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§1. Introduction

A Galilean space is a three dimensional complex projective space, where {w, f, I1, I2} consists

of a real plane w (the absolute plane), real line f ⊂ w (the absolute line) and two complex

conjugate points I1, I2 ∈ f (the absolute points). We shall take as a real model of the space

G3, a real projective space P3 with the absolute {w, f} consisting of a real plane w ⊂ G3 and a

real line f ⊂ w on which an elliptic involution ε has been defined. The Galilean scalar product

between two vectors a = (a1, a2, a3) and b = (b1, b2, b3) is defined [3]

(a.b)G =





a1b1, if a1 6= 0 or b1 6= 0,

a2b2 + a3b3, if a1 = b1 = 0.

and the Galilean vector product is defined

(a ∧ b)G =






∣∣∣∣∣∣∣∣

0 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣
, if a1 6= 0 or b1 6= 0,

∣∣∣∣∣∣∣∣

e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣
, if a1 = b1 = 0.
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Let α : I → G3, I ⊂ R be an unit speed curve in Galilean space G3 parametrized by the

invariant parameter s ∈ I and given in the coordinate form

α (s) = (s, y (s) , z (s)). Then the curvature and the torsion of the curve α are given by

κ (s) = ‖α′′ (s)‖ , τ (s) =
1

κ2 (s)
Det (α′ (s) , α′′ (s) , α′′′ (s))

respectively. The Frenet frame {t, n, b} of the curve α is given by

t (s) = α′ (s) = (1, y′ (s) , z′ (s)) ,

n (s) =
α′′ (s)

‖α′′ (s)‖ =
1

κ (s)
(1, y′′ (s) , z′′ (s)) ,

b (s) = (t (s) ∧ n (s))G =
1

κ (s)
(1,−z′′ (s) , y′′ (s)) ,

where t (s) , n (s) and b (s) are called the tangent vector, principal normal vector and binormal

vector, respectively. The Frenet formulas for α (s) given by [3] are





t′ (s)

n′ (s)

b′ (s)



 =





0 κ (s) 0

0 0 τ (s)

0 −τ (s) 0









t (s)

n (s)

b (s)



 . (1.1)

The binormal motion of curves in the Galilean 3-space is equivalent to the nonlinear Schrödinger

equation (NLS−) of repulsive type

iqb + qss −
1

2
|〈q, q〉|2 q̄ = 0 (1.2)

where

q = κ exp

(∫ s

0

σds

)
, σ=κexp

(∫ s

0

rds

)
. (1.3)

§2. Basic Properties of Intrinsic Geometry

Intrinsic geometry of the nonlinear Schrodinger equation was investigated in E3 by Rogers and

Schief. According to anholonomic coordinates, characterization of three dimensional vector

field was introduced in E3 by Vranceau [5], and then analyse Marris and Passman [3].

Let φ be a 3-dimensional vector field according to anholonomic coordinates in G3. The

t , n , b is the tangent, principal normal and binormal directions to the vector lines of φ. In-

trinsic derivatives of this orthonormal triad are given by following

δ

δs





t

n

b



 =





0 κ 0

0 0 τ

0 −τ 0









t

n

b



 (2.1)
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δ

δn





t

n

b



 =





0 θns (Ωb + τ)

−θns 0 −divb

− (Ωb + τ) divb 0









t

n

b



 (2.2)

δ

δb





t

n

b



 =





0 − (Ωn + τ) θbs

(Ωn + τ) 0 divn

−θbs −divn 0









t

n

b



 , (2.3)

where δ
δs , δ

δn and δ
δb are directional derivatives in the tangential, principal normal and binormal

directions in G3. Thus, the equation (2.1) show the usual Serret-Frenet relations, also (2.2) and

(2.3) give the directional derivatives of the orthonormal triad {t ,n , b} in the n- and b-directions,

respectively. Accordingly,

grad = t
δ

δs
+ n

δ

δn
+ b

δ

δb
, (2.4)

where θbs and θns are the quantities originally introduced by Bjorgum in 1951 [2] via

θns = n · δt

δn
, θbs = b · δt

δb
. (2.5)

From the usual Serret Frenet relations in G3, we obtain the following equations

divt = (t
δ

δs
+ n

δ

δn
+ b

δ

δb
)t = t(κn) + n

δt

δn
+ b

δt

δb
= θns + θbs, (2.6)

divn = (t
δ

δs
+ n

δ

δn
+ b

δ

δb
)n = t(τb) + n

δn

δn
+ b

δn

δb
= b

δn

δb
, (2.7)

divb = (t
δ

δs
+ n

δ

δn
+ b

δ

δb
)b = t(−τn) + n

δb

δn
+ b

δb

δb
= n

δb

δn
. (2.8)

Moreover, we get

curlt =

(
t × δ

δs
+ n × δ

δn
+ b × δ

δb

)
t

= t × (κn) + n × δt

δn
+ b × δt

δb

=

[
δt

δn
b − δt

δb
n

]
(1, 0, 0) + κb

⇒ curlt = Ωs (1, 0, 0) + κb, (2.9)

where

Ωs = t · curlt = b · δt

δn
− n · δt

δb
(2.10)

is defined the abnormality of the t-field. Firstly, the relation (2.9) was obtained in E3 by
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Masotti. Also, we find

curln =

(
t × δ

δs
+ n × δ

δn
+ b × δ

δb

)
n

= t × (τb) + n × δn

δn
+ b × δn

δb

=

[
t · δn

δb
− τ

]
n +

(
b

δn

δn

)
(1, 0, 0)−

(
t
δn

δn

)
b

⇒ curln = − (divb) (1, 0, 0) + Ωnn + θnsb, (2.11)

where

Ωn = n · curln = t · δn
δb
− τ (2.12)

is defined the abnormality of the n-field and

curlb =

(
t × δ

δs
+ n × δ

δn
+ b × δ

δb

)
b

= t × (−τn) + n ×
[(

t
δb

δn

)
t

]
+ b ×

[(
t
δb

δb

)
t +

(
n

δb

δb

)
n

]

= −
[
τ + t · δb

δn

]
b +

(
t
δb

δb

)
n +

(
b

δn

δb

)
(1, 0, 0),

⇒ curlb = Ωbb − θbsn + (divn) (1, 0, 0) , (2.13)

where

Ωb = b · curlb = −
(

τ + t · δb
δn

)
(2.14)

is defined the abnormality of the b-field. By using the identity curlgradϕ = 0, we have

(
δ2ϕ

δnδb
− δ2ϕ

δbδn

)
t +

(
δ2ϕ

δbδs
− δ2ϕ

δsδb

)
n +

(
δ2ϕ

δsδn
− δ2ϕ

δnδs

)
b

+
δϕ

δs
curlt +

δϕ

δn
curln +

δϕ

δb
curlb = 0. (2.15)

Substituting (2.9), (2.11) and (2.13) in (2.15), we find

δ2φ

δnδb
− δ2φ

δnδb
= −δφ

δs
Ωs +

δφ

δn
(divb)− δφ

δb
(divn)

δ2φ

δbδs
− δ2φ

δsδb
= −δφ

δn
Ωn +

δφ

δb
θbs

δ2φ

δsδn
− δ2φ

δnδs
= −δφ

δs
κ− δφ

δn
θns −

δφ

δb
Ωb. (2.16)

By using the linear system (2.1), (2.2) and (2.3) we can write the following nine relations

in terms of the eight parameters κ, τ, Ωs, Ωn, divn ,divb, θns and θbs. But we take (2.20),
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(2.21) and (2.22) relations for this work.

δ

δb
θns +

δ

δn
(Ωn + τ) = (divn) (Ωs − 2Ωn − 2τ) + (θbs − θns) divb + κΩs, (2.17)

δ

δb
(Ωn − Ωs + τ) +

δ

δn
θbs = divn (θns − θbs) + divb (Ωs − 2Ωn − 2τ) , (2.18)

δ

δb
(divb) +

δ

δn
(divn) = (τ + Ωn) (τ + Ωn − Ωs)− θnsθbs − τΩs

− (divb)2 − (divn)2 , (2.19)

δ

δs
(τ + Ωn) +

δκ

δb
= −Ωnθns − (2τ + Ωn) θbs, (2.20)

δ

δs
θbs = −θ2

bs + κdivn − Ωn (τ + Ωn − Ωs) + τ (τ + Ωn) , (2.21)

δ

δs
(divn)− δτ

δb
= −Ωn (divb)− θbs (κ + divn) , (2.22)

δκ

δn
− δ

δs
θns = κ2 + θ2

ns + (τ + Ωn) (3τ + Ωn)− Ωs (2τ + Ωn) , (2.23)

δ

δs
(τ + Ωn − Ωs) = −θns (Ωn − Ωs) + θbs (−2τ − Ωn + Ωs) + κdivb, (2.24)

δτ

δn
+

δ

δs
(divb) = −κ (Ωn − Ωs)− θnsdivb + (divn) (−2τ + Ωn + Ωs) . (2.25)

§3. General Properties

The relation
δn

δn
= κnnn = −θnst − (divb) b (3.1)

gives that the unit normal to the n-lines and their curvatures are given, respectively, by

nn =
−θnst − (divb) b

‖−θns − (divb) b‖ =
−θnst − (divb) b

−θns
, (3.2)

κn = −θns. (3.3)

In addition, from the relation (2.11) can be written,

curln = Ωnn + κnbn, (3.4)

where

bn = n × nn =
− (divb) (1, 0, 0) + θnsb

−θns
(3.5)
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gives the unit binormal to the n-lines. Similarly, the relation

δb

δb
= κbnb = −θbst − (divn)n (3.6)

gives that the unit normal to the b-lines and their curvature are given, respectively, by

nb =
θbst + (divn)n

θbs
, (3.7)

κb = −θbs. (3.8)

Moreover, from the relation (2.13) we can be written as

curlb = Ωbb + κbbb, (3.9)

where

bb = b × nb =
θbsn − (divn) (1, 0, 0)

θbs
(3.10)

is the unit binormal to the b-line. To determine the torsions of the n-lines and b-lines, we take

the relations
δbn

δn
= −τnnn, (3.11)

δbb

δb
= −τbnb, (3.12)

respectively. Thus, from (3.11) we have

− δ

δn
(ln |κn|) (divb)− δ

δn
(divb)− θns (Ωb + τ) = τnθns, (3.13)

− δ

δn
ln |κn| θns +

δ

δn
θns = τn (divb) . (3.14)

Accordingly,

τn =






− (Ωb + τ) + divb

θns

δ
δn ln

∣∣ θns

divb

∣∣ if divb 6= 0, θns 6= 0

− (Ωb + τ) if divb = 0, θns 6= 0

or θns = 0, divb 6= 0.

(3.15)

Similarly, from (3.12) we have

− δ

δb
(lnκb) (divn) +

δ

δb
(divn)− θbs (Ωn + τ) = τbθbs, (3.16)

δ

δb
(lnκb) θbs −

δ

δb
θbs = τb (divn) . (3.17)
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Thus,

τb =






− (Ωn + τ)− (divn)
θbs

δ
δb ln

∣∣ θbs

divn

∣∣ if divn 6= 0, θbs 6= 0,

(Ωn + τ) if divn = 0, θbs 6= 0

or θbs = 0, divn 6= 0.

(3.18)

Also, we obtain an important relation

Ωs − τ =
1

2
(Ωs + Ωn + Ωb) (3.19)

is obtained by combining the equations (2.10), (2.12) and (2.14). Ωs, Ωn and Ωb are defined

the total moments of the t , n and b congruences, respectively.

In conclusion, we see that the relation (3.19) has cognate relations

Ωn − τn =
1

2
(Ωn + Ωnn

+ Ωbn
) , (3.20)

Ωb − τb =
1

2
(Ωb + Ωnb

+ Ωbb
) , (3.21)

where

Ωnn
= nn · curlnn, Ωbn

= bn · curlbn,

Ωnb
= nb · curlnb, Ωbb

= bb · curlbb.
(3.22)

§4. The Nonlinear Schrödinger Equation

In geometric restriction

Ωn = 0 (4.1)

imposed. Here, our purpose is to obtain the nonlinear Schrodinger equation with such a restric-

tion in G3. The condition indicate the necessary and sufficient restriction for the existence of a

normal congruence of Σ surfaces containing the s-lines and b-lines. If the s-lines and b-lines are

taken as parametric curves on the member surfaces U = constant of the normal congruence,

then the surface metric is given by [4]

IU = ds2 + g (s, b) db2. (4.2)

where g11 = g(s, s), g12 = g(s, b), g22 = g(b, b), and

gradU = t
δ

δs
+ b

δ

δb
= t

∂

∂s
+

b

g1/2

∂

∂b
. (4.3)

Therefore, from equation (2.1) and (2.3), we have

∂

∂s





t

n

b



 =





0 κ 0

0 0 τ

0 −τ 0









t

n

b



 (4.4)
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g−1/2 ∂

∂b





t

n

b



 =





0 − (Ωn + τ) θbs

(Ωn + τ) 0 divn

−θbs −divn 0









t

n

b



 . (4.5)

Also, if r shows the position vector to the surface then (4.4) and (4.5) implies that

rbs =
∂t

∂b
= g1/2 [−τn + θbsb] (4.6)

and

rsb =
∂

∂s

(
g1/2

b

)
= −g1/2τn +

∂g1/2

∂s
b. (4.7)

Thus, we obtain

θbs =
1

2

∂ ln g

∂s
. (4.8)

In the case Ωn = 0, the compatibility conditions equations (2.20)-(2.22) become the non-

linear system
∂τ

∂s
+

∂κ

∂b
= −2τθbs, (4.9)

∂

∂s
θbs = −θ2

bs + κdivn + τ2, (4.10)

∂

∂s
(divn)− ∂τ

∂b
= −θbs(κ + divn). (4.11)

The Gauss-Mainardi-Codazzi equations become with (4.8)

∂

∂s
(g1/2divn) + κ

∂

∂s
(g1/2)− ∂τ

∂b
= 0, (4.12)

∂

∂s
(gτ) + g1/2 ∂κ

∂b
= 0, (4.13)

(g1/2)ss = g1/2(κdivn + τ2). (4.14)

With elimination of divn of between (4.12) and (4.14), we have

∂τ

∂b
=

∂

∂s

[(
g1/2

)
ss
− τ2g1/2

κ

]
+ κ

∂

∂s

(
g1/2

)
. (4.15)

If we accept

g1/2 = λκ,

where λ varies only in the direction normal congruence, then λb → b, thus the pair equations

(4.13) and (4.15) reduces to

κb = 2κsτ + κτs, (4.16)

τb =

(
τ2 − κss

κ
+

κ2

2

)

s

. (4.17)
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By using equations (4.16) and (4.17), we obtain

iqb + qss −
1

2
|〈q, q〉|2 q̄ − Φ (b) q = 0, (4.18)

where Φ (b) =
(
τ2 − κss

κ + κ2

2

)

s=s0

. This is nonlinear Schrodinger equation of repulsive type.
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