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Abstract In a previous article it was shown that the end state for the dust
metric of Oppenheimer and Snyder has most of its mass concentrated just inside
the gravitational radius; it is proposed that the resulting object be considered as
an idealized shell collapsar. Here the treatment is extended to include the family
of interior metrics described by Choquet-Bruhat. The end state is again a shell
collapsar, and its structure depends on the density pro�le at the beginning of the
collapse. What is lacking in most previous commentaries on the Oppenheimer-
Snyder article is the recognition that Oppenheimer and Snyder matched the
time coordinate at the surface, and that implies a �nite upper limit for the
comoving time coordinate inside the collapsar. A collapse process having all
the matter going inside the gravitational radius would require comoving times
which go outside that upper limit.

1 Introduction

Since the inception of General Relativity (GR), solutions have been sought for
the evolution of a mass distribution under its own gravity. The �rst attempt
at an equilibrium GR solution was the uniform density of Schwarzschild[1] in
1916, but progress on "the problem of motion"[2] came very slowly. The �rst
time-dependent solutions, with the idealized equation of state p = 0, were those
of Tolman[3]; for simplicity, especially because of the absence of gravitational
waves, the Tolman solutions were all spherosymmetric. Models based on this
Tolman solution are known as dust models.
The 1939 article of Oppenheimer and Snyder[4] (OS) was a particular Tol-

man solution and played a central role in the birth of the black hole, especially
because it was used as a basis for Penrose�s[5] Theorem, which states that if cer-
tain conditions hold, the end state of a gravitational collapse must be a point
singularity having in�nite density. Penrose claimed that the OS dust metric,
which at that time was the only known solution of the time-dependent �eld equa-
tions, satis�ed those conditions. However, it has now been demonstrated[6][7]
that the OS metric, describing collapse from an initially uniform density, has an
end state quite di¤erent from that described by Penrose; the end state of OS is
a shell with most of the dust material concentrated just inside the gravitational
radius.
A set of metrics was described more recently by Choquet-Bruhat[8]. This

latter author came to the same conclusion as Penrose regarding the end state of
OS, and went on to generalize that conclusion to the extended family[8]. Here
I seek to preserve the analysis of the OS article, and shall show below that the
YCB family then has a similar end state to OS. The part of OS which was not
fully implemented, by either Penrose or Choquet-Bruhat, is the mapping by OS,
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from the comoving coordinates used to describe the interior of the collapsar, onto
the exterior Schwarzschild coordinates. OS glued together these two metrics by
imposing continuity conditions at the surface. It would seem that the only
treatment, since the black-hole era, which maintains the continuity conditions
of OS is that of Weinberg[9]. On the whole the OS analysis has been forgotten.
The greater part of the mass of the OS collapsar is concentrated just inside

the gravitational radius; in the limit t! +1 the density at the surface, like that
at the centre of a black hole, becomes in�nite, but with this more extended shell
version of collapse it is possible that a real collapsar with a nontrivial equation
of state will be a smeared out version of an OS shell, a possibility which we
discussed in two previous articles[6][10]. Such collapsars may be considered as
a revival of the frozen stars[11][12][13] discussed as early alternatives to black
holes, a more recent version of which is the gravastar [14].

2 The YCB metric

The metric of Choquet-Bruhat[8] (YCB) describes a dust star for which the ini-
tial velocity pro�le, as in OS, remains zero, but in which the density is nonuni-
form. The end con�guration in YCB has the same crowding together of world
lines as in OS; I propose to call it a shell collapsar. It should be especially
remarked that the property in question may belong to an initial state having
either increasing or decreasing initial density as the radius goes towards R = 0;
it is in contradiction with Choquet-Bruhat.
The generalized OS metric of YCB1 in the region R < Rb = 2m is

ds2 = d�2 � r
02dR2 � r2d�2 � r2 sin2 �d�2 ; (1)

where
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and M(Rb) = M(2m) = m. The coordinate R is comoving, so it is constant
along all the world lines during collapse, including at the surface R = Rb = 2m.
In this coordinate frame the stress tensor T�� has the single nonzero com-
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which reduces to
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1We are using here the notation of the OS article.
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that is

T �� = � 1
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: (5)

This is the quantity denoted by �=8� in YCB eq (12.3), and its value is

T �� =
M 0(R)

4�r2r0
=
R2�0(R)

4�r2r0
; (6)

in agreement with YCB eqs (12.9) and (12.12). For the OS case, r0 = z = r=R
and M(R) = mR3=R3b , so we have the constant density

T �� =
3mR3

4�r3R3b
; �0(R) =

3m

R3b
(OS) : (7)

The volume element for this metric is
p
�g sin �dRd�d� = r2r0 sin �dRd�d� ;

so that Z
R1<R

�(� ;R1)
p
�g sin �dR1d�d� =M(R) ; (8)

which gives a hint for the meaning of M(R) that we shall take up later.
To change from the comoving radius R to one matching the exterior radius

r, we put

r0dR = dr � @r

@�
d� = dr +

r
2M

r
d� ; (9)

so the metric becomes

ds2 =

�
1� 2M

r

�
d�2 � 2

r
2M

r
drd� � dr2 � r2d�2 � r2 sin2 �d�2 : (10)

This is YCB eq (12.19), apart from an error in its �rst term given as (1 �p
2M=r)d�2. Then, completing the square, we obtain

ds2 =
r

r � 2M

"�
1� 2M

r

�
d� �

r
2M

r
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#2
� r

r � 2M dr2

�r2d�2 � r2 sin2 �d�2 : (11)

Following a procedure of Weinberg[9], the above square-bracketed quantity will
now be put in the form of a multiple of a perfect di¤erential dy. This may be
achieved by changing the variable � to z so that

� = � 2

3
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r
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2M
; (12)

where F (R) = 2M(R)=R3, giving

d� = �R
r
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�
: (13)
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and hence the square-bracketed quantity is

�R
r

r
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�
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The metric then becomes

ds2 =
R2r2

2M(r � 2M) [dz +GdR]
2 � r

r � 2M dr2 � r2d�2 � r2 sin2 �d�2 ; (15)

where

G(R; z) =
F 0

3F

�
�z +R2F + 3RF

2

F
+ z�1=2 �R2Fz�3=2

�
: (16)

We have identi�ed the term in dr2 with the corresponding term in the ex-
terior Schwarzschild metric by having put the gravitational mass m equal to
M(Rb). Then, since the metric is spherosymmetric with zero density in R > Rb,
by Birkho¤�s Theorem the �rst term in the metric of the exterior region R > Rb
must be

gttdt
2 =

r � 2m
r

dt2 (R > Rb) ; (17)

and then, by a suitable mapping t = t(z;R) in the interior region R < Rb, the
metric of (15) must make gtt continuous at R = Rb.
In the constant-density OS case, F (R) = 2m=R3b , F

0 = 0, and the content
of the square bracket is dz + 2mRdR=R3b which is a perfect di¤erential (see [4]
equation (32)), that is

dz +GdR = dy; y =
rRb
2mR

+
R2

2R2b
� 1
2

(OS) ; (18)

and the variable y is then the cotime, related by OS equation (36) to the exterior
time t. In the general case we have to generalize the OS metric in such a way
that the content of the square bracket, times an integrating factor f(R; z) with
f(Rb; z) = 1, is a perfect di¤erential dy(R; z) for 0 � R � Rb; z � 1. The
perfect di¤erential has to satisfy

@f

@R
=

@

@z
(fG) ; (19)

and the cotime is then

y = z �
Z Rb

R

G(R1; z)f(R1; z)dR1 ; (20)

with the metric given by

ds2 =
R2r2

2f2M(r � 2M)dy
2 � r

r � 2M dr2 � r2d�2 � r2 sin2 �d�2 : (21)
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We shall see how to calculate the integrating factor f(R; z) in the next section.
The correspondence between the cotime and the time coordinate of the ex-

terior Schwarzschild metric is the same as in OS equation (36), namely

t

2m
= �2

3
y3=2 � 2py + ln

p
y + 1

p
y � 1 : (22)

The motivation, in the OS case, came from (20), putting, at R = Rb,

y(Rb; z) =
zRb
2m

=
r

2m
: (23)

The freefall world lines for R > Rb, including the surface R = Rb, are

t

2m
= �2

3

� r

2m

�3=2
� 2
r

r

2m
+ ln

p
r +

p
2m

p
r �

p
2m

+ const: ; (24)

so the world lines either side of R = Rb �t continuously, if const.=0 there. Under
the mapping (22), the metric becomes

ds2 =
R2r2(y � 1)2

2R2bf
2M(r � 2M)y3 dt

2 � r

r � 2M dr2 � r2d�2 � r2 sin2 �d�2 ; (25)

which di¤ers from the OS case solely by the integrating factor f2, and we �nd
that, for all y > 1 at the surface R = Rb, where f = 1, the matching condition
(17) is satis�ed, so that the entire metric satis�es the continuity requirement.
Furthermore the entire history going from t = �1 to t = +1 is covered;
this is because of the logarithmic singularity in (22) at y = 1. It implies that
gravitational contraction stops at r = 2m, that is the gravitational radius. The
"end of time" at y = 1, corresponding to t! +1, is precisely what OS, in their
equation (37), gave as their proper time limit � = �0(R)

� = �0(R) =
2

3

s
R3b
r0
� r0

3
p
2

�
3� R2

R2b

�3=2
; (26)

where r0 = 2m is the gravitational radius; there is no time beyond � = �0(R).

3 Asymptotics of the integrating factor

In (16) it is convenient to use dimensionless variables, that is

F (R) =
2m

R3b
E(�) =

1

4m2
E(�); � =

R

2m
; (27)

where E(1) = 1. Then (19) takes the form

@f

@�
=
E0

3E

@

@z
(G1f) (f(1; z) = 1) ; (28)
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where
G1 = �z + �2E + 3�E2=E0 + z�1=2 � �2Ez�3=2 : (29)

We put f = �E�1=3 and change the variable � to E, so that

E
@�

@E
� 1
3
� =

1

3

@

@z
(G1�) : (30)

Then, putting � = �0 + �1z
�1=2 + �2z

�1 + : : :, the leading term is �0 = 1. The
next nonzero term is �3, and it satis�es

d�3
dE

� 1

2E
�3 = �

1

6E
; (31)

that is, since �3(1) = 0,

�3 =
1

3

�
1� E1=2

�
; (32)

and �6 is obtained similarly as

�6 =
2

9

�
1� 2E1=2 + E

�
: (33)

However, �5 requires an integration

�5(R) = E5=6
Z 1

�

E�5=6
�
3�E � 2�2E0

6E0
� 3�E + �

2E0

6E0
E1=2

�
d� : (34)

This may be carried out algebraically for the case E(�) = 1 � �(1 � �) with
� < 1, by changing the variable of integration to E; for example � = �1 in that
case gives

�5 = 8E �
2

7
E2 � 1

13
E3 +

1

4
(2� E)2E3=2 � 2871

364
E5=6 : (35)

Further terms are obtained, as polynomials in E1=6, from the recurrence relation

d�n
dE

� n

6E
�n = �

n� 2
6E

�
�E(3E=�+ �)�n�2 + �n�3 � E�2�n�5

�
; (36)

for example � = �1 in this case gives

�7 = �32E2 +
2840

77
E3 � 15720

1547
E4 +

170

2093
E5 +

20

377
E6

�E1=2
�
5

2
E2 � 5E3 + 15

4
E4 � 5

4
E5 +

5

32
E6
�

+�E5=6
�
5E � 5E2 + 5

4
E3
�
+ E7=6

�
� +

5

32
� 5
4
�

�
; (37)

where
� =

2871

364
; � =

58388558

11350339
: (38)
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These may be readily adapted to the more general case � < 1, and then com-
puted up to any value of n. The resulting power series in � = z�1=2 has been
shown to have radius of convergence beyond j�j = 1.
The cotime variable y now has to satisfy

@y

@z
= f;

@y

@�
=
E0

3E
G1f (y(z; 1) = z) : (39)

We have just obtained

f(z; �) = E�1=3

 
1 +

1X
n=3

�n(�)z
�n=2

!
; (40)

so, integrating the �rst of these with respect to z,

y(z; �) = y0(�) + E
�1=3

"
z �

1X
n=3

2

n� 2�nz
�(n�2)=2

#
; (41)

where the second equation requires

y00(�)�
E0

3E
G1(z; �)f(z; �) = �2

1X
n=3

E0
�
d�n
dE

� �n
3E

�
z�(n�2)=2 ; (42)

with y0(1) = 0, for all z � 1. By comparison with the recurrence relation(36),
the right side of this equation may be identi�ed term by term with�

�E +
1

3
�2E0

�
E�1=3 � E0

3E
G1(z; �)f(z; �) ;

so we deduce that

y00(�) =

�
�E +

1

3
�2E0

�
E�1=3 ; (43)

and hence
y0(�) =

1

2

�
�2E2=3 � 1

�
; (44)

so that �nally

y(�; z) = E�1=3

"
z +

1

2

�
�2E � E1=3

�
�

1X
n=3

2

n� 2�nz
�(n�2)=2

#
: (45)

In the OS case, E = 1, this reduces to y = z + (�2 � 1)=2.

4 Formation of the shell

The radius r at cotime y, on a world line speci�ed by the parameter R, is

r(R; y) =

�
y +

1

2

�
RE1=3 �R3E +

1X
n=3

2R

n� 2�n(R)
� r
R

��(n�2)=2
; (46)
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Figure 1: Interior world lines, with comoving parameters in $0<R<2m$, show-
ing crowding towards the surface at $R=2m$. The initial cumulative density
is $M(R)=R^3(1-0.3+0.3R)$.

where the inversion of z(R; y) = r(R; y)=R from y(R; z), being monotonic in
y, presents no di¢ culty, and has been displayed in Figure 1, with the variable
r(R; y)=r(1; y) = r(R; y)=2my plotted against y at � = �0:3. This choice for �
gives an initial density maximum at the centre.
The �gure displays the same property of the world lines as was noted in [6];

they show a tendency to crowd toward the surface R = Rb. From the general
expressions for �3; �5 and �6, given by equations (32,34,33), we obtain their
derivatives at R = 1 as

�03(1) = �
F 0(1)

6
; �05(1) =

F 0(1)

2
; �06(1) = 0 ; (47)

and subsequent recurrences give, with equal generality,

�0n(1) = 0; (n � 6) : (48)
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We now de�ne

 (R; y) =

�
@r

@R

�
y

; (49)

Substituting in (46) with R = 1, we �nd that

 (1; y) = (y � 1)
�
1 +

F 0(1)

3

�
� F 0(1)

6
(z�1=2 � z�3=2) ; (50)

and since z(1; y) = y, it follows that, at R = 1, (@r=@R)y ! 0 as y ! 1, thereby
extending the OS limiting property of in�nite shell density as t! +1.
The latter property displays, in extreme form, the crowding of world lines at

R = Rb. It is a consequence of the boundary condition there, having required
the time dilation of the interior world lines to be continuous with the same
property in the exterior region. It should be regarded as a property of dust
stars in general, that is of matter with zero pressure, and we may expect that
a more realistic equation of state will evolve into a collapse with �nite density
everywhere.

5 Discussion

We have shown how complete matching of the interior with the exterior met-
ric, leading to a proper understanding of the limits of the time variables, is
intimately linked with the shell structure of the end state. This matching, re-
quiring the construction of our integrating factor f(R; z), was an essential part
of the analysis of the original OS article, and also of Weinberg[9], but was not
considered by Penrose[5] or Choquet-Bruhat[8].
Of course, we should recognize that only a limited set of inferences may be

drawn from these highly idealized dust models, but, since they are the only
complete time-dependent solutions for collapse, they should properly be taken
account of in trying to describe collapsars with more realistic equations of state.
A contemporary statement from Christodoulou[15] along these lines is

An important remark at this point is that it is not a priori ob-
vious that closed trapped surfaces are evolutionary. That is, it is
not obvious whether closed trapped surfaces can form in evolution
starting from initial conditions in which no such surfaces are present.
What is more important, the physically interesting problem is the
problem where the initial conditions are of arbitrarily low compact-
ness, that is, arbitrarily far from already containing closed trapped
surfaces, and we are asked to follow the long time evolution and show
that, under suitable circumstances, closed trapped surfaces eventu-
ally form. Only an analysis of the dynamics of gravitational collapse
can achieve this aim.

The alleged evolution of a collapsar towards a trapped surface inside the
horizon is, of course a necessary step in the black-hole conjecture[5]. The ar-
gument of the previous sections was almost entirely geometrical, but the latter
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quotation emphasizes the need for a �eld-theoretic content. A �rst step in that
direction was already taken in [6], by considering the stress tensor, but a more
ambitious and revealing programme will necessitate studying, for example, the
Landau energy pseudotensor[16]; this is an area which we investigated in a pre-
vious publication[10].
Although we sometimes like to pretend we have outgrown the notion of gravi-

tational force, it has also become commonplace to argue that,"once collapse has
occurred inside the event horizon, no force can override the gravitational at-
traction, so further collapse to a black hole is inevitable". Such an argument
leaves us permanently entrapped in the Newtonian theory. In the tensor the-
ory of General Relativity, it is not implausible to consider[6][17] the possibility
of gravitational repulsion from within an inner core. Equally plausible is the
recognition that the shell may exert a gravitational attraction whose source is
in the outer part of the shell itself. Such a description is ruled out in Newtonian
gravity, because of the inverse square law and the consequent Shell Theory, but
may properly be investigated with the Landau pseudotensor.
The latter feature of the dust collapsar also indicates the need to take account

of the nonzero pressures inside real collapsars. In dense bodies like neutron stars
and galactic centres there is a core of negative gravitational energy with negative
mass, which not only produces repulsion but also cancels out a proportion of
the "proper mass"[9][18] contained in the stellar material. A nonzero pressure is
what prevents repulsive gravity e¤ects going to the extremes of the dust models.
The pioneering work in this area was the article of Oppenheimer and Volko¤[19]
(OV), published a few months prior to the OS article. To the extent that such
an investigation has been carried through to black hole related models, it has
been dominated by what may be considered a Newtonian insistence that gravity
can only be attractive, with the consequence that nuclear material is squeezed
to very high central densities, giving birth to exotic material such as hyperons
and quarks. Note, however, that Oppenheimer and Volko¤, in their footnote 10,
conceded the possibility of varying the central boundary condition, but did not
investigate it further in the light of the OS article. In our articles cited above
we indicated the profound way in which the incorporation of repulsive gravity
changes such theories, through changed boundary conditions at the centre. It
should be borne in mind that the pressures required to prevent in�nite density
at the surface are less by many orders of magnitude than would be required
to prevent an in�nite central density. It should also be noted that collapsars
with shell-like density pro�les, and with a realistic equation of state, have been
proposed in the context of metrics having an empty de Sitter metric[14] at the
centre.
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