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§1. Introduction

Let (M2n, J, g) be a Hermitian manifold of even dimension 2n, where J and g are the complex

structure and Hermitian metric respectively. Then (M2n, J, g) is a locally conformal Kähler

manifold if there is an open cover {Ui}i∈I of M2n and a family {fi}i∈I of C∞ functions fi :

Ui → R such that each local metric gi = exp(−fi)g|Ui is Kählerian. Here g|Ui = ι∗i g where

ιi : Ui → M2n is the inclusion. Also (M2n, J, g) is globally conformal Kähler if there is a C∞

function f : M2n → R such that the metric exp(f)g is Kählerian [11]. In 1955, Libermann [14]

initiated the study of locally conformal Kähler manifolds. The geometrical conditions for locally

conformal Kähler manifold have been obtained by Visman [22] and examples of these locally

conformal Kähler manifolds were given by Triceri in 1982 [21]. In 2001, Banaru [2] succeeded

to classify the sixteen classes of almost Hermitian Kirichenko’s tensors. The locally conformal

Kähler manifold is one of the sixteen classes of almost Hermitian manifolds. It is known that

there is a close relationship between Kähler and contact metric manifolds because Kählerian

structures can be made into contact structures by adding a characteristic vector field ξ. The

contact structures consists of Sasakian and non-Sasakian cases. In 1972, Kenmotsu introduced

a class of contact metric manifolds, called Kenmotsu manifolds, which are not Sasakian [13].

Later in 1995, Blair, Koufogiorgos and Papantoniou [4] introduced the notion of (k, µ)-contact

manifold which consists of both Sasakian and non-Sasakian.
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On the other hand, Chen [7] introduced the notion of slant submanifold for an almost

Hermitian manifold, as a generalization of both holomorphic and totally real submanifolds.

Examples of slant submanifolds of C2 and C4 were given by Chen and Tazawa [8, 9, 10], while

slant submanifolds of Kaehler manifold were given by Maeda, Ohnita and Udagawa [17]. The

notion of slant immersion of a Riemannian manifold into an almost contact metric manifold

was introduced by Lotta [15] and he has proved some properties of such immersions. Later,

the study of slant submanifolds was enriched by the authors of [6, 12, 16, 18, 19] and many

others. Recently, the authors of [1] introduced conformal Sasakian manifold and studied slant

submanifolds of the conformal Sasakian manifold. As a generalization to the work of [1] in

[20], we defined conformal (k, µ)-contact manifold and studied invariant and anti-invariant

submanifolds of it. Our aim in the present paper is to extend the study of slant submanifold

to the setting of conformal (k, µ)-contact manifold.

The paper is organized as follows: In section 2, we recall the notion and some results of

(k, µ)-contact manifold and their submanifolds, which are used for further study. In section 3,

we introduce a conformal (k, µ)-contact manifold and give some properties of submanifolds of

it. Section 4 deals with the study of slant submaifolds of (k, µ)-contact manifold. Section 5

is devoted to the study of characterization of three-dimensional slant submanifolds of (k, µ)-

contact manifold via covariant derivative of T and T 2, where T is the tangent projection of

(k, µ)-contact manifold.

§2. Preliminaries

2.1 (k, µ)-Contact Manifold

Let M̃ be a (2n + 1)-dimensional almost contact metric manifold with structure (φ̃, ξ̃, η̃, g̃),

where φ̃, ξ̃, η̃ are the tensor fields of type (1, 1), (1, 0), (0, 1) respectively, and g̃ is a Riemannian

metric on M̃ satisfying

φ̃2 = −I + η̃ ⊗ ξ̃, η̃(ξ̃) = 1, φ̃ξ̃ = 0, η̃ · φ̃ = 0,

g̃(φ̃X, φ̃Y ) = g̃(X, Y ) − η̃(X)η̃(Y ), η̃(X) = g̃(X, ξ), (2.1)

for all vector fields X, Y on M̃ . An almost contact metric structure becomes a contact metric

structure if

g̃(X, φ̃Y ) = dη̃(X, Y ).

Then the 1-form η̃ is contact form and ξ̃ is a characteristic vector field.

We now define a (1, 1) tensor field h̃ by h̃ = 1
2Lξ̃φ̃, where L denotes the Lie differentiation,

then h̃ is symmetric and satisfies h̃φ = −φh̃. Further, a q-dimensional distribution on a manifold

M̃ is defined as a mapping D on M̃ which assigns to each point p ∈ M̃ , a q-dimensional subspace

Dp of TpM̃ .
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The (k, µ)-nullity distribution of a contact metric manifold M̃(φ, ξ, η, g) is a distribution

N(k, µ) : p → Np(k, µ) = {Z ∈ TpM̃ : R̃(X, Y )Z = k[g̃(Y, Z)X − g̃(X, Z)Y ]

+µ[g̃(Y, Z)h̃X − g̃(X, Z)h̃Y ]}

for all X, Y ∈ TM̃ . Hence if the characteristic vector field ξ̃ belongs to the (k, µ)-nullity

distribution, then we have

R̃(X, Y )ξ̃ = k[η̃(Y )X − η̃(X)Y ] + µ[η̃(Y )h̃X − η̃(X)h̃Y ]. (2.2)

The contact metric manifold satisfying the relation (2.2) is called (k, µ) contact metric

manifold [4]. It consists of both k-nullity distribution for µ = 0 and Sasakian for k = 1. A

(k, µ)-contact metric manifold M̃(φ, ξ, η, g) satisfies

(∇̃X φ̃)Y = g̃(X + h̃X, Y )ξ̃ − η̃(Y )(X + h̃X) (2.3)

for all X, Y ∈ TM̃ , where ∇̃ denotes the Riemannian connection with respect to g̃. From (2.3),

we have

∇̃X ξ̃ = −φ̃X − φ̃h̃X (2.4)

for all X, Y ∈ TM̃ .

2.2 Submanifold

Assume M is a submanifold of a (k, µ)-contact manifold M̃ . Let g and ∇ be the induced Rie-

mannian metric and connections of M , respectively. Then the Gauss and Weingarten formulae

are given respectively, by

∇̃XY = ∇XY + σ(X, Y ), ∇̃XN = −ANX + ∇⊥
XN (2.5)

for all X, Y on TM and N ∈ T⊥M , where ∇⊥ is the normal connection and A is the shape

operator of M with respect to the unit normal vector N . The second fundamental form σ and

the shape operator A are related by:

g(σ(X, Y ), N) = g(ANX, Y ). (2.6)

Let R and R̃ denote the curvature tensor of M and M̃ , then, the Gauss and Ricci equations

are given by

g̃(R̃(X, Y )Z, W ) = g(R(X, Y )Z, W ) − g(σ(X, W ), σ(Y, Z)) + g(σ(X, Z), σ(Y, W )),

g̃(R̃(X, Y )N1, N2) = g(R⊥(X, Y )N1, N2) − g([A1, A2]X, Y )

for all X, Y, Z, W ∈ TM , N1, N2 ∈ T⊥M and A1, A2 are shape operators corresponding to

N1, N2 respectively.

For each x ∈ M and X ∈ TxM , we decompose φX into tangential and normal components
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as:

φX = TX + FX, (2.7)

where, T is an endomorphism and F is normal valued 1-form on TxM . Similarly, for any

N ∈ T⊥
x M , we decompose φV into tangential and normal components as:

φN = tN + fN, (2.8)

where, t is a tangent valued 1-form and f is an endomorphism on T⊥
x M .

2.3 Slant Submanifolds of an Almost Contact Metric Manifold

For any x ∈ M and X ∈ TxM such that X, ξ are linearly independent, the angle θ(x) ∈ [0, π
2 ]

between φX and TxM is a constant θ, that is θ does not depend on the choice of X and x ∈ M .

θ is called the slant angle of M in M̃ . Invariant and anti-invariant submanifolds are slant

submanifolds with slant angle θ equal to 0 and π
2 , respectively [?]. A slant submanifold which

is neither invariant nor anti-invariant is called a proper slant submanifold.

We mention the following results for later use.

Theorem 2.1([6]) Let M be a submanifold of an almost contact metric manifold M̃ such that

ξ ∈ TM . Then, M is slant if and only if there exists a constant λ ∈ [0, 1] such that

T 2 = −λ(I − η ⊗ ξ). (2.9)

Further more, if θ is the slant angle of M , then λ = cos2θ.

Corollary 2.1([6]) Let M be a slant submanifold of an almost contact metric manifold M̃ with

slant angle θ. Then, for any X, Y ∈ TM , we have

g(TX, TY ) = cos2θ(g(X, Y ) − η(X)η(Y )), (2.10)

g(FX, FY ) = sin2θ(g(X, Y ) − η(X)η(Y )). (2.11)

Lemma 2.1([15]) Let M be a slant submanifold of an almost contact metric manifold M̃ with

slant angle θ. Then, at each point x of M , Q|D has only one eigenvalue λ1 = −cos2θ.

Lemma 2.2([15]) Let M be a 3-dimensional slant submanifold of an almost contact metric

manifold M̃ . Suppose that M is not anti invariant. If p ∈ M , then in a neighborhood of p,

there exist vector fields e1, e2 tangent to M , such that ξ, e1, e2 is a local orthonormal frame

satisfying

Te1 = (cosθ)e2, T e2 = −(cosθ)e1. (2.12)

§3. Conformal (k, µ)-Contact Manifold

A smooth manifold (M̄2n+1, φ̄, ξ̄, η̄, ḡ) is called a conformal (k, µ)-contact manifold of a (k, µ)-
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contact structure (M̃2n+1, φ̃, ξ̃, η̃, g̃) if, there is a positive smooth function f : M̄2n+1 → R such

that

g̃ = exp(f)ḡ, φ̃ = φ̄, η̃ = (exp(f))
1
2 η̄, ξ̃ = (exp(−f))

1
2 ξ̄. (3.1)

Example 3.1 Let R2n+1 be the (2n+1)-dimensional Euclidean space spanned by the orthogonal

basis {ξ, X1, X2, · · · , Xn, Y1, Y2, · · · , Yn} and the Lie bracket defined as in [?]. Then, the almost

contact metric structure (φ̄, ξ̄, η̄, ḡ) defined by

φ̄

(
n∑

i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi
+ z

∂

∂z

))
=

n∑

i=1

(
Yi

∂

∂xi
− Xi

∂

∂yi

)
+

n∑

i=1

Yiy
i ∂

∂z
,

ḡ = exp(−f){η̄ ⊗ η̄ +
1

4

n∑

i=1

{(dxi)2 + (dyi)2}},

η̄ = (exp(−f))
1
2

{
1

2
(dz −

n∑

i=1

yidxi)

}
,

ξ̄ = (exp(f))
1
2

{
2

∂

∂z

}
,

where f =
∑n

i=1(x
i)2 + (yi)2 + z2.

It is easy to reveal that (R2n+1, φ̄, ξ̄, η̄, ḡ) is not a (k, µ)-contact manifold, but R2n+1 with

the structure (φ̃, ξ̃, η̃, g̃) defined by

φ̃ = φ̄,

g̃ = η̃ ⊗ η̃ +
1

4

n∑

i=1

{(dxi)2 + (dyi)2},

η̃ =
1

2
(dz −

n∑

i=1

yidxi),

ξ̃ = 2
∂

∂z
,

is a (k, µ)-space form.

Let M̄ be a conformal (k, µ)-contact manifold, let ∇̃ and ∇̄ denote the Riemannian con-

nections of M̄ with respect to metrics g̃ and ḡ, respectively. Using the Koszul formula, we

obtain the following relation between the connections ∇̃ and ∇̄

∇̃XY = ∇̄XY +
1

2
{ω(X)Y + ω(Y )X − ḡ(X, Y )ω♯} (3.2)

such that ω(X) = X(f) and ω♯ = gradf is a vector field metrically equivalent to 1-form ω, that

is ḡ(ω♯, X) = ω(X).
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Then with a straight forward computation we will have

exp(−f)(R̃(X, Y, Z, W )) = R̄(X, Y, Z, W ) +
1

2
{B(X, Z)ḡ(Y, W ) − B(Y, Z)

ḡ(X, W ) + B(Y, W )ḡ(X, Z) − B(X, W )ḡ(Y, Z)}

+
1

4
‖ω♯‖2{ḡ(X, Z)ḡ(Y, W ) − ḡ(Y, Z)ḡ(X, W )} (3.3)

for all vector fields X, Y, Z, W on M̄ , where B = ∇̄ω − 1
2ω ⊗ ω and R̄, R̃ are the curvature

tensors of M related to connections of ∇̄ and ∇̃, respectively. Furthermore, by the relations,

(2.1), (2.3) and (3.2) we get

(∇̄X φ̄)Y = (exp(f))
1
2 {ḡ(X + h̄X, Y )ξ − η̄(Y )(X + h̄X)}

−1

2
{ω(φ̄Y )X − ω(Y )φ̄X + g(X, Y )φ̄ω♯ − g(X, φ̄Y )ω♯} (3.4)

∇̄X ξ̄ = −(exp(f))
1
2 {φ̄X + φ̄hX} +

1

2
{η̄(X)ω♯ − ω(ξ̄)X} (3.5)

for all vector fields X, Y on M̄ . Now assume M is a submanifold of a conformal (k, µ)-contact

manifold M̄ and ∇, R are the connection, curvature tensor on M , respectively, and g is an

induced metric on M .

For all X, Y ∈ TM and N ∈ T⊥M , from the Gauss, Weingarten formulas and (3.4), we

obtain the following relations:

(∇XT )Y = AFY X + tσ(X, Y ) + (exp(f))
1
2 {g(X + hX, Y )ξ − η(Y )(X + hX)}

−1

2
{ω(φY )X − ω(Y )TX + g(X, Y )(φω♯)⊤ − g(X, TY )(ω♯)⊤}, (3.6)

(∇XF )Y = fσ(X, Y ) − σ(X, TY ) +
1

2
{ω(Y )FX − g(X, Y )Fω♯ + g(X, TY )ω♯⊥}, (3.7)

(∇X t)N = AfNX − PANX − 1

2
{ω(φN)X − ω(N)PX + g(X, tN)(ω♯)⊤}, (3.8)

(∇Xf)N = −σ(X, tN) − FANX +
1

2
{ω(N)FX + g(X, tN)(ω♯)⊥}, (3.9)

where, g = ḡ|M, η = η̄|M, ξ = ξ̄|M and φ = φ̄|M .

§4 Slant Submanifolds of Conformal (k, µ)-Contact Manifolds

In this section, we prove a characterization theorem for slant submanifolds of a conformal

(k, µ)-contact manifold.

Theorem 4.1 Let M be a slant submanifold of conformal (k, µ)-contact manifold M̄ such that

ω♯ ∈ T⊥M and ξ ∈ TM . Then Q is parallel if and only if one of the following is true:

(i) M is anti-invariant;

(ii) dim(M) ≥ 3;

(iii)M is trivial.
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Proof Let θ be the slant angle of M in M̄ , then for any X, Y ∈ TM and by equation (2.9),

we infer

T 2Y = QY = cos2θ(−Y + η(Y )ξ). (4.1)

⇒ Q(∇XY ) = cos2θ(−∇XY + η(∇XY )ξ). (4.2)

Differentiating (4.1) covariantly with respect to X , we get

∇XQY = cos2θ(−∇XY + η(∇XY )ξ − g(Y,∇Xξ)ξ + η(Y )∇Xξ). (4.3)

Subtracting (4.2) from (4.3), we obtain

(∇XQ)Y = cos2θ[g(∇XY, ξ)ξ + η(Y )∇Xξ]. (4.4)

If Q is parallel, then from (??) it follows that either cos(θ) = 0 i.e. M is anti-invariant or

g(∇XY, ξ)ξ + η(Y )∇Xξ = 0. (4.5)

We know g(∇Xξ, ξ) = 0, since g(∇Xξ, ξ) = −g(ξ,∇Xξ), which implies ∇Xξ ∈ D.

Suppose ∇Xξ 6= 0, then (4.5) yields η(Y ) = 0 i.e. Y ∈ D. But then (4.5) implies

∇Xξ ∈ D⊥⊕ < ξ >, which is absurd.

Hence ∇Xξ = 0 and therefore either D = 0 or we can take at least two linearly independent

vectors X and TX to span D. In this case the eigenvalue must be non-zero as θ = π
2 has already

been taken. Hence dim(M) ≥ 3. 2
Now, we state the the main result of this section.

Theorem 4.2 Let M be a slant submanifold of conformal (k, µ)-contact manifold M̄ such that

ξ ∈ TM . Then M is slant if and only if

(1) The endomorphism Q|D has only one eigen value at each point of M ;

(2) There exists a function λ : M → [0, 1] such that

(∇XQ)Y = λ{(exp(f))
1
2 [g(Y, TX + ThX)ξ − η(Y )(TX + ThX)]

−1

2
{ω(ξ)g(X, Y )ξ − η(X)ω(Y )ξ + ω(ξ)η(Y )X − η(X)η(Y )ω♯T }}, (4.6)

for any X, Y ∈ TM . Moreover, if θ is the slant angle of M , then λ = cos2θ.

Proof Statement 1 gets from Lemma (2.1). So, it remains to prove statement 2. Let M

be a slant submanifold, then by (4.4) we have

(∇XQ)Y = cos2θ(−g(Y,∇Xξ) + η(Y )∇Xξ). (4.7)

By putting (3.5) in (4.7), we find (4.6). Conversely, let λ1(x) is the only eigenvalue of Q|D
at each point x ∈ M and Y ∈ D be a unit eigenvector associated with λ1, i.e., QY = λ1Y .
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Then from statement (2), we have

X(λ1)Y + λ1∇XY = ∇X(QY ) = Q(∇XY ) + λ{(exp(f))
1
2 g(X, TY + ThY )ξ

−1

2
{ω(ξ)g(X, Y )ξ − η(X)ω(Y )ξ}}, (4.8)

for any X ∈ TM . Since both ∇XY and Q(∇XY ) are perpendicular to Y , we conclude that

X(λ1) = 0. Hence λ1 is constant. So it remains to prove M is slant. For proof one can refer to

Theorem (4.3) in [6].

§5. Slant Submanifolds of Dimension Three

Theorem 5.1 Let M be a 3-dimensional proper slant submanifold of a conformal (k, µ)-contact

manifold M̄ , such that ξ ∈ TM , then

(∇XT )Y = cos2θ(exp(f))
1
2 {g(X + hX, Y )ξ − η(Y )(X + hX)} +

1

2
{ω(ξ)g(TX, Y )ξ

−η(X)ω(TY )ξ + ω(ξ)η(Y )TX − η(X)η(Y )Tω♯T } (5.1)

for any X, Y ∈ TM and θ is the slant angle of M .

Proof Let X, Y ∈ TM and p ∈ M . Let ξ, e1, e2 be the orthonormal frame in a neighborhood

U of p given by Lemma (2.2). Put ξ|U = e0 and let αj
i be the structural 1-forms defined by

∇Xei =
2∑

j=0

αj
iej . (5.2)

In view of orthonormal frame ξ, e1, e2, we have

Y = η(Y )e0 + g(Y, e1)e1 + g(Y, e2)e2. (5.3)

Thus, we get

(∇XT )Y = η(Y )(∇XT )e0 + g(Y, e1)(∇XT )e1 + g(Y, e2)(∇XT )e2. (5.4)

Therefore, for obtaining (∇XT )Y , we have to get (∇XT )e0, (∇XT )e1 and (∇XT )e2. By

applying (3.5), we get

(∇XT )e0 = ∇X(Te0) − T (∇Xe0)

= (exp(f))
1
2 (T 2X + T 2hX) +

1

2
{ω(ξ)TX − η(X)Tω♯T }. (5.5)
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Moreover, by using (2.12) we obtain

(∇XT )e1 = ∇X(Te1) − T (∇Xe1)

= ∇X((cosθ)e2) − T (α0
1(X)e0 + α1

1(X)e1 + α2
1(X)e2)

= (cosθ)α0
2(X)e0. (5.6)

Similarly, we get

(∇XT )e2 = −(cosθ)α0
1(X)e0. (5.7)

By substituting (5.5)-(5.7) in (5.4), we have

(∇XT )Y = (exp(f))
1
2 η(Y )(T 2X + T 2hX) +

1

2
{η(Y )ω(ξ)TX − η(X)η(Y )Tω♯T }

+cos(θ){g(Y, e1)α
0
2(X)e0 − g(Y, e2)α

0
1(X)e0}. (5.8)

Now, we obtain α0
1(X) and α0

2(X) as follows:

α0
1(X) = g(∇Xe1, e0)

= Xg(e1, e0) − g(e1,∇Xe0)

= −(exp(f))
1
2 g(e2, X + hX) +

1

2
{ω(ξ)g(e1, X) − η(X)ω(e1)} (5.9)

and similarly we get

α0
2(X) = cosθg(e1, X) + cosθg(e1, hX). (5.10)

By using (5.9) and (5.10) in (5.8) and in view of (5.3) and (2.9) we obtain (5.1). 2
From, Theorems 4.3 and 5.4, we can state the following:

Corollary 5.1 Let M be a three dimensional submanifold of a (k, µ)-contact manifold tangent

to ξ. Then the following statements are equivalent:

(1) M is slant;

(2) (∇XT )Y = cos2θ(exp(f))
1
2 {g(X + hX, Y )ξ − η(Y )(X + hX)} + 1

2{ω(ξ)g(TX, Y )ξ

−η(X)ω(TY )ξ + ω(ξ)η(Y )TX − η(X)η(Y )Tω♯T };

(3) (∇XQ)Y = λ{(exp(f))
1
2 [g(X, TX + ThX)ξ − η(Y )(TX + ThX)]− 1

2{ω(ξ)g(X, Y )ξ

−η(X)ω(Y )ξ + ω(ξ)η(Y )X − η(X)η(Y )ω♯T }}.

The next result characterizes 3-dimensional slant submanifold in terms of the Weingarten

map.

Theorem 5.2 Let M be a 3-dimensional proper slant submanifold of a conformal (k, µ)-contact
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manifold M̄ , such that ξ ∈ TM . Then, there exists a function C : M → [0, 1] such that

AFXY = AFY X + C(exp(f))
1
2 (η(X)(Y + hY ) − η(Y )(X + hX)) + ω(ξ)g(TX, Y )ξ

+g(X, TY )ω♯ +
1

2
{η(X)ω(TY )ξ − η(Y )ω(TX)ξ + η(X)ω(ξ)TY

−η(Y )ω(ξ)TX − ω(X)TY + ω(Y )TX + ω(TX)Y − ω(TY )X}, (5.11)

for any X, Y ∈ TM . Moreover in this case, if θ is the slant angle of M then we have C = sin2θ.

Proof Let X, Y ∈ TM and M is a slant submanifold. From (3.6) and Theorem 5.1, we

have

tσ(X, Y ) = (λ − 1)(exp(f))
1
2 {g(Y, X + hX)ξ − η(Y )(X + hX)} +

1

2
{ω(ξ)g(X, TY )ξ

−η(X)ω(TY )ξ + ω(ξ)η(Y )TX − η(X)η(Y )Tω♯T

+ ω(TY )X − ω(Y )TX

+g(X, Y )Tω♯ − g(X, TY )ω♯} − AFY X. (5.12)

Now by using the fact that σ(X, Y ) = σ(Y, X), we obtain (5.11). 2
Next, we assume that M is a three dimensional proper slant submanifold M of a five-

dimensional conformal (k, µ)-contact manifold M̄ with slant angle θ. Then for a unit tangent

vector field e1 of M perpendicular to ξ, we put

e2 = (secθ)Te1, e3 = ξ, e4 = (cscθ)Fe1, e5 = (cscθ)Fe2. (5.13)

It is easy to show that e1 = −(secθ)Te2 and by using Corollary 2.1, {e1, e2, e3, e4, e5} form

an orthonormal frame such that e1, e2, e3 are tangent to M and e4, e5 are normal to M . Also

we have

te4 = −sinθe1, te5 = −sinθe2, fe4 = −cosθe5, fe5 = −cosθe4. (5.14)

If we put σr
ij = g(σ(ei, ej), er), i, j = 1, 2, 3, r = 4, 5, then we have the following result:

Lemma 5.1 In the above conditions, we have

σ4
12 = σ5

11, σ4
22 = σ5

12,

σ4
13 = σ5

23 = −(exp(f))
1
2 sinθ

σ4
32 = σ4

33 = σ5
33 = σ5

13 = 0. (5.15)

Proof Apply (5.11) by setting X = e1 and Y = e2, we obtain

Ae4e2 = Ae5e1 + (cotθ){ω(ξ)ξ − ω♯ + ω(e1)e1 + ω(e2)e2}.
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Using (2.6) in the above relation, we get

σ4
12 = σ5

11, σ4
22 = σ5

12, σ
4
23 = σ5

13.

Further, by taking X = e1 and Y = e3 in (5.11), we have

Ae4e3 = −(exp(f))
1
2 (sinθ)(e1 + he1). (5.16)

After applying (2.6) in (5.16), we obtain

σ4
13 = −(exp(f))

1
2 (sinθ), σ4

23 = σ4
33 = 0.

In the similar manner by putting X = e2 and Y = e3, we get

σ5
23 = −(exp(f))

1
2 (sinθ), σ5

33 = 0. 2
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