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In Search of Schrödinger’s Electron 
Jean Louis Van Belle, Drs, MAEc, BAEc, BPhil1 

Abstract  
This article continues to explore a possible physical interpretation of the wavefunction that has been 
elaborated in previous papers (see http://vixra.org/author/jean_louis_van_belle). It basically zooms in 
on the physical model it implies for an electron in free space.  

It concludes that the mainstream interpretation of quantum physics (the Copenhagen interpretation) is 
and remains the most parsimonious explanation, but that one or two extra assumptions – the 
wavefunction as a two-dimensional self-sustaining oscillation of a pointlike charge in space – make more 
frivolous explanations (many-worlds, pilot-wave, etc.) redundant. 
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In Search of Schrödinger’s Electron2 
Epistemology versus physics 
It is a cliché to say that quantum-mechanical concepts and principles are very non-intuitive. However, it 
explains why several interpretations of quantum mechanics have emerged and continue to vie for 
attention – even if the basic math has been formulated (almost) a century ago.  

The mainstream interpretation of quantum mechanics is referred to as the Copenhagen interpretation. 
It mainly distinguishes itself from more frivolous interpretations – such as the many-worlds and the 
pilot-wave interpretations – because it respects Ockham’s lex parsimoniae: the Copenhagen 
interpretation makes fewer assumptions. 

Unfortunately, the Copenhagen interpretation itself is subject to many interpretations.3 One such 
interpretation may be referred to as radical skepticism or empiricism4: we can only say something 
meaningful about Schrödinger’s cat if we open the box and observe its state. According to this rather 
particular viewpoint, we cannot be sure of its reality as long if we don’t observe it. All we can do is 
describe its reality by a superposition of the two possible states: dead or alive. That’s Hilbert’s logic5: the 
two states (dead or alive) are mutually exclusive but we add them anyway. If a tree falls in the wood and 
no one hears it, then it is both standing and not standing. Richard Feynman – who may well be the most 
eminent representative of mainstream physics – thinks this epistemological position is nonsensical:  

“A real tree falling in a real forest makes a sound, of course, even if nobody is there. Even if no 
one is present to hear it, there are other traces left. The sound will shake some leaves, and if we 
were careful enough we might find somewhere that some thorn had rubbed against a leaf and 
made a tiny scratch that could not be explained unless we assumed the leaf were vibrating.” 
(Feynman’s Lectures, III-2-6)  

It is hard to not agree with him. So what is the mainstream physicist’s interpretation of the Copenhagen 
interpretation of quantum mechanics then? Any academic course in quantum mechanics will answer 
that question, but then you are reading this article because you want an exceptionally smart summary 
of such course. Hence, let me quote from Feynman’s introductory Lecture on the Uncertainty Principle: 
“Making an observation affects the phenomenon. The point is that the effect cannot be disregarded or 

                                                           
2 The title obviously refers to John Gribbins’ In Search of Schrödinger’s Cat: Quantum Physics and Reality (1984). I 
hope the reader will appreciate the reference. 
3 See, for example, Don Howard, Who Invented the “Copenhagen Interpretation”? A Study in Mythology, December 
2004, https://www3.nd.edu/~dhoward1/Copenhagen%20Myth%20A.pdf, accessed on 17 September 2018  
4 Radical empiricism and radical skepticism are actually very different epistemological positions, but then we are 
discussing some basic principles in physics here rather than epistemological theories and so I’ll let the reader 
criticize.   
5 The reference to Hilbert’s logic refers to Hilbert spaces: a Hilbert space is an abstract vector space. Its properties 
allow us to work with quantum-mechanical states, which become state vectors. You should not confuse them with 
the real or complex vectors you’re used to. The only thing state vectors have in common with real or complex 
vectors is that (1) we also need a base (aka as a representation in quantum mechanics) to define them and (2) that 
we can make linear combinations.  
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minimized or decreased arbitrarily by rearranging the apparatus. When we look for a certain 
phenomenon we cannot help but disturb it in a certain minimum way.” (ibidem, my italics) 

We should separate measurement and consciousness. The Copenhagen interpretation has nothing to do 
with consciousness. Reality, a measurement, and consciousness are very different things. After having 
concluded the tree did make a noise, even if no one was there to  hear it, Feynman wraps up the 
philosophical discussion as follows: “We might ask: was there a sensation of sound? No, sensations have 
to do, presumably, with consciousness. And whether ants are conscious and whether there were ants in 
the forest, or whether the tree was conscious, we do not know. Let us leave the problem in that form.” 
(ibidem)  

In short, I think we can all agree that the cat is dead or alive, or that the tree is standing or not 
standingregardless of the observer. It’s a binary situation. Not something in-between. The box just 
obscures our view. That’s all. There is nothing more to it. However, having said that, quantum physicists 
don’t study cats in boxes or trees in forests. Those are big things. They study the behavior of photons 
and electrons, and smaller things6, and then the Uncertainty Principle does come into play.  

The question then becomes: what can we say about the electron – or the photon – before we observe it, 
or before we make any measurement? Think of the Stein-Gerlach experiment, which tells us that we’ll 
always measure the angular momentum of an electron – along any axis we choose – as either +ħ/2 or, 
else, as ħ/2. What is its reality before it enters the apparatus? Do we have to assume it has some 
definite angular momentum, and that its value is as binary as the state of our cat: up or downno in-
between? 

Physics, fuzziness and mathematical tricks 
To answer that question, we should first explain what we mean by a definite angular momentum. It’s a 
concept from classical physics, and it assumes a precise value (or magnitude) along some precise 
direction.  

We can easily challenge these assumptions. The direction of the angular momentum may be changing all 
the time, for example. If we think of the electron as a pointlike charge in some regular or irregular orbit, 
whizzing around in its own three-dimensional space, then the concept of a precise direction of its 
angular momentum becomes quite fuzzy, because its direction changes all the time. And if its direction 
is fuzzy, then its value might be fuzzy as well. In classical physics, such fuzziness is not allowed, because 
angular momentum is conserved: it takes an outside force – or torque – to change it.  

Presumably, it would also require a force or a torque to change angular momentum in quantum 
mechanical, right? Yes, and no. We have the Uncertainty Principle in quantum physics: some energy 
(force over a distance, remember) can be borrowed, so to speak, as long as it’s swiftly being 
returnedwithin the limits set by the Uncertainty Principle, that is: E·t = ħ/2. 

Mainstream physicists – including Feynman – do not try to think about this. For them, the electron that 
enters the Stern-Gerlach apparatus is just like Schrödinger’s cat in a box: the only property we’re 
interested in is its spin (up or down), and there’s some box obscuring the view. The cat is dead or alive. 

                                                           
6 We limit our analysis to quantum electrodynamics. Hence, this article doesn’t try to discuss quarks or other 
sectors of the so-called Standard Model of particle physics. 
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Likewise, the electron spin is up or down, and each of the two states has some probability – both of 
which must obviously add up to one. In short, they will write the state of the electron before it enters 
the apparatus as the superposition of the up and down states: 

〉 = Cup up〉 + Cdown down〉 

We are all familiar with this7: Cup is the amplitude for the electron spin to be equal to +ħ/2 along the 
chosen direction (which we refer to as the z-direction because we will choose our reference frame such 
that the z-axis coincides with this chosen direction) and, likewise, Cup is the amplitude for the electron 
spin to be equal to ħ/2 (along the same direction, obviously). Cup and Cup will be functions, and the 
associated probabilities will vary sinusoidally – with a phase difference to make sure both add up to one.  

The math is consistent, but most would agree this feels more like a mathematical trick than a true model 
of the electron. This description of reality – if that’s what it is – does not feel like a model of a real 
electron. It’s just like reducing the cat in our box to the mentioned fuzzy state of being dead and alive at 
the same time: that doesn’t feel very real either! 

What we are actually doing here, is to reduce a three-dimensional object – our electron – to some flat 
mathematical object.8 Can’t we come up with something more exciting? Perhaps we can. 

Schrödinger’s electron 
Physicists describe the reality of electrons by a wavefunction. If you are reading this article, you 
obviously know how a wavefunction looks like: it is a superposition of elementary wavefunctions. These 
elementary wavefunctions are written as Ai·exp(iI), so they have an amplitude Ai  and an argument i 
= (Ei/ħ)·t – (pi/ħ)·x. Let’s forget about uncertainty, so we can drop the index (i) and think of a geometric 
interpretation of the simpler A·exp(i) = A·ei expression. 

Now here we have a weird thing: for some reason, mainstream physicists think the minus sign in the 
exponent (i) should always be there. However, if we are seeking a geometric interpretation, then we 
should explore the two mathematical possibilities. Indeed, the convention is that we get the imaginary 
unit (i) by a counterclockwise 90° rotation of the real unit (1). However, I like to think a rotation in the 
clockwise direction must also describe something real. To be clear, I think to think A·ei and A·e+i 
describe the same electron but with opposite spin. How should we visualize this? I like to think of A·ei 
and A·e+i as two-dimensional harmonic oscillators:      

A·ei = cos() + i·sin() = cos  i·sin  

A·e+i = cos + i·sin 

                                                           
7 It is the Dirac or bra-ket notation. This simple formula also summarizes the essence of what one should know 
about Hilbert spaces: the two states are Hilbertian state vectors which we can combine linearly. These state 
vectors are always defined in terms of a base, or a representation. A representation in quantum mechanics 
basically establishes a line of sight between the observer and the object or – if you don’t like the idea of an 
observer (consciousness has nothing to do with it) – it establishes the geometric relation between the electron (or 
whatever other thing we’re measuring) and the measurement apparatus (this is a Stern-Gerlach apparatus in this 
case). 
8 We call it flat because it has two (mathematical) dimensions only. 
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So we may want to imagine our electron as a pointlike electric charge (see the green dot in the 
illustration below) to spin around some center in either of the two possible directions. The cosine keeps 
track of the oscillation in one dimension, while the sine (plus or minus) keeps track of the oscillation in a 
direction that is perpendicular to the first one. 

Figure 1: A pointlike charge in orbit 

 

So we have a weird two-dimensional oscillator here, and we may calculate the energy in this oscillation. 
To calculate such energy, we need a mass concept. We only have a charge here – so no mass. However, 
a (moving) charge has an electromagnetic mass. Now, the electromagnetic mass of the electron’s charge 
may or may not explain all the mass of the electron (mainstream physicists think it doesn’t) but let’s 
assume it does for the sake of the model that we’re trying to build up here.9 So we have some mass 
oscillating in two directions simultaneously: we basically assume space is, somehow, elastic. How do we 
visualize that? 

We have worked out a V-2 engine metaphor before, so we won’t repeat ourselves here.10 We will limit 
ourselves here to noting the metaphor does require us to make sense of the real and imaginary part of 
ψ: we need to associate a physical dimension with them. What could it be? We argued it should be the 
same as the dimensions of the electric and magnetic field vectors E and B because, when everything is 
said and done, a force needs something to grab on, and because our charge has no (rest) mass (no 
mechanical mass), the charge is the only thing the force can grab onto.11   

                                                           
9 The theory of electromagnetic mass gives us a very simple explanation for the concept of mass here, and so that’s 
why we’ll use it for the time being. Otherwise we need an alternative theory: a charge is supposedly pointlike and, 
therefore, should not have any mechanical mass. 
10 Jean Louis Van Belle, The Wavefunction as an Energy Propagation Mechanism, 
http://vixra.org/pdf/1806.0106v1.pdf, accessed on 17 September 2018 
11 For more details, see the above-mentioned paper. 
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Figure 2: A perpetuum mobile?  

 

We showed in our previous papers how this metaphor relates apparently unrelated but structurally 
similar formulas: 

1. The energy of an oscillator: E = (1/2)·m·a2·ω2 
2. Kinetic energy: E = (1/2)·m·v2 
3. The rotational (kinetic) energy that’s stored in a flywheel: E = (1/2)·I·ω2 = (1/2)·m·r2·ω2  
4. Einstein’s energy-mass equivalence relation: E = m·c2 

Of course, we are mixing relativistic and non-relativistic formulas here, and there’s the 1/2 factor – but 
these are minor issues that can be solved. For example, we were talking not one but two oscillators, so – 
for the first formula – we should add their energies: (1/2)·m·a2·ω2 + (1/2)·m·a2·ω2 = m·a2·ω2. Hence, the 
1/2 factor disappears. 

Also, one can show that the classical formula for kinetic energy (i.e. E = (1/2)·m·v2) morphs into E = m·c2 
when we use the relativistically correct force equation for an oscillator. So, yes, our metaphor – or our 
suggested physical interpretation of the wavefunction, I should say – makes sense. 

The mathematical derivation of the electromagnetic mass gives us the classical electron radius, aka the 
Thomson radius (Feynman’s Lectures, II-28-3). It’s the smallest of a trio of radii that are relevant when 
discussing electrons: the other two radii are the Bohr radius and the Compton scattering radius 
respectively. The Thomson radius is used in the context of elastic scattering: the frequency of the 
incident particle (usually a photon), and the energy of the electron itself, do not change. In contrast, 
Compton scattering does change the frequency of the photon that is being scattered, and also impacts 
the energy of our electron. [As for the Bohr radius, you know that’s the radius of an electron orbital, 
roughly speaking – or the size of a hydrogen atom, I should say.] 

Now, if we combine the E = m·a2·ω2 and E = m·c2 equations, then a·ω must be equal to c, right? Can we 
show this? Maybe. It is easy to see that we get the desired equality by substituting the amplitude of the 
oscillation (a) for the Compton scattering radius r = ħ/(m·c), and ω (the (angular) frequency of the 
oscillation) by using the Planck relation (ω = E/ħ):      

a·ω = [ħ/(m·c)]·[E/ħ] = E/(m·c) = m·c2/(m·c) = c 
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We can, of course, also calculate a tangential velocity of our charge in orbit. The tangential velocity – 
which we’ll just write as v here – is the product of the radius and the angular velocity: v = r·ω = a·ω = c.  

We get a wonderfully simple geometric model of an electron here: an electric charge that spins around 
in a plane. Its radius is the Compton electron radius – which makes sense – and the radial velocity of our 
spinning charge is the speed of light – which may or may not make sense.  

Of course, we need an explanation of why this spinning charge doesn’t radiate its energy away – but 
then we don’t have such explanation anyway. All we can say is that the electron charge seems to be 
spinning around in its own space: it is moving along a geodesic, so to speak. Hence, it is just like some 
(rest) mass creating its own space: according to Einstein’s general relativity theory, gravity becomes a 
pseudo-forceliterally: no real force. How? I am not sure: the model here assumes the medium – 
empty space – is, somehow, perfectly elastic: the electron constantly borrows energy from one direction 
and then returns it to the other – so to speak. It is a crazy model, yes – but is there anything better? We 
only want to present a metaphor here: a possible visualization of quantum-mechanical models. 

Of course, if this model is to represent anything real, then we also need to answer other questions. Let 
us think about a possible interpretation of the results of the Stern-Gerlach experiment. 

Stern-Gerlach’s experiment revisited 
A spinning charge is a tiny magnet – and so it’s got a magnetic moment, which we need to explain the 
Stern-Gerlach experiment. But it doesn’t explain the discrete nature of the electron’s angular 
momentum: it’s either +ħ/2 or ħ/2, nothing in-between, and that’s the case along any direction we 
choose. How can we explain this? Also, space is three-dimensional. Why would electrons spin in a 
perfect plane? The answer is: they don’t. 

Indeed, the corollary of the above-mentioned binary value of the angular momentum is that the angular 
momentum – or the electron’s spin – is never completely along any direction. This may or may not be 
explained by the precession of a spinning charge in a field, which is illustrated below (illustration taken 
from Feynman’s Lectures, II-35-3).  

Figure 3: Precession of an electron in a magnetic field 
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So we do have an oscillation in three dimensions here, really – even if our wavefunction is a two-
dimensional mathematical object. Note that the measurement (or the Stein-Gerlach apparatus in this 
case) establishes a line of sight and, therefore, a reference frame, so ‘up’ and ‘down’, ‘left’ and ‘right’, 
and ‘in front’ and ‘behind’ get meaning. In other words, we establish a real space. The question then 
becomes: how and why does an electron sort of snap into place as soon as it enters the apparatus? 

The geometry of the situation suggests the angle of the angular momentum vector should be 45° (from 
the horizontal or the vertical). Now, if the value of its z-component (i.e. its projection on the z-axis) is to 
be equal to ħ/2, then the magnitude of J itself should be larger. To be precise, it should be equal to 
ħ/2)  0.7·ħ (just apply Pythagoras’ Theorem). Is that value compatible with our flywheel model?  

Maybe. Let’s see. The classical formula for the magnetic moment is μ = I·A, with I the (effective) current 
and A the (surface) area. The notation is confusing because I is also used for the moment of inertia, or 
rotational mass, but… Well… Let’s do the calculation. The effective current is the electron charge (qe) 
divided by the period (T) of the orbital revolution: : I = qe/T. The period of the orbit is the time that is 
needed for the electron to complete one loop. That time (T) is equal to the circumference of the loop 
(2π·a) divided by the tangential velocity (vt). Now, we suggest vt = r·ω = a·ω = c, and the circumference 
of the loop is 2π·a. For a, we still use the Compton radius a = ħ/(m·c). Now, the formula for the area is A 
= π·a2, so we get: 

μ = I·A = [qe/T]·π·a2 = [qe·c/(2π·a)]·[π·a2] = [(qe·c)/2]·a = [(qe·c)/2]·[ħ/(m·c)] = [qe/(2m)]·ħ 

In a classical analysis, we have the following relation between angular momentum and magnetic 
moment: 

μ = (qe/2m)·J 

Hence, we find that the angular momentum J is equal to ħ, so that’s twice the measured value. We’ve got 
a problem. We would have hoped to find ħ/2 or ħ/2. Perhaps it’s  because a = ħ/(m·c) is the so-called 
reduced Compton scattering radius but… Well… No. 

Maybe we’ll find the solution one day. I think it’s already quite nice we have a model that’s accurate up 
to a factor of 2 or 2. The point is: the precise +ħ/2 or ħ/2 value for the angular momentum of an electron 
– along any direction – suggests a definite value and direction, which isn’t there. The classical analysis 
suggests precession, which implies the direction of the angular momentum is changing all of the time. The 
precession phenomenon just ensures it changes in an equally precise way. Hence, while the idea of a 
specific direction for the angular momentum cannot be maintained, the idea of a specific value can be 
maintained. 

From there, it is easy to take the following logical step: what if there is no magnetic field to line our 
electron up? The direction of the angular momentum might really wander around then, and we have a 
three-dimensional model.  

The model that is offered here is structurally similar to the spherically symmetric solutions to 
Schrödinger’s equation for electron orbitals (the s-states). The wavefunction ψ does not depend on the 
angles here. In other words, we do not worry about the line of sight between the observer and the object 
(the hydrogen atom, in this case). Hence, it could, perhaps, represent something real. Of course, there are 
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several differences with the mentioned s-states: the radius is different, and the electron is actually 
spinning around some center – rather than filling an entire sphere. But it’s basically the same. 

Can we prove this model? Absolutely not. This is just an interpretation, and it does not respects Ockham’s 
lex parsimoniae: the Copenhagen interpretation makes fewer assumptions and is, therefore, the better 
explanation. However, playful interpretations like this may help us to appreciate that quantum physics 
does describe reality. 

18 September 2018 
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