems in
mathematics. Thus, holding on the reality of things motivates one to turn contradictory systems
to compatible one by a combinatorial notion and establish an envelope theory on mathematics,
i.e., mathematical combinatorics ([9]-[13]). Then, Can we globally characterize the behavior of a
system or a population with elements> 2, which maybe contradictory or compatible? The answer
is certainly YES by continuity flows, which needs one to establish an envelope mathematical
theory over topological graphs, i.e., views labeling graphs G* to be mathematical elements
([19]), not only a game object or a combinatorial structure with labels in the following sense.

Definition 1.1 A continuity flow (E", L,A) is an oriented embedded graph G ina topological
space . associated with a mapping L : v — L(v), (v,u) — L(v,u), 2 end-operators A7, :
L(v,u) — L% (v,u) and A¥, : L(u,v) — L4 (u,v) on a Banach space B over a field F

A%, L(v,u) At
L(v) L(uw)

v u
Fig.2
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. + - . .
with L(v,u) = —L(u,v) and A}, (=L(v,u)) = —LA%u(v,u) for V(v,u) € E (G) holding with
continuity equation

-
Z LA (v,u) = L(v) for YveV (G)

uENg(v)

such as those shown for vertex v in Fig.3 following

. L(uq,v)

U1

L(ug,v)
L(u2)
u2
L(us,v)
u3 Fig.3 Ue

with a continuity equation
LA (v, u1) 4+ LA2 (v, ug) + LA (v, us) — LA (v, ug) — L% (v, us) — LA (v, ug) = L(v),

where L(v) is the surplus flow on vertez v.
Particularly, if L(v) = &, or constants v,,v € V (6), the continuity flow (6;L,A)

is respectively said to be a complex flow or an action A flow, and G-flow if A = 1, where

N
&y = dxy,/dt, x, is a variable on vertex v and v is an element in B for Vv € E (G .

Clearly, an action flow is an equilibrium state of a continuity flow (E’), L, A). We have
shown that Banach or Hilbert space can be extended over topological graphs ([14],[17]), which
can be applied to understanding the reality of things in [15]-[16], and we also shown that
complex flows can be applied to hold on the global stability of biological n-system with n > 3

in [19]. For further discussing continuity flows, we need conceptions following.

Definition 1.2 Let 9B, P> be Banach spaces over a field F with norms || - |1 and || - |2,
respectively. An operator T : 1 — B is linear if

T (Avy + pva) = AT (vy) + pT (va)

for \,p € F, and T is said to be continuous at a vector vq if there always exist such a number
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d(e) for Ve > 0 that
IT(v) = T (vo)lly <

Zf ||V - V0||1 < 5(5) fOT VV,Vo,V17V2 € %1-

Definition 1.3 Let 9B, P> be Banach spaces over a field F with norms || - |1 and || - |2,
respectively. An operator T : BB1 — B is bounded if there is a constant M > 0 such that

IT(v)ll2

vl

Ty < Mllvly, e, <M

for Yv € B and furthermore, T is said to be a contractor if
[T (v1i) = T (vo)l| < cllvi — v

for¥vi,vo € B with c € [0,1).

We only discuss the case that all end-operators A} | At are both linear and continuous.

VU uv

In this case, the result following on linear operators of Banach space is useful.

Theorem 1.4 Let B, B2 be Banach spaces over a field F with norms ||-||1 and ||-||2, respectively.
Then, a linear operator T : B1 — PBo is continuous if and only if it is bounded, or equivalently,
IT()ll2

IT|:= sup ——— <400
orvez [Vl

Let {51, 62, = } be a graph family. The main purpose of this paper is to extend Ba-
nach or Hilbert spaces to Banach or Hilbert continuity flow spaces over topological graphs
51, 62, e } and establish differentials on continuity flows, which enables one to characterize
their globally change rate constraint on the combinatorial structure. A few well-known results
such as those of Taylor formula, IL’Hospital’s rule on limitation are generalized to continuity
flows, and algebraic or differential flow equations are discussed in this paper. All of these
results form the elementary differential theory on continuity flows, which contributes math-
ematical combinatorics and can be used to characterizing the behavior of complex systems,
particularly, the synchronization.

For terminologies and notations not defined in this paper, we follow references [1] for
mechanics, [4] for functionals and linear operators, [22] for topology, [8] combinatorial geometry,
[6]-[7],[25] for Smarandache systems, Smarandache geometries and Smaarandache multispaces
and [2], [20] for biological mathematics.

§2. Banach and Hilbert Flow Spaces

2.1 Linear Spaces over Graphs

- = — — no—
Let G1, G2, -+, G, be oriented graphs embedded in topological space . with ¢4 = |J G,
i=1

1=
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|

i 18

_
i.e subgraph of ¢ for integers 1 < i < n. In this case, these is naturally an embedding

=

Ql’
N

i

Let ¥ be a linear space over a field .%#. A vector labeling L : G- Visa mapping with

—

L(v),L(e) € ¥ for Vv € V(G),e € E(a)) Define

Lo

6{‘1 + 652 = (61 \ 62>L1 U (61 05}2)L1+L2 U (5)2 \ 5)1) (2.1)

and
— —
A G =GME (2.2)
. ~IL ~Li1 AL .. . .
for VA € .#. Clearly, if , and G*~, G, G5? are continuity flows with linear end-operators
X X =\ =L =L, =L L.
Al and AY, for Y(v,u) € E(G ), G{* + G35 and A - G* are continuity flows also. If we
— —= ~ — —
consider each continuity flow G'F a continuity subflow of 4L, where L : G; = L(G;) but
~ = = —
L: 9\ G; — 0 for integers 1 < i < n, and define O : 4 — 0, then all continuity flows,
— = —
particularly, all complex flows, or all action flows on oriented graphs G1, Go,--- , G, naturally

v
form a linear space, denoted by (<E’>i, 1<i< n> T+, ) over a field .# under operations (2.1)
and (2.2) because it holds with:

(1) A field .# of scalars;

v
(2) A set <Z¥>Z, 1<i< n> of objects, called continuity flows;

(3) An operation “4”, called continuity flow addition, which associates with each pair of

N =L, ALy - = . 4 N =Li, ~Lo - = . v
contlnultyﬂowsGll,G221n<Gi,1§z§n> acont1nu1tyﬂowsG11+G221n<Gi,1§z§n>

)

L ValZhE
called the sum of G{* and G3*, in such a way that

Y. . . —>L1 —)Lz _ —>L2 —>L1
(a) Addition is commutative, G7* + G5* = G5? + G because of

Ghadl = (@-G) U@NG) UG-
- (@.-d)"U(éneg) U@ -a)”
= G+ Gty

o . . _>L1 _)L2 —>L3 _ —>L1 —)Lg —)Lg :
(b) Addition is associative, ( G{* + G3? ) + G5° = Gy + | G5 + G3? ) because if we
let

Li(x), ifze G\ (G,UG)
i(@), if xe G\ (G:UG)
Li(x), if e G\ (6’@6’])
L) = q L), it e (GiNG,)\ Cs (2.3)
L (x), ifze (G:NGK)\ G,
Lji (), if 2 € (G;NG)\ G
Li(z) + Li(z) + Li(z) ifz€ GiNG;N G
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and o
L) =q Lj(x), ifreG;\ G, (2.4)

. — —

Ll(l')-i-LJ(,T), if x e G, Gj

for integers 1 <1, j, k < n, then

(@Us) "8k - (@ UEUE) ™

- b+ (@ UE’;;)L;S =GP+ (Gh+ G

(Gl +c5)+cp

(¢) There is a unique continuity flow O on & hold with O(v,u) =0forV(v,u) € E (?) and
4

— — v — — — —
Vv (%) in <Gi,1 <3< n> , called zero such that GL+0 = G for GL € <Gi,1 <1< n> ;
— — v
(d) For each continuity flow G* € <G i1 <i< n> there is a unique continuity flow
— — —
G~ such that G + G~ L = 0O;

[43

(4) An operation “, called scalar multiplication, which associates with each scalar k in F
¥4
and a continuity flow E:)L in <6Z, 1< < n> a continuity flow k- E:)L in ¥, called the product

of k with @L, in such a way that
v
(a) 1 -E')L = 5L for every E')L in <E¥)i,1 <3< n> :
— —
(b) (klkg) . GL = kl(kg . GL);
© k- (GH + Gl =k - GY + k- Gl
(d) (ky + ko) - G =ky - GL + ko - GT.

N v - v
Usually, we abbreviate (<Gi,1 <i< n> +, ) to <Gi, 1<i< n> if these operations

+ and - are clear in the context.
. = =L =1 L= — . - =
By operation (1.1), G7'+ G5% # G7' ifand only if G4 A Go with L1 : G1\ G2 /4 0 and
L ALs 4 ALs O O i aNG ' i
Gi'+Gy? # Gy? ifand only if Go A Gy with Lo : G2\ G1 # 0, which allows us to introduce
— — —
the conception of linear irreducible. Generally, a continuity flow family {GlL t Gé 2 GEy

is linear irreducible if for any integer 1,
Gi2JG with Li:Gi\|JGi A0, (2.5)
I#i I#i

where 1 < i < n. We know the following result on linear generated sets.

; T AL AL AL
Theorem 2.1 Let ¥ be a linear space over a field % and let {Gl ,G5%, ,Gn“} be an

N
linear irreducible family, L; : G; — ¥V for integers 1 < i < n with linear operators A}

vu?

4 — =L, SL, —>Ln . .
Ar, for Y(v,u) € E(G). Then, { G1',G5%,---, Gy~ ¢ is an independent generated set of
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_ v
<Gi,1 <i< n> , called basis, i.e.,
_ 4
dim<Gi,1§i§n> =n.

e =L, . . . =1 . v .
Proof By definition, G;*,1 < i < n is a linear generated of <Gl-, 1< < n> with

N ]
L;: Gy — 7, ie.,

- v
dim<Gi,1 §i§n> <n.

_
We only need to show that GiLi, 1 <7 < nis linear independent, i.e.,
- 4
dim<Gi,1 <1 §n> >n,
which implies that if there are n scalars ¢y, co, - -+ , ¢, holding with

— — —
aGi 4G+ +e,GE =0,

then ¢; = c; = --- = ¢, = 0. Notice that {51, 62, cee @n} is linear irreducible. We are easily
— — — —
know G; \ U G # 0 and find an element x € E(G; \ |J G;) such that ¢;L;(z) = 0 for integer
£ I#£i
1,1 <4 < n. However, L;(z) # 0 by (1.5). We get that ¢; = 0 for integers 1 <i <n. O

N 4
A subspace of <Gi, 1<i< n> is called an Ag-flow space if its elements are all continuity

flows G with Lv), v eV (5}) are constant v. The result following is an immediately

conclusion of Theorem 2.1.

— = = —

Theorem 2.2 Let G,G1,Go, -+, G, be oriented graphs embedded in a space ./ and ¥V
- = — —

a linear space over a field F. If GYV,GY*, G3%,---,GY" are continuity flows with v(v) =

_
v,vi(v)=v;, €Y forVv eV (G), 1 <i<mn, then
—
(1) <G"> is an Ao-flow space;

—vi Ava v ) ) = — —
(2) <G1 , G2, ,Gn"> is an Ag-flow space if and only if G, = Goa = --- = G, or

vi=vg=---=v, =0.

— — — — —
Proof By definition, GY* + G3? and AGY are Ap-flows if and only if G; = G5 or
vi = vo = 0 by definition. We therefore know this result. O

2.2 Commutative Rings over Graphs

Furthermore, if ¥ is a commutative ring (£%; +, -), we can extend it over oriented graph family
- = —
{G1, G2, -, G,} by introducing operation + with (2.1) and operation - following;:

GGk = (@0\d,) " U(EiNG) " "U (@1 3d)". (2.6)

Ly-Lo
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where Ly - Ly : & — Li(x) - La(z), and particularly, the scalar product for R",n > 2 for
— —
re Gy ﬂ Gs.

R
As we shown in Subsection 2.1, <<E’>i,1 <i< n> ;—|—> is an Abelian group. We show

N %
<Gi, 1< < n> ;+,- | is a commutative semigroup also.

In fact, define

LZ(ZE), if x € al \ EZ—
L;;(JJ): LJ(,T), 1fxeﬁj\_)l
N

—
Ll(l') . Lj(i[]), ifxe G, Gj

. =1 =L — — N\ LS — — \ L3 =1, =L
Then, we are easily known that Gll-GQQZ(GHUGz) :(G1UG2> =Gy G}

L1 ~L - . %z .. . .. .
for VG, G5* € <Gi, 1<i< n> ;- | by definition (2.6), i.e., it is commutative.

Let
i(x), if:veai\ (E’ZUE})
(), itx e E')j \ (EﬂU@k)
L (z), if z e E)k\ (E)ZUE’J)
Lik(x) = ¢ Lij(2), if z € (6iﬂaj) \ G
Lk (x), if z € (ﬁlﬂgk) \5J
Ljk(z), ifx e (5] ﬂ@k) \E')l
Li(z) - Lij(z) - Ly(x) ifx € E')l ﬁj ﬂ@’k
Then,
(G Gp) .Gl = (G.JG)" ab = (6,JG.Jd)"™
G (GuJT) " =G (GhTk)
Thus,

We are also need to verify the distributive laws, i.e.,

Ql
W b~
»N
.
[\
-

G (Gl + @) =G -Gl + Gl

and
(@1 +Gp)-Gp =Gl Tl + Gy Gl 28)
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- = — — %
for VG, G1, Ga € (<Gi,1 §i§n> ;+,-). Clearly,

Ql
ey
~—
Ql
s
+
Ql
N
SN—
I

ar - (GG - (G (@ Ua))
(€:UE) U (6:Uc) " = a5 G+ g Gl

which is the (2.7). The proof for (2.8) is similar. Thus, we get the following result.

; ; AL AL —L ;
Theorem 2.3 Let (%Z;+,) be a commutative ring and let {Gl LGy, Gn"} be a linear
irreducible family, L; : @i — X for integers 1 < i < n with linear operators A}, Al, for

_ _ p vu?
Y(v,u) € E (G) Then, <<Gi, 1<i< n> i+, ) is a commutative Ting.

2.3 Banach or Hilbert Flow Spaces

=L, AL =L . Vel : 4 i i
Let {G1*Y, G5?,---, Gy} be a basis of <Gi, 1<i< n> , where ¥ is a Banach space with a
— — v
norm | - ||. For VG € <Gi,1 <i< n> , define
—
g4 = > @l (2.9)
eEE(a)

= =L, =L — . v .
Then, forVG,Gll,G22€<Gi,1§z§n> we are easily know that

— — —
(1) HGLH >0 and HGLH =0 if and only if G~ = O;

(2) HE*)ELH =¢ H@LH for any scalar &;

(3) H@fl+5’§2 < Hafl +H§§2 because of
jeh+ar| = X Ine@l

ccr(T:\Ba)
+ > L@ L+ Y L)
cer (TN o) ccn(Ta\Th)

< Yoo @l Y el
e€E<61\62) e€E(61ﬂ62)
o B DI T RS S IO ey B rers

ccr(Ta\T)) ccr (TN o)

for ||L1(e) + La(e)|| < ||L1(e)|| + || L2(e)|| in Banach space ¥. Therefore, || - || is also a norm
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N v
on<Gi,1§i§n> .

. . . . . =L, =L — . v
Furthermore, if ¥ is a Hilbert space with an inner product (-, -), for VG, G3* € <Gi, 1< < n> ,

define

(GrGr) = > (L)L)
e€E<61\62)
+ > (Lie), La(e)) + > (Lale), La(e)). (2.10)
cen(d:1nG>) ccB(T\G)

Then we are easily know also that

(1) For VG e (Gi1<i<n) |

—

and <GL,E:’L> — 0 if and only if GL = O.

v
(2) For vG i, Gl e (Gi1<i<n)

because of

(Gr.er) = (L1(e), La(e)) + (L1(e), La(e))

cen () ccB(TNTa)

v Y mOnE - (Gr.ar)

eeE(ﬁz\ffl)
for (Ly(e), La(e)) = (Lz2(e), L1(e)) in Hilbert space ¥.
=L =L, SL — ) v .
(3) For G*,G1*,G5? € <Gi,1 <i< n> and A\, u € .Z, there is

<A5fl + u5§2,5L> = <5fl, 5L> yy <5>§2,5>L>
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because of

Il
=
Qo
-
al
D)
Ql

2)>\L1+ML2 U (52 \ 61)ML2 ,E’L> )
Define Ly, : 5)1 UE’Q — ¥ by

|

)\Ll(,T), if z € Gl\G2

L1A2H (m) = /,LLQ(:E), if v € 62 \ 5)1
ALy (z) + plo(z), if xz € G ﬂal

Then, we know that

</\5>1L1 + ;LE)QLZ,E)L> = (L1,2,(€),L1,2,(e))

and

Notice that
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eGE( 106) 86E(6206)
+ (L(e), L(e))
eEE(g\az)
= (L(e), L(e)) + (L(e), L(e))
eEE(a\al) eEE(a\az)

We therefore know that
(AGI 4+ Gl G) = A (Gl GV) + u(GE, TY).
_
Thus, G” is an inner space

=L, AL =L . . — . v .
IfF{Gy",Gy?,---,GE} is a basis of space ( G;,1 <i<mn) ,we are easily find the exact

formula on L by Lq.Lo,--- , L,. In fact, let
Gl =MGP 4 0\Gh 4 40, G,
where (A1, A2, -+, An) # (0,0,---,0), and let
~ i — — ‘
L: <ﬂ le>\ U Gs HZAMLM
=1 S#kl,---,ki =1

for integers 1 < ¢ < n. Then, we are easily knowing that Lis nothing else but the labeling L
—
on G by operation (2.1), a generation of (2.3) and (2.4) with

b))

eEE(Eﬁi)

> <Z AL, (€), ) M%Lis> : (2.12)
=1 oep(3) =1

i)\lekl (6) 5 (2.11)

=1

e -

@.
I M:
I

S
Ql
“h
Q

&

~—”"
[

NE

i =1

where G'L' = A’lﬁfl + )\'25%2 +ee )\%65" and ai = (m §k1> \ U ﬁs
=1 sFEki, kg

We therefore extend the Banach or Hilbert space ¥ over graphs 61, 52, cee E')n following.

Theorem 2.4 Let 61, 52, e ,an be oriented graphs embedded in a space . and ¥V a Banach
v
space over a field F#. Then <6Z—,1 <5< n> with linear operators Al,, At, for V(v,u) €

vu?

v
E (5) 18 a Banach space, and furthermore, if ¥ is a Hilbert space, <51, 1<i< n> s a
Hilbert space too.
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v
N
Proof We have shown, <Gi, 1< < n> is a linear normed space or inner space if ¥ is a

linear normed space or inner space, and for the later, let
&% =y (exex)

_>L - . v =1 . 4 . P
for GV e (G;,1<i<n) .Then (G;,;,1<i<n is a normed space and furthermore, it is

a Hilbert space if it is complete. Thus, we are only need to show that any Cauchy sequence is
Vv
—
converges in <Gi, 1< < n>

v
— —
In fact, let {H,Ll"} be a Cauchy sequence in { G;,1 <i < n> , i.e., for any number ¢ > 0,

there always exists an integer N(g) such that
— —
e~ <

— no— —
if n,m > N(g). Let 97 be the continuity flow space on ¥ = |J G;. We embed each HL» to
i=1

1=

a @l € 744 by letting

L,(e), if ec E(Hy)
0, 1feeE(§’\ﬁn).

Then

@ Ln —?ZmH = Yo L@l + > [Ln(e) = Lm(e)

c€E(Gu\Gm) cB(GuNGm)
+ Y L@l = [H - H|| <

ceB(T\G)

=7 . . — o, .
Thus, {g L"} is a Cauchy sequence also in ¢ 7. By definition,

i.e., {Ln(e)} is a Cauchy sequence for Ve € E (?), which is converges on in ¥ by definition.

~

Ln(e) = Lim(e)

— —
< Hg% - ngH <e,

Let
L(e) = lim Ly(e)
— —= —= —=
for Ve € E (%) Then it is clear that lim ¥L» = @I which implies that {& I}, ie.,
— —- = — v ~
{Hﬁ"} is converges to 9% € 47, an element in <Gi,1 <i< n> because of L(e) € ¥ for
— — no—
VeeE(%)andgzLJGi. m|
i=1

1=
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§3. Differential on Continuity Flows

3.1 Continuity Flow Expansion

Theorem 2.4 enables one to establish differentials and generalizes results in classical calculus in

v
space <Z¥>1, 1< < n> . Let L be kth differentiable to ¢t on a domain & C R, where k > 1.

Define
AL _> Ldt
s /GLdt J .

dt

&

— G

v
Then, we are easily to generalize Taylor formula in <Z¥>1, 1<i< n> following.

— N RxR"™
Theorem 3.1(Taylor) Let G* € <Gi, 1<i< n> and there exist kth order derivative of

L tot on a domain 9 C R, where k > 1. If AL, AL, are linear for V(v,u) € E (5), then
=L to (t—t0)" = o -k
G = g 4 Lo g ) G 0 4o ((t—t0) F C), (3.1)

for¥tg € 9, where o ((t - to)_k 5’) denotes such an infinitesimal term L of L that

. L(v,u) —
tlig&lo m =0 for VY(v,u)eFE (G) .
Particularly, if L(v,u) = f(t)cou, where cyy is a constant, denoted by f(t)a)LC with L¢ :
(v,u) = cyy forV(v,u) € E (6) and
2 k
£(0) = £(t0) + 1D pr(ag) 4 L0 gy g BBV j00 ) 46 (- 1)),

then

Proof Notice that L(v,u) has kth order derivative to t on & for V(v,u) € F (5’) By
applying Taylor formula on ¢y, we know that
L0, u) (o) LI (i)

5 (t—to)+-+—————40((t—t)")

L(v,u) = L(v,u)(to) + k!

if t — to, where o ((t — to)*) is an infinitesimal term L(v,u) of L(v,u) hold with

lim L(U’u)t
t—to (t — to)
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for V(v,u) € E (E’)) By operations (2.1) and (2.2),

—_—

Gl 4 Gl =Glitle and AGE =GN

because A}, , A, are linear for V(v,u) € F (5) We therefore get

(t —to)"

G 4 ...
GO o ey

=L _ ALt , (o)
GF =g 4 200

6““%>+o«r—myk5)

k=

for tg € 2, where o ((t —to) G) is an infinitesimal term L of L,ie.,

lim L(U’u)t =
t—to (t _ to)

for V(v,u) € E (5}) Calculation also shows that

f(t)aLc(v,u) a) t)Le(v,u) a(f(to)-l- (tZEtO) f(to) -+ (tj:!o)k f(k)(t0)+o((t—t0)k)> Cou
/ 9 _ 2
= f(tO)Cqu + 7f (t0)§| )Cvua) + —f (tO)(;' tO) Cvu?ﬁ

f(k)(fO) (t —to)

o 7!

qu+o(t—m )

_ f(to) + (f - to)f/(to) cex %f(k) (to) +o ((t . tQ)k)) cvua)

i.e.

This completes the proof.
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O

N
Taylor expansion formula for continuity flow G'* enables one to find interesting results on

N
G such as those of the following.

Theorem 3.2 Let f(t) be a k differentiable function tot on a domain 2 C R with 0 € & and

f(OE')) = f(0 )G If AT, AL, are linear for ¥(v,u) € E (5), then

FOT =f (t@) . (3.2)

Proof Let ty =0 in the Taylor formula. We know that
f"0) M)

fO, JOp,

1) = 10)+ 5P+ -

———th 4o (t").
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Notice that
fHG = (fmy+fﬁ) f;)ﬁ+_, !ﬂ2(5k+00@>23
— i FO) L@ 202y s M © )(U)tk+o( 5

[(O)t FB )
TR S T

— J(0)G +

and by definition,

f(t?;’) - f(05)+

because of (tG) = GY =t'G for any integer 1 < i < k. Notice that f(0G) = f(0)G. We

therefore get that
— —
FOC =f (tG) . 0

Theorem 3.2 enables one easily getting Taylor expansion formulas by f (ta) . For example,
let f(t) = e'. Then

—

G = elC (3.3)

by Theorem 3.5. Notice that (ef)’ = e’ and €” = 1. We know that

t t2 th
and
G L o3C _ a)et .565 _ 5 tes 5et+s e(t+S)G, (3'5)

where ¢ and s are variables, and similarly, for a real number « if [¢] < 1,

olo=1)lomntz

(6+t6)a=5’+01‘—f5’+---+ .

3.2 Limitation

eps =L AL =1 . v .
Definition 3.3 Let G*, G{' € <Gi,1 <1< n> with L, Ly dependent on a variable t €

[a,b] C (—o0,+00) and linear continuous end-operators A, for V(v,u) € E (G) For ty €

[a,b] and any number ¢ > 0, if there is always a number d(e) such that if |t — to] < d(g)
AL _ AL AL ; AL

then ||G7" — G H < g, then, G7{* is said to be converged to G* as t — to, denoted by

L —>L . . —>L . . . . =1
lim G{* = G*. Particularly, if G* is a continuity flow with a constant L(v) for Vv € V (G)

t—>t0

=L - . =1 .
and tyg = +o00, G is said to be G -synchronized.
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Applying Theorem 1.4, we know that there are positive constants c¢,, € R such that
—
|AL < ¢f, for Y(v,u) € E (G)

By definition, it is clear that

|o -2

o (GRON B (CHALI A Y (CALD

-z ZACTORY) EOD SRR (7 2255 FOR) RS D )
N o

u€Ng, n G @) ueNg\g, (v)

< Y dubiwwl+ Yl =D @a)l+ Y el Lv,w)l.

uENG,\g(v) u€Ng, ncv) ueNg\ g, (v)

and || L(v,u)|| > 0 for (v,u) € E (Zﬁ) and F (61) Let

max _ =+ +
= max C max C .
NEHC {(v,u)eE(Gl) VW () EE(GL) ”“}

ALy AL : max Val Vi
If HGl -G H < ¢, we easily get that ||Li(v,u)|| < cgi%e for (v,u) € E(G1 \ G),

(L1 — L)(w,u)]| < c2%e for (v,u) € E(Zz’lm@) and || — L(v,u)]| < c2%e for (v,u) €
E (5’ \ 5’1).

Conversely, if || L1(v,u)| < € for (v,u) € E (@1 \6), (L1 — L)(v,u)|| < € for (v,u) €
— — - =
E (Gl N G) and || — L(v,u)|| < e for (v,u) € E (G \ G1>, we easily know that

e I VR L RIS (R 20 I

Gi\a (v uENG, nc(v)

+ Z H—LAL(U,U)H

u€Ng\a, (v)

< Y alhiwwl+ Y ehll(Zi = L) (vu)

uENG,\c(v) uENg, nc(v)

+ Z C'u+u|| —L(v,u)”

UENG\Gl (’U)

G\ G cmaxg+‘c ﬂc‘cg%w‘é’\é’l‘crg%g_‘01UG‘cgf§;g

. " . AL _ AL .
Thus, we get an equivalent condition for thr? G{' = G* following.
—1lo

Theorem 3.4 tli>ntlf) E‘)fl ~- Gt if and only if for any number e > 0 there is always a number §(¢)
such that if |t — to| < d(e) then ||Li(v,u)|| < e for (v,u) € E (@1 \ 6), (L1 — L)(v,u)|| < e
for (v,u) € E (5 ﬂg) and || — L(v,u)| < ¢ for (v,u) € E (5) \ 51),1'.6., 6%1 — G is an
infinitesimal or hm (GL1 5L) =0.
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If tling Gl thng GlLl and hng G2L2 exist, the formulas following are clearly true by defi-
—lo t— 0

nition:

éle + 6’;“) = lim G1L1 + hm G2L2,

t—to

— —
lim (GlLl ~G2L2) = lim G;% - lim Gyl
t—to t—to t—to

lim (GF- (EJ_;L1 + 6‘;“)) — lim G- lim G1L1 + lim G- lim a;LQ,
t—>t0 t—>t0 t—t 0 —>t() t—>t0

— —
lim ((G 'y Ga L2)-GL) — lim G121 - lim GF + lim GoF2 - lim G T
t—to t—to t—to t—to t—to

. . -
and furthermore, if thr? Go2 # O, then
—lo

. —
lim Gol2
t—to

~ L B lim GlLl
lim (Cil, ) — lim (ch’Ll .CTQ’LJ) _ itz

Theorem 3.5(L’Hospital’s rule) Iftlir? CT{Ll =0, tlir? CT;% = O and Ly, Ly are differentiable
—1o —1o
respect to t with tlintl Li(v,u) = 0 for (v,u) € E (61 \52), tlintl Li(v,u) # 0 for (v,u) €
— — o — — e
E (Gl N Gg) and tlintl Li(v,u) =0 for (v,u) € E (GQ\ Gl), then,
—to

= lim G5
im 1

lim Gi = ot 1
— = ——.

t—=to \ Gol2 lim Gyl

t—to
Proof By definition, we know that
G, L — -1
tlgltlo <CT:)L2> = tlirg) (GlLl Gyl )
-y (60" (@5 (G0
- i (GNG)"" =y (G20
lim L’q
—tg

= (GNE)M T = (@NEa)

_ (51\62)H’20L (G ﬂG )JH?OLl him L'y (52\51)t£“20”

— L

im L/ =1 lim G*
- a)tlintjo Iy a)rlinrlo Ly _ t—to 1
= 1 . 2 - _>
lim G
t—>t0

This completes the proof. O
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Corollary 3.6 If tling Gl = O, tlir? Gl =0 and L1, Lo are differentiable respect to t with
—lo —10

tlintl Li(v,u) #0 for (v,u) € E (6), then

lim G
= 1m 1
. G t—to
1im

t—to \ G Lo

Generally, by Taylor formula

. -7
lim G L2
t—to

k
Go = G L =g 4 0 0w L (4214,

iy k!

if L =L — o= gD = d L - I — ... = %D —0b
if Ly(to) = Li(to) = -~~~ = Ly (to) = 0 and La(to) = Ly(to) = --- = Ly (o) = O but
L (o) # 0, then

=L (t_to)k_’L(k)(t) =

Gl = LT Ghitt +o((t—t0) Gl),

k!
k
t— ¢ * -
552 = 7( k'O) 552 (t0)+0((t—t0) kag)

We are easily know the following result.

=L ) =0

— —
Theorem 3.7 If tling Gl =0, tling Gol2 = O and Li(to) = L) (to)
—to —1l0

and Lo(to) = Liy(te) = -~ = LY V(o) = 0 but L () #£ 0, then
. LM (ko)
lim aLl _ tlg% 1
t=to 5’52 i ﬁgém(to)'
t—>t0
— — —
Example 3.8 Let G1 = G2 = Cp, A}, =1, AL,  =2and
- h+ (@ -1 F@) N n!
L 2i—1 (2n + 1)et
for integers 1 < i <n in Fig.4.
n fi v2
fn | 1£2
i s
Un Vi+1 V; V3

Fig.4
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Calculation shows That

it @-D)F@  h+ (27 1) F@)

Lvi) = 2fii—fi=2x 9 51
. n!
= F(@) + Gnine

where, L(v;) = F(z) for

no

— —>
Calculation shows that lim L(v;) = F(Z), i.e., lim CL = CL
_ t~>_o)o t—o0
integers 1 < i < n, i.e., CL is G-synchronized.
84. Continuity Flow Equations

A continuity flow GL is in fact an operator L : G — % determined by L(v,u) € £ for
—
VY(v,u) € E (G) Generally, let

Liyw Ly -+ Ly

L] B Loy Las -+ Loy
mXxXn —

Lml Lm2 e Lmn

with Lj; : 5} — A for1 <i<m,1<j<n, called operator matrix. Particularly, if for integers
1<i<m,1<j<n,Lj: Z:’ — R, we can also determine its rank as the usual, labeled the
edge (v,u) by Rank[L]mxn for Y(v,u) € E (5’) and get a labeled graph GRank[L] Then we
get a result following.

Theorem 4.1 A linear continuity flow equations

— — — —
leLu +£L‘2GL12 + ...+anLn1 =Gk

— — — —
leLzl +.’L‘2GL22 + ..._|_anLG = G L2

(4.1)
2G4 25 Glne 4o o3, Glon = Gln
is solvable if and only if
G Rank[L] _ a)Rank[f], (4.2)
where
Liw Liz -+ Lin Liw Liz -+ Lin ILn
L] = Loy Loy -+ Loy and  [L] = Loy Loy -+ Loy Lo

Lnl Ln2 e Lnn Lnl Ln2 e Lnn Ln
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Proof Clearly, if (4.1) is solvable, then for V(v,u) € E (5’), the linear equations

x1L11(v,u) + xoLia(v,u) + -+ + xp Lpa (v, u0 = Ly (v, u)
x1Lo1(v,u) + xoLog(v,u) + - -+ + @y Lo (v, u0 = La(v, u)

x1Lp1(v,u) + xoLpa(v,u) + -+ + Ty L (v, u0 = Ly (v, w)

is solvable. By linear algebra, there must be

Lii(v,u) Lia(v,u) -+ Lip(v,u)
Rank Loi(v,u)  Loo(v,u) -+ Lop(v,u) _
Lypi(v,u) Lpa(v,u) -+ Lpn(v,u)
Lii(v,u)  Lis(v,u) -+ Lin(v,u)  Li(v,u)
Loty(v,u) Los(v,u) -+ Lop(v,u) Lo(v,u)
Rank ’
Loi(v,u) Lpa(v,u) -+ Lpn(v,u)  Lp(v,u)

which implies that
5}Rank[L] — 6Rank[f] )

Conversely, if the (4.2) is hold, then for V(v,u) € E (6), the linear equations

x1L11(v,u) + xoLia(v,u) + -+ + xp Lpa (v, u0 = Ly (v, u)
x1Lo1(v,u) + xoLog(v,u) + - -+ + @y Lo (v, u0 = La(v, u)

21 Lp1(v,u) + 2o Lna(v,u) + -+ + @y Ly (v,u0 = Ly, (v, u)

39

is solvable, i.e., the equations (4.1) is solvable. |
Theorem 4.2 A continuity flow equation
)\SaLs + /\SflaLsfl 4t aLU =0 (4.3)
— —
always has solutions GI> with Ly : (v,u) € E (G) — {AVE NG AV where AVY, 1 < i< s
are roots of the equation
QYN ol N T gt =0 (4.4)

with L; : (v,u) — o™, a¥ # 0 a constant for (v,u) € E (5) and 1 <i<s.

For (v,u) € E (5), if n®" is the mazimum number i with L;(v,u) # 0, then there are
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11 n'" solutions E’Lx, and particularly, if Ls(v,u) # 0 for V(v,u) € E (6), there are
solutions G > of equation (4.3).

Proof By the fundamental theorem of algebra, we know there are s roots Ay", Ay%,--- A%

for the equation (4.3). Whence, LAZ?) is a solution of equation (4.2) because of

(3@)"-@% + (@) -G (AT TR

= 5*5Ls + 5A571L571 4t aAOLo — 6A3LS+>\S*1LS,1+...+LO

and
ML+ N1 g+ -+ Lo (v,u) = a?N +a?™ XN 4 paft =0,

for V(v,u) € E (E’)), ie.,
(Aﬁ)s Gl (Aﬁ)s_l Gl gy (A@)O .Gl =0G = 0.

Count the number of different Ly for (v,u) € FE G). It is nothing else but just n"*.

Therefore, the number of solutions of equation (4.3) is 11 nv. O
(v,u)EE(a)

Theorem 4.3 A continuity flow equation

dG*
— —
= GLD‘ . GL 45
o (4.5)
— —
with initial values G = G2 always has a solution

t=0

L — GlLs. (etLaa))
where Ly : (v,u) — oy, Lg: (v,u) — Byy are constants for ¥V(v,u) € E (5)

Proof A calculation shows that

Yal?
Eg% _ dG _ E’LQ .5}L _ E’LQ»L,
dt
which implies that
dL
— = L 4.6
praks (4.6)

for V(v,u) € E (6)

Solving equation (4.6) enables one knowing that L(v,u) = By,e'® for V(v,u) € E (6)
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Whence, the solution of (4.5) is

—

OL — @Llee'™ _ GLs (etLan)

and conversely, by Theorem 3.2,

— tLo Lo
dc(;Lﬁe _ a,d(Lﬁ;: ) . GLaLﬁetLQ
_ E’La .E)Lgetl’o‘
ie.,
_
dG*t _OLa.@L
dt
— — —
if G =Gl . (etLﬂ G). This completes the proof. O

Theorem 4.3 can be generalized to the case of L : (v,u) — R™ n > 2 for V(v,u) € E (6)

Theorem 4.4 A complex flow equation

dG -
— —

=Gl G*F 4.7

7 (4.7)
— —
with initial values G * = GLs always has a solution
t=0
Grogn (G),
where Ly @ (v,u) — (a})u,agu,~-~ ,aﬁu), Lg : (v,u) — ( L B2 ffu) with constants
al,, Bt 1<i<n forV(v,u) € E (6)
Theorem 4.5 A complex flow equation
— —
dnGL dn—l GL
GlLan | o+ Glonos . — et GLleo . GL = 0O (4.8)

with La, : (v,u) — of* constants for ¥(v,u) € E (6) and integers 0 < i < n always has a

. _>L .
general solution G** with

Ly : (v,u) — { 0, Zhi(t)ewut }
i=1

for (v,u) € E (6}) , where by, (t) is a polynomial of degree< m;—1 ont, mi+mao+---+ms =n

and AJ*, A8%, -+ S AV are the distinct roots of characteristic equation

QYN 4 Al NPT gt =0
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with a®™ # 0 for (v,u) € E (6)

Proof Clearly, the equation (4.8) on an edge (v,u) € E (6) is

A AORT ou AV1L(v,u)

W —gm T gt Tt =0 (4.9)

As usual, assuming the solution of (4.6) has the form G = M@, Calculation shows that

dG L

- = MG = \G,
degL = A2ME =220,
dn@L _

G = AeE=aG

Substituting these calculation results into (4.8), we get that
(AnaLa" + )\nfla)Lan71 + -+ aLO‘O) . E)L _ O7

ie.,
GV Lap A" Lo+ +Lag) L _
b

_
which implies that for V(v,u) € E (G),

ATl N g =0 (4.10)
or
L(v,u) = 0.
Let AT“, A5%, -+, AZ" be the distinct roots with respective multiplicities mj", ms*, --- ,my"

of equation (4.8). We know the general solution of (4.9) is
L(v,u) = Z hi(t)ei™t
i=1

with Ay, (t) a polynomial of degree< m; —1 on ¢ by the theory of ordinary differential equations.
—
Therefore, the general solution of (4.8) is G'X* with

Ly : (v,u) — { 0, Zhi(t)e)‘lwt }
i=1

for (v,u) € E (5}) O
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§85. Complex Flow with Continuity Flows

The difference of a complex flow G with that of a continuity flow G is the labeling L on a

vertex is L(v) = &, or z,. Notice that
d At d At
7 Z L% (vyu) | = Z %L vu (v, u)
uENg(v) uENg(v)

— . =L L. =9
for Vv € V [ G'). There must be relations between complex flows G~ and continuity flows G *~.

We get a general result following.
t t
Theorem 5.1 If end-operators A}, Al, are linear with [/ ,Aju] = [/ ,AIU] =0 and
0 0
d d
[E,AL} = [E,AL} = 0 for V(v,u) € E(@), and particularly, A}, = 1y, then GL e
— RxR"
<Gi,1 <i< n> is a continuity flow with a constant L(v) for Vv € V ( if and only if

N
¢)
t = . . . —
G™dt is such a continuity flow with a constant one each vertex v, v €'V (G)
0

¢ d
Proof Notice that if A}, = 1y, there always is [/ ,Aju] =0 and [a, Aju] =0, and by
0

t t
0 o [ean-ane .
0 0

d
o —.
dt

definition, we know that

4]

d d
—, AT 0 —o Al = Al
|:dt7 vu:| <:> dt © VU VU

— —
If G is a continuity flow with a constant L(v) for Vv € V/ (G), ie.,
Z LA (v,u)=v for Yo eV (5) ,
’U.GNG-('U)
we are easily know that

./Ot (uegc:(u)LA?u (uu)) dt uegg:(v) (/()t oAffu) L(v,u)dt = Z (A;ru o /;) L(v, w)dt

u€ENg(v)

> AL (/OtL(v,u)dt) :/Otvdt

uENg(v)

— t t_,
for Vv € V ( G ) with a constant vector / vdt, i.e., / GLdt is a continuity flow with a
0 0

constant flow on each vertex v, v € V (E’))

t
N
Conversely, if / GLdt is a continuity flow with a constant flow on each vertex v, v €
0
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v (G), ie,
(@ | )
Z Ajuo/ L(v,u)dt = v for VUEV(G),
uENg(v) 0
then
t_,
d(/ GLdt)
agr_-_\No  J
G = dt

N
is such a continuity flow with a constant flow on vertices in G because of

d( ) LAL(U,U)>

uENg(v)

|
| =
o
eih
g +
o
ﬁ
=
£
<
N~—
QL
~

dt
uENg(v)
= A Lo, u)dt — L(v, )5 = &Y
- Z vuoﬁo o (v, u)dt = Z (v,u) W_E
uENG(v) uwENg(v)
. dv = :
with a constant flow T on vertex v, v € V (G) This completes the proof. O

¢
If all end-operators A, and A, are constant for V(v,u) € E (Zf), the conditions [/ , Aju]
0

¢
d d
[/ ,AIU] =0 and [a, Aju] = {a, AIU] = 0 are clearly true. We immediately get a conclu-
0

sion by Theorem 5.1 following.

Corollary 5.2 For ¥(v,u) € E (5’), if end-operators A}, and A}, are constant cyy, cuy for
— — — RxR™
V(v,u) € E (G), then GE € <GZ—,1 <i< n> is a continuity flow with a constant L(v)
t
forvv eV (5) if and only zf/ GLdt is such a continuity flow with a constant flow on each
0

R
vertex v, v € V (G)
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