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81. Introduction

A Galilean space is a three dimensional complex projective space, where {w, f, I, Iz} consists
of a real plane w (the absolute plane), real line f C w (the absolute line) and two complex
conjugate points I, Iy € f (the absolute points). We shall take as a real model of the space
G3, a real projective space P; with the absolute {w, f} consisting of a real plane w C G5 and a
real line f C w on which an elliptic involution € has been defined. The Galilean scalar product

between two vectors a = (a1, as,as) and b = (b1, ba, bs) is defined [3]

albl, Zf a1 #007‘ b17é0,

(a.b)y =
“ asbs + aszbs, if a3 =b; =0.

and the Galilean vector product is defined

0 e e3

ap ag asz |, ifar#0orb #0,
(aAb) = bi by b3

€1 €2 €3

a1 as as |, tfar=0b=0.

by by b
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Let @« : I — Gs3, I C R be an unit speed curve in Galilean space G3 parametrized by the
invariant parameter s € I and given in the coordinate form
a(s) = (s,y(s),2z(s)). Then the curvature and the torsion of the curve « are given by

k()= o (). 7(s) = s Det (o (5).0” ()0 (5)

respectively. The Frenet frame {¢,n, b} of the curve « is given by
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where ¢ (s), n(s) and b (s) are called the tangent vector, principal normal vector and binormal

vector, respectively. The Frenet formulas for « (s) given by [3] are

t' (s) 0 s(s) 0 t(s)
n(s) | =10 0 7(s) n(s) |- (1.1)
b (s) 0 —7(s) O b(s)

The binormal motion of curves in the Galilean 3-space is equivalent to the nonlinear Schrodinger

equation (NLS™) of repulsive type

) 1 _
iy + dss = 5 g, ))*3=0 (1.2)

q = Kexp (/0 0d8> . 0=Kexp (/0 rds) . (1.3)

where

82. Basic Properties of Intrinsic Geometry

Intrinsic geometry of the nonlinear Schrodinger equation was investigated in E3 by Rogers and
Schief. According to anholonomic coordinates, characterization of three dimensional vector
field was introduced in E3 by Vranceau [5], and then analyse Marris and Passman [3].

Let ¢ be a 3-dimensional vector field according to anholonomic coordinates in G3. The
t, n, b is the tangent, principal normal and binormal directions to the vector lines of ¢. In-

trinsic derivatives of this orthonormal triad are given by following
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5 0 015 (Qb + 7') t

b —(Qp+7) divd 0 b

5 t 0 — (Qn +7) O t
sl =] @+ 0 divn n |, (2.3)

b —0Ops —divn 0 b

where %, % and % are directional derivatives in the tangential, principal normal and binormal

directions in Gs. Thus, the equation (2.1) show the usual Serret-Frenet relations, also (2.2) and
(2.3) give the directional derivatives of the orthonormal triad {¢, n, b} in the n- and b-directions,

respectively. Accordingly,
) ) )
d=t— — +b— 2.4
gra 5s+n5n+ 5b’ (24)

where 0y and 6,5 are the quantities originally introduced by Bjorgum in 1951 [2] via

ot ot
6‘n5 =M - 5_7’),7 9[)5 = . % (25)
From the usual Serret Frenet relations in G, we obtain the following equations
. 1) 0 1) ot ot
) ) ) ) on on on

divb:(ti—l-ni—l—bi)b:t(—rn)—l—n&—b—l—bé—b:né—b. (2.8)

ds on 0b on 0b on
Moreover, we get
curlt = (txi—l—nxi—i—bxi)t
s on 0b
= tx(mn)—l—nxg—z—i—bx%
= B—;b—%n] (1,0,0) + kb
= curlt = Q4 (1,0,0) + &b, (2.9)
where ot ot
QS:t~curlt:b-6——n~% (2.10)

is defined the abnormality of the t-field. Firstly, the relation (2.9) was obtained in E® by
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Masotti. Also, we find

0s on ob

= t><(7'b)+n><(;—+b (jSZ

e T (6 oo (82)

= curln = — (divd) (1,0,0) + Q,n + 0,5, (2.11)

curln = (txi+nxi+bx£)

where 5
Qp,=n-curln=t- 6—?;—7' (2.12)

is defined the abnormality of the n-field and

1) 0 0
curlb = (txg—i-nx& +b><%)b

oo () ] v [(42) e (n22) ]

_ {T+t g—b] b+ ( (;Z) (b%") (1,0,0),

= curlb = Qb — Opsn + (divn) (1,0,0), (2.13)
where
ob
Q=b-curlb=—(17+t- — (2.14)
on

is defined the abnormality of the b-field. By using the identity curlgrady = 0, we have
5% 52 2o 82 52 52
— — — |t —_—— —— —— b
<6n6b 5b5n) * (51;53 635b) n (6s5n 6n68>

dp op dp _
—I—gcurlt + 6—ncurln + Ecurlb =0. (2.15)

Substituting (2.9), (2.11) and (2.13) in (2.15), we find

¢ 0% 00 00 o0

Snsh  ongh o5 T g, (Hivb) = 5 (divn)

0 82 0o 5

bos ds0b ~ onnt %

2 ¢ bp 69 5¢

5son ongs 55" ot mY (2.16)

By using the linear system (2.1), (2.2) and (2.3) we can write the following nine relations
in terms of the eight parameters x, 7, Q5, Q,, divn,divb, 0,5 and O,;. But we take (2.20),
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(2.21) and (2.22) relations for this work.

%0715 + 5i (Q, +7) = (divn) (Qs — 2Q,, — 27) + (Ops — Ops) divd + kQs, (2.17)
n
1) 4] ) .
5 (= Qs +7) + %91,5 = divn (Ops — Ops) + divd (Qs — 20, — 27), (2.18)
i(d' b)—l—i(d' ) = (T4 Q) (T+Qn —Qs) — Onsbps — TQ
5b U on mwn = T n)\T n s nsVUbs — Tiis
— (divb)* — (divn)? (2.19)
1) 0K
5s (T+ Q)+ 5= —Qnbns — (27 + Q) Ops, (2.20)
gebs = —07, + kdivn — Q, (T + QL — Q) +7 (1 + Q) (2.21)
S
i(d' )—5—T——Q (divb) — Ops (k + divn) (2.22)
55 (divn 55 n (div bs (K + divn) .
ok 0 9 9
— = =l =K"+0,, + (T+ Q) BT+ Q) — Qs (27 + Q) (2.23)
on 08
6£ (T + Qn - Qs) = _ens (Qn - Qs) + obs (—2T - Qn + QS) =+ Iidivb, (224)
S
oT o, . . .
n + 5s (divh) = —k (U — Qs) — Opsdivd + (divn) (=27 + Q,, + Q) . (2.25)
n s
83. General Properties
The relation
6—”* Ny, = —0Opst — (divb) b (3.1)
on = RKnNp = ns .

gives that the unit normal to the n-lines and their curvatures are given, respectively, by

05t — (divh) b —6,,t — (divb) b

n — . = y 3.2
" =6, — (divd) b] 0, (3.2)
K = —Ons. (3.3)

In addition, from the relation (2.11) can be written,
curln = Q,n + Ky by, (3.4)

where divh) (1,0,0) + 0,,.b
bn:nxnn:_(“’)(’9’)Jr ns (3.5)
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gives the unit binormal to the n-lines. Similarly, the relation
— = kpnp = —Opst — (divn) n (3.6)

gives that the unit normal to the b-lines and their curvature are given, respectively, by

Oyt 4 (divn)n

3.7
e obs ’ ( )
Kp = —01,5. (38)
Moreover, from the relation (2.13) we can be written as
curlb = Qpb + Ky by, (3.9)
where 0 i 100
by = b x ny = 2o = (dvn) (1,0,0) (3.10)

ebs

is the unit binormal to the b-line. To determine the torsions of the n-lines and b-lines, we take

the relations

b,
55_” — rom,, (3.11)
LS 512
respectively. Thus, from (3.11) we have
0 , 5 .

~5n (In |ky|) (divd) — 5n (divd) — Ons (U + 7) = T00ns, (3.13)

5 0 .
~5n In|kp| Ons + 5—6‘n5 =1, (divd). (3.14)

n n
Accordingly,
Ons

_(Qb‘f'T)—i_dHl_:Sb%ln divb if divb 7507 ans 750
=4 —(Q+7) if divh =0, 0,5 #0 (3.15)
or 0,s =0, divb # 0.

Similarly, from (3.12) we have

) )
% (In kp) (divn) + 5 (divn) — Ops (U, + T) = Tp0ps, (3.16)
) d .
5 (In Kp) Ops — %91,5 =7 (divn) . (3.17)
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Thus,

— (1) = G Sy | B | if divm £ 0, By, £ 0,
=19 (Qu+7) if divn = 0,0y # 0 (3.18)

or Ops = 0, divn # 0.

Also, we obtain an important relation
1
Qs—7= 3 (Qs + QL + ) (3.19)

is obtained by combining the equations (2.10), (2.12) and (2.14). Qs, €, and Q; are defined
the total moments of the £, n and b congruences, respectively.

In conclusion, we see that the relation (3.19) has cognate relations

1
Qp —Th = 3 (Q +Qp, + ), (3.20)
1
Qp—1p = B (Qb—l—an —|—be), (3.21)
where
Q.. =Ny - curlng,, Qp, = by, - curlb,,
(3.22)
Qp, = np - curlng, Qp, = by - curlby.
84. The Nonlinear Schrodinger Equation
In geometric restriction
Q,=0 (4.1)

imposed. Here, our purpose is to obtain the nonlinear Schrodinger equation with such a restric-
tion in GG3. The condition indicate the necessary and sufficient restriction for the existence of a
normal congruence of ¥ surfaces containing the s-lines and b-lines. If the s-lines and b-lines are
taken as parametric curves on the member surfaces U = constant of the normal congruence,

then the surface metric is given by [4]
Iy = ds* + g (s,b) db*. (4.2)

where g11 = g(s, s), 912 = 9(s,b), g22 = g(b,b), and

) ) 0 b 0
gTadU—tE'i‘b%—t%'i‘W%. (43)

Therefore, from equation (2.1) and (2.3), we have
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5 t 0 —(Q+7) O t
971/2% = | (Q+7) 0 divn n |. (4.5)
b —0ps —divn 0 b

Also, if  shows the position vector to the surface then (4.4) and (4.5) implies that

ot
Ths = % = 91/2 [—Tn =+ Gbsb] (46)
and 12
_ 0 a2 12 dg
rsh = 5 (g b) =—g/%tn + . b. (4.7)

Thus, we obtain
~ 10Ing

T2 9s
In the case €, = 0, the compatibility conditions equations (2.20)-(2.22) become the non-

ebs (48)

linear system

or Ok
% + % = —27’955, (49)
9 2 . 2
8_9b5 = —0;, + kdivn + 77, (4.10)
s
0, . or )
g(dwn) 5 = —0ps(k + divm). (4.11)
The Gauss-Mainardi-Codazzi equations become with (4.8)
9 1/2 3 9 1/2 or _
Ep (g*/=divn) + Ko (977%) 55 0, (4.12)
8 1/2 8/4,
- — = 4.1
2 (gr) 9258 <0, (113)
(91?55 = g**(kdivn + 72). (4.14)

With elimination of divn of between (4.12) and (4.14), we have

or 9 [w)“ gl

b 9s

+ n% (91/2) . (4-15)

K

If we accept
"% = s,

where A varies only in the direction normal congruence, then Ab — b, thus the pair equations
(4.13) and (4.15) reduces to
Kb = 2KsT + KTs, (4.16)

Kss K2
ae (o) a
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By using equations (4.16) and (4.17), we obtain

) 1 _
qu+qss—§|<q,q>|2q—<1>(b)q:0, (4.18)

2 . . . . . .
where @ (b) = (7-2 — ey %)5:50' This is nonlinear Schrodinger equation of repulsive type.
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