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Abstract: We have considered the conformal 3-change of the Finsler metric given by

L(z,y) — L(z,y) = ¢"@ f(L(z,y), B(z,y)),

where o(x) is a function of x, B(z,y) = bi(2)y’ is a 1-form on the underlying manifold
M" and f(L(z,y),B(z,y)) is a homogeneous function of degree one in L and (3.We have
studied quasi-C-reducibility, C-reducibility and semi-C-reducibility of the Finsler space with
this metric. We have also calculated V-curvature tensor and T-tensor of the space with this
changed metric in terms of v-curvature tensor and T-tensor respectively of the space with

the original metric.
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81. Introduction

Let F" = (M™,L) be an n-dimensional Finsler space on the differentialble manifold M™
equipped with the fundamental function L(x,y).B.N.Prasad and Bindu Kumari and C. Shibata
[1,2] have studied the general case of 8-change,that is, L*(z,y) = f(L, 3),where f is positively
homogeneous function of degree one in L and 3, and 3 given by 3(x,y) = b;(z)y® is a one- form
on M". The p-change of special Finsler spaces has been studied by H.S.Shukla, O.P.Pandey
and Khageshwar Mandal [7].

The conformal theory of Finsler space was initiated by M.S. Knebelman [12] in 1929 and
has been investigated in detail by many authors (Hashiguchi [8] ,Izumi[4,5] and Kitayama [9]).
The conformal change is defined as L*(x,y) = e”*) L(x, y), where o(z) is a function of position
only and known as conformal factor. In 2008, Abed [15,16] introduced the change L(x,y) =
e“(m)L(x,y) + B(z,y), which he called a (-conformal change, and in 2009 and 2010,Nabil
L.Youssef, S.H.Abed and S.G. Elgendi [13,14] introduced the transformation L(z,y) = f(e° L, 3),
which is 8-change of conformally changed Finsler metric L. They have not only established the
relationships between some important tensors of (M™, L) and the corresponding tensors of

(M™, L), but have also studied several properties of this change.
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We have changed the order of combination of the above two changes in our paper [6], where

we have applied (-change first and conformal change afterwards, i.e.,

E(Iay) :eg(z)f(L(:E,y),ﬁ(:E,y)), (11)

where o(z) is a function of x, B(x,y) = b;(z)y’ is a 1-form. We have called this change as
conformal §-change of Finsler metric. In this paper we have investigated the condition under
which a conformal g-change of Finsler metric leads a Douglas space into a Douglas space.We
have also found the necessary and sufficient conditions for this change to be a projective change.

In the present paper,we investigate some properties of conformal (-change. The Finsler
space equipped with the metric L given by (1.1) will be denoted by F™. Throughout the paper
the quantities corresponding to F™ will be denoted by putting bar on the top of them.We
shall denote the partial derivatives with respect to z* and y* by 9; and ; respectively. The

Fundamental quantities of F™ are given by

. . L? .
Gij = 81(3]7 = hij + lilj, l; = O0; L.
Homogeneity of f gives
Lfv+Bf2=f, (1.2)

where subscripts 1 and 2 denote the partial derivatives with respect to L and 3 respectively.

Differentiating above equations with respect to L and 3 respectively, we get

Lfio+ Bfea =0 and Lfi; + Bfa1 =0. (1.3)
Hence we have
f11/B8% = (= f12) /LB = fa2/L?, (1.4)
which gives
fi1 = FPw, fra = —LPw, far = L*w, (1.5)

where Weierstrass function w is positively homogeneous of degree -3 in L and 3. Therefore
Lwy + fws + 3w =0, (1.6)

where w; and wg are positively homogeneous of degree -4 in L and 8. Throughout the paper
we frequently use the above equations without quoting them. Also we have assumed that f is
not linear function of L and 3 so that w # 0.

The concept of concurrent vector field has been given by Matsumoto and K. Eguchi [11]
and S. Tachibana [17], which is defind as follows:

The vector field b; is said to be a concurrent vector field if
bijj = ~9ij bil; =0, (1.7)

where small and long solidus denote the h- and v-covariant derivatives respectively. It has been
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proved by Matsumoto that b; and its contravariant components b are functions of coordinates

alone. Therefore from the second equation of (1.7),we have C;b* = 0.

The aim of this paper is to study some special Finsler spaces arising from conformal
[-change of Finsler metric,viz., quasi-C-reducible, C-reducible and semi-C-reducible Finsler
spaces. Further, we shall obtain v-curvature tensor and T-tensor of this space and connect

them with v-curvature tensor and T-tensor respectively of the original space.

§2. Metric Tensor and Angular Metric Tensor of F"

Differentiating equation (1.1) with respect to y* we have
li = ¢ (fili + fabs). (2.1)

Differentiating (2.1) with respect to y?, we get

hij = e* (%hij + fL2wmimj) , (2.2)

g

where m; = bz — _Lz

L

From (2.1) and (2.2) we get the following relation between metric tensors of F™ and F™:

gij = €*° {%gij - pfﬁlilj + (fL?w + f3)bib; + p(bil; + ba‘li)] : (2.3)

where p = f1fo — fBLw.

The contravariant components g* of the metric tensor of F*, obtainable from g g;; = 6%,
are as follows:
L*w L2
by — 2
fht 2t

. L .. I3 . . .
= [+ i (T - o) v - @),
where I = ¢g"1; , b*> = bb’, b' = g"b;, g/ is the reciprocal tensor of g;; of F™, and

62
t=fi+LwA A=~ T (2.5)
(a) O;f =e° (%li + f2mi> ., (b) O;fy = —e? BLwmy,

(€)9; f2 = ¢” L*wm;, (d) 0ip = —BqLm;,

(6) 31'&} = —3%[1 =+ womy, (f)81b2 = —201,
) 23
(9) O:A ==2C ; — 72 (2.6)
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(CL) &q = —3—51“ (b) 81t = —2L3wC__i + [LgAWQ - 3ﬁLw]ml,

: 3
(C) &-q = —fqlz + (4f2(.¢J2 + 3(.«)2L2 + fWQQ)mi. (27)

§3. Cartan’s C-Tensor and C-Vectors of F"

Cartan’s covariant C-tensor Cjj;, of F'™ is defined by
Ciji = %31'33‘5@2 = Ohgij
and Cartan’s C-vectors are defined as follows:
Ci = Cyjrg’, C" = Clrg’". (3.1)

We shall write C? = C'C;. Under the conformal 3-chang (1.1) we get the following relation

between Cartan’s C-tensors of F™ and F™:

C [ qL2

ijk = 7 C”k + — 2L (h”mk + h;kmz + h;ﬂmj) + Tmimjmk . (3.2)
We have
(a) myl* =0,
. 52
my = = = m
b) mib' =¥ — 75 = A=,
(C) guml = hijm = mj. (33)

From (2.1), (2.3), (2.4) and (3.2), we get

C’Z = Ch 2ff (h”m —l—hhml —|—hhm3) 2ff mjmkmh
L A pLA n 2pL+ gL*A h
_Z0C.. _ 2= h. P S — 3.4
i IRy 32 kT 32 mymgn”, (3.4)

where n = fLQth +plh and h; = gilhlﬁ Cij = Crib",C i = Orjibrbj and so on.

Proposition 3.1 Let F"* = (M™,L) be an n-dimensional Finsler space obtained from the
conformal B-change of the Finsler space F™ = (M™, L), then the normalized supporting element

1, angular metric tensor Bij, fundamental metric tensor G;; and (h)hv-torsion tensor C_'ijk of
F™ are given by (2.1), (2.2), (2.3) and (3.2), respectively.

From (2.4),(3.1),(3.2) and (3.4) we get the following relations between the C-vectors of of
F™ and F™ and their magnitudes

Ci =C; — stci.. + pm;, (3.5)
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where
_pn+1)  3pLPwA n qL3A(1 — LPwA)
2fh 2ff1 2ff '
_ . 6720’ . .
C' = C'+ M",
fh
where 20 I s I
i pe L W o 20 73 W
M= mt— 2L (O = e LRWC + uA (—b—i——y
[ ffi - ( ) ffi ft
and
B 6720'
C? = —C?+ ),
b
where
e 2L 2ue=2°L
A = — L%}A) A+ —¢C
( Ih : Fh

—(1+2uA) LPw+ (1 = 3pu+ > LPwf f1C.) L*wC...

17

)

+L3wC. ((640wa2f120i“ — MA) L3wb" — e* LPwf f1O7 — 2CT) .

§4. Special Cases of [

In this section, following Matsumoto [10], we shall investigate special cases of F™ which is

conformally B-changed Finsler space obtained from F™.

Definition 4.1 A Finsler space (M™, L) with dimension n > 3 is said to be quasi-C-reducible

if the Cartan tensor Cy;i satisfies
Cijrk = Qi;Cr + Qj1Ci + Qi Cj,

where Qi; is a symmetric indicatory tensor.

The equation (3.2) can be put as

~ 1 3
Cijk = 620 [%Cijk + gﬂ(ijk) {(fphw + qumimj) mk}:| s

where 7(;;1) represents cyclic permutation and sum over the indices i, j and k.

Putting the value of my, from equation (3.5) in the above equation, we get

2 o ff
Ciji = € { ! T

(4.1)

1 3 ~
=Cijk + 6y i) {(_phij +qL?mim;)(Cx — O, + L3w0k,,> H :



18 H.S.Shukla and Neelam Mishra

Rearranging this equation, we get

L L

1 3p
+@7T(ijk) { (fhij + qL2mimj) (LSWCk.. —Cy) }] .

_ 1 3 ~
Cijk = €% [&Cm + @W(iﬂc) {<—phij + qLle-mj> Ok}

Further rearrangment of this equations gives

Cijr = (ijk) (HijCr) + Usjg, (4.2)

_ o 3
where H;; = %{(fphzj + qL*m;m;), and

1 3
Ui = e %Oijk + @ﬂ'(ijk) { <fphij + qLQmimJ—) (LBwC’k” — Ck)}] (4.3)

Since H;; is a symmetric and indicatory tensor,therefore from equation (4.2) we have the fol-
lowing theorem.

Theorem 4.1 Conformally 3-changed Finsler space F™ is quasi-C-reducible iff the tensor Uy jy,
of equation (4.3) vanishes identically.

We obtain a generalized form of Matsumoto’s result [10] as a corollary of the above theorem.

Corollary 4.1 If F" is Reimannian space, then the conformally B-changed Finsler space F™

is always a quasi-C-reducible Finsler space.

Definition 4.2 A Finsler space (M™, L) of dimension n > 3 is called C-reducible if the Cartan
tensor Cyji, s written in the form

Oijk = (hijOk + hkin + hjkCi). (4.4)

n+1

Define the tensor Gijr = Ciji — (n—Jlrl)(hijC'k + hiiCj + hjpCy). It is clear that Gy is

symmetric and indicatory. Moreover, G;j, vanishes iff F™ is C-reducible.

Proposition 4.1 Under the conformal 3-change(1.1), the tensor (_?ijk associated with the space
F™ has the form

Gijk = eza%szk + Vijk (4.5)
where
1
V;jk = mmzjk){(e%(n + 1)(a1hij + agmimj)mk + 62UWL2miijk
+620L2w(ff1h,ij + ngmimj)ck_}, (46)
o — e?o'p B fole2g = e2aqL2 B ue?awLZ

2L  L(n+1) 6 (n+1)°
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From (4.5) we have the following theorem.

Theorem 4.2 Conformally 3-changed Finsler space F™ is C-reducible iff F™ is C-reducible
and the tensor Vi, given by (4.6) vanishes identically.

Definition 4.3 A Finsler space (M™, L) of dimension n > 3 is called semi-C-reducible if the

Cartan tensor Cyji s expressible in the form:

= 0040, (4.7)

,
Cijk = n—_H(hijCk + hiiCj + hjrpC;) + o2

where T and s are scalar functions such that r + s = 1.

Using equations (2.2), (3.5) and (3.7) in equation (3.2), we have

~ AL -3 .
Ciji = e20 fol Cijk + =——=— 2uff (hljck + h;ﬂO + hjkC) %C&C&C}c
If we put
p_plntl) ,  AL(fig—3pw)
2uffi’ 2f fut
we find that ' + s’ = 1 and
C, | LI " h h il
ijk = 7 Cigk + ——] ( iiCk + hiiCs + hjCi) + C2OC Cr| . (4.8)

From equation (4.8) we infer that F™ is semi-C- reducible iff Cyj, = 0, i.e. iff F" is a
Reimannian space. Thus we have the following theorem.

Theorem 4.3 Conformally 3-changed Finsler space F™ is semi-C-reducible iff F™ is a Rie-

manmnian space.

§5. v-Curvature Tensor of [

The v-curvature tensor [10] of Finsler space with fundamental function L is given by
Shijk = CijrChy, — Cikr C;
Therefore the v-curvature tensor of conformally 3-changed Finsler space F™ will be given by
Shijk = CijrChi — CirrCh ;. (5.1)
From equations (3.2)and(3.4), we have

~ Ar ffl

CijrCrp = C'WC'hk + — (Cijkmh + Cijpmi + Cippm;

L2
+Chjm;) + ];_ilt(c.ijhhk + Chihij) — ffl ——C;Chi

2L
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p2A L3(qf1 — 2pw
+Ehhkhzj + %
p(p+ L3qA) L
ALft ALf
+hpemimg 4+ hpymimg + hpamimye + hjgmimp, + higmpm;)
L L2Cpat + (afy = 2pw) (2p + LPqA))
4f fit

(Ciymemp, + C pmimy)

(hijmhmk + hhkmimj) (hijmhmk

mimjmhmk] ) (5.2)

We get the following relation between v-curvature tensors of (M™, L) and (M", L):

Shijk = €7 %Shzjk + dnjdi — dnipdi; + EnpEij — EhjEik] , (5.3)
where
dij = PC.ij — Qhy; + Rmimy, (5.4)
Eij = Shij + Tmimj, (5.5)
5\1/2 pg L (2wp — f1q) p L (qf1 —wp)
P=L(2)", = R—= S = T = :
(t) ? 2L2/st 2V/st 2L2\/fw 2f1v/fw

Proposition 5.1 The relation between v-curvature tensors of F™ and F™ is given by (5.3).

When b; in 3 is a concurrent vector field,then C';; = 0. Therefore the value of v-curvature
tensor of F™ as given by (5.3) is reduced to the extent that di; = Rmym; — Qhy;.

§6. The T-Tensor Ty

The T-tensor of F™ is defined in [3] by
Thijk = LChij |k +Chijlic + Chiklj + Chjrli + Cijkln, (6.1)

where

Chij [k= 0kChij — CrijChy, — ChrjCli — ChirCly.. (6.2)
In this section we compute the T-tensor of F™, which is given by
Thiji = LChijl, + Chijli + Crirly + Cujili + Cijiln, (6.3)

where
Chijly = OkChij — CrijChy, — ChriCj, — Crir Cy.. (6.4)

The derivatives of m; and h;; with respect to y* are given by

. 1 . 1
8kmi = ﬁ hzk — —(limk), 8khij = 2Cijk — E(thJk =+ ljh]ﬂ) (65)

L2 L
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From equations (3.2)and (6.5), we have

wChij = I 3k0im Cijtmp+ Cijnmy + Cingmj + Chjpm;)

p
L(
ﬂ(hh + hsha + hanhi) + —2
2L3 ij/thk hjltik ih!ljk m
+hpplimg + higlnmy + hjglimp, + hiplpmg + hijlpmy, + higlimy

(hjklhmi + hhkljmi

—|—hikljmk + hijlkmh + hjhlkml- + hhilkmj) — %(hijmhmk

—|—hhkmimj + hhjmimk + hhimjmk + hjkml-mh + hikmhmj)

L
—%(limjmhmk + Lymympmy, + lymamgmy + hgmgmgmy,)

L2
+ 7(4f2w2 +3L%°% + fwao)mpmsmimy | . (6.6)

Using equations (6.5) and (5.2) in equation(6.4), we get

20’ff1

_ e2o
Chij|k = Chz_] |k p

5T (Cijkmp, + Cijnmy + Cingmyj + Chjm;)

e ( 2/t LA Bq

AfL3t 4fL3t> (hishui + hnshi, + hinhyi) — € (7

2 3 2
+ L°A+3
o ]jlqlf}f t . ) (higmpmy + hpgmimg + hpgmimy + hpimgmy,
1

20

e
2L§ [lh(hjkmi + hijmk

+higm;) + Ui (hpemi + higmpn + hinmg) + Li(hpem; + hjgmy,

e2a'qL

+hjpmimy, + hikmhmj)

—l—hhjmk) —+ lk(hijmh —+ hjhmi + hhimj)] — (limjmhmk

e
+lymympmy + lnmymimy + hymymgmy,) — pf1 (nghhk

2Lt
20 L2
+C pjihik + Crihij + Caphin + Cribji + Cjrhpi) + #

€202 — 2pw
+C1;Cit + CpiC k) — (qgi pe)

+C pemimj + Cpymymy + Cgomymy,

L?(4fowa + 3L2w? + fwas)
2

(C.i;C hi

(C.iymemp

+C pimymy + C jrmpm;) + €27 [

 3L2(2pgt + (g1 — 2pw)(2p + L3¢A)
4f fat

] MMM M. (6.7)

Using equations (2.1), (3.2) and (6.6) in equation (6.3), we get the following relation
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between T-tensors of Finsler spaces F™ and F" :

2
Thijk = €% fflThijk+

L2
n f2HLlw

t
_%(C.ijhhk + Cpjhik + Crihij + Cighn + Cribji + Cjkhni)

_fL%(gfr — 2pw)

f(fifz + fBLw)
2L

(Cijemn + Cijnmy + Cingm;

+Chjmy;) (C.4;Chi + ChiClik + CpiC k)

(C,ijmkmh + C,hkmimj + C,hjmimk

2
2f5t + L2pA
+C.ikmjmh =+ C,himjmk + C,jkmhmi) — W(hijhhk
2 3 2
P fi +pefil°A+3p*  Baf pf
thinghik + hinhir) ( ALfit 2 L

(hijmpmy + hpgmimg + hpymmy + hpimgme + hjmamy,
L2(4 fows + 3L%w? + fuwss)
2
3L2(2pqt + (q¢fr — 2pw)(2p + L3qA)
B 4f1t

+higmpm;) + [ + 2L2f2q

| o] (638)

Proposition 6.1 The relation between T-tensors of F™ and F™ is given by (6.7).

If bi is a concurrent vector field in F™, then C;; = 0. Therefore from(6.8), we have

2 2
. R P I 1 p(2fBt + L*pA)
Thije = e [ 72 Thiji — N

2 3 2
P hApahLPA+3p7t | Baf  pf
— — hi; hpgmim,;
( AL + ) T (hijmpmyg + hpgmm;

+hnymimy, + hpimimy + hjgmimy, + higmpm;)

(hijhne + hnjhix + hinhji)

L?(4 3L2w? 3L2 -2 2p + L3gA
4202 foq + (4fowz + 3L°w* + fwao) n (/1 — 2pw)(2p + L7qA)
2 AL f fit
3L%2pqt
- i . 6.9
107 fit MMM M, (6.9)
If bi is a concurrent vector field in F™, with vanishing T-tensor then T-tensor of F™ is
given by
_ " 2f Bt + L?pA
Thije = € [_W(h/ijhhk + hnjhik + hinhik)

_ P*f +qu1L3A+3p2t+@_p_h (hsjmpm
4Lf1t 9 I g TTURTTLE
+hpemimg + hpymimg + hpamymy, + hjpmamp, + hgompmy)

4 |:L2 (4f2u}2 + 3L2u}2 + fu)QQ) _ 3L22pqt

2 4L f frt
2 — 9w 3
3L(gf: jjz;f?f(jml: ) ey, q] mimjmhmk] , (6.10)
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