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Abstract

A single-particle Hamiltonian independent of the particle’s coordinate ensures the particle conserves
momentum, i.e., is free. If the Hamiltonian’s energy-momentum is also Lorentz-covariant, it is uniquely
determined by the particle’s rest energy, and the particle has speed below ¢ and constant velocity parallel
to its conserved momentum (Newton’s First Law), so its orbital angular momentum is conserved. Dirac
set the square of his free-particle Hamiltonian equal to the square of this Hamiltonian, but he unwittingly
ruined his Hamiltonian’s energy-momentum Lorentz-covariance by making it inhomogeneously linear in
momentum. A Dirac particle’s speed is thus independent of its momentum, so by elimination can involve
only c. Dirac free-particle speed comes out fixed to ¢ times the square root of three, and the same
fixed speed is obtained with the electromagnetically minimally coupled Dirac Hamiltonian, destroying
the very basis of the textbook idea that Dirac Hamiltonians reduce to nonrelativistic Pauli Hamiltonians
for weak fields and nonrelativistic particle speed. Dirac Hamiltonians egregiously violate the special-
relativistic speed limit ¢, so must be discarded, and the actual relativistic extension of the nonrelativistic
Pauli Hamiltonian worked out, which is done via Lorentz-invariant upgrade of the rest-frame Pauli action
functional. The relativistic Pauli Hamiltonian is obtained in closed form for zero external magnetic field,
otherwise a successive approximation scheme applies.

Introduction

The relativistic Hamiltonian H(p) for a free particle ensures conservation of the particle’s momentum p
through its independence of the particle’s coordinate r. The Lorentz covariance of the Hamiltonian’s asso-
ciated energy-momentum four-vector H* = (H(p), cp) allows it to be worked out for an arbitrary value of
p from its value at p = 0 where H* = (H,,0), and Hy = H(p = 0) is the particle’s rest energy. We now
Lorentz transform (Hp,0) from an inertial frame where the free particle has zero momentum to an inertial
frame where it has some arbitrary velocity  such that |f| < ¢. Zero momentum corresponds to zero velocity
because as |p| — 0, we have the familiar nonrelativistic relation of velocity to momentum, i.e., t = (p/m).
The Lorentz transformation of (Hy, 0) from the inertial frame where the particle has zero velocity, I = 0, to
the inertial frame where the particle has an arbitrary velocity ¥ such that |¢| < ¢ is,
_1 .
(Ho,0) — Ho (1~ |¢/c|?) * (1,(¢/c)) = H* = (H(p), cp). (1a)
We read off from Eq. (1a) that, )
p = (Ho/c)(t/c) (1 - [i/c]?) 7, (1b)

which is readily inverted to obtain (&/c),
(3/c) = (cp/Ho) (1 + lep/Hol?) . (1c)
which permits us to in addition obtain,
(L= [#/c?) " = (1+ [ep/HoP?) . (1)
We now insert Egs. (1d) and (1c) into Eq. (1a) in order to obtain H* in terms of p instead of in terms of ¥,
H* = (Ho (1+|ep/Hol), p) = (H(p), p), (1e)
which yields the relativistic free-particle Hamiltonian H(p),
H(p) = Ho (1+ep/HoP)* (1)

where, as pointed out in the paragraph preceding Eq. (1a), Hy = H(p = 0) is the particle’s rest energy. The
Ip| = 0 asymptotic form (H(p) — Ho) ~ (|cp|?/(2Hy)) is obviously equal to the particle’s nonrelativistic

kinetic energy (|p|?/(2m)), so Hy = mc?, which implies that H(p) = (m?c* + \cp\z)%.
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The central idea which guided Dirac’s 1928 development of his purportedly “relativistic” free-particle
Hamiltonian operator Hp(p) was his intuitive impression that the resulting free-particle Schrédinger equa-
tion,

ihow /0t = Hp (p)o, (2a)

(whose Hamiltonian Hp(p) is independent of r to render the particle’s momentum constant in accord with
the particle’s being free), must be space-time symmetric in configuration representation in order to accord
with special relativity [1]. Since in configuration representation, py is given by,

Pt = —ihV,, (2b)

Dirac specifically implemented his somewhat vague intuitive impression that the Eq. (2a) free-particle Schro-
dinger equation is space-time symmetric by postulating that Hp(p) is inhomogeneously linear in p, namely
that [1, 2, 3, 4],

Hp(p) = c@ - p + Bmc?, (2¢)

where @ and (8 are, of course, Hermitian, dimensionless and independent of p and r.
The Heisenberg equations of motion with this Hp(p) then yield,

p = (—i/h)[p, Hp(p)] = (—i/h)[p,cd - p + fmc’] = 0, (2d)

which of course is the basic property of a free particle, namely that its momentum is conserved, and they
also yield [5, 6],
t = (—i/h)[r, Hp(p)] = (—i/h)[r,cd - p + fmc’] = cd, (2¢)

which, since @ is independent of p, unfortunately outright contradicts one of the fundamental attributes of
special relativity, namely that the |p| — 0 asymptotic form of its free-particle relationships accord with the
corresponding free-particle relationships of Newtonian physics, which in this instance implies that,

r~ (p/m) as |p| — 0. (2f)

The incompatibility with Eq. (2f) of the Eq. (2e) consequence I = ¢@ of the Dirac free-particle Hamiltonian
Hp(p), where @ is independent of p, shows that the Dirac free-particle Hamiltonian Hp(p) of Eq. (2¢)
violates special relativity. This is the first of an almost endless list of examples of ways in which the Dirac
theory violates special relativity. In due course, we shall stop paying any heed whatsoever to the Dirac theory,
but for the time being there remain quite a few thought-provoking illustrative examples of its relativistic
illegitimacy still to be broached.

We can determine that the Dirac free-particle speed |f| = c|d@| is a fized c-number whose specific value
is under no circumstances compatible with special relativity, upon noting the algebraic properties of & and
B which follow from Dirac’s second postulate involving the square of the free-particle relativistic energy

H(p) = (m2c* +[ep|?)? [1, 7, 8],
(Hp(p))? = (H(p))? = m*c* + |ep|?, (3a)

which ensures that any solution of the Dirac equation satisfies the Klein-Gordon equation. In conjunction
with Eq. (2c), it also turns out to ensure that the Dirac equation shares the Klein-Gordon equation’s property
of having negative-energy free-particle solutions. The well-known algebraic consequences of Eq. (3a) for &
and 3 are [1, 7, §],

(az)? = (ay)? = (az)? = (B)?> = 1 and ay, ay, @, and B mutually anticommute. (3b)

Thus for the Dirac free-particle speed ||, Egs. (2¢) and (3b) yield,

=

i = @] = ¢ ((aw)? + (ay)? + (@2)?)? = c(1+ 1+ 1)% = cV/3, (3¢)
a fized c-number whose specific fized value cv/3 not only egregiously violates the nonrelativistic asymptotic
free-particle requirement that |¢| ~ (|p|/m) as |p| — 0, but which as well egregiously violates the special-
relativistic free-particle speed limit |¥| < c.

Although some textbooks do actually point out that the eigenvalues of each of the three components of
the Dirac “free-particle” velocity ¥ = c@ are +c [5], which immediately mathematically implies that |¢| = V3,
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there is apparently no textbook which dares to actually write down this result that |¥| = cv/3, that reveals with
utterly devastating succinctness the complete theoretical-physics worthlessnes of Dirac’s 1928 “relativistic
free-particle” Schrodinger-equation efforts.

The electromagnetically minimally coupled Dirac Hamiltonian [9, 10],

Hp(r,P)=a- (cP —eA) + e + Bmc?, (4a)
is immediately seen to have the same velocity consequence [6],
t = (=i/h)[r, Hp(r,P)] = (=i/h)[r, cd - P] = cd, (4b)

as the “free-particle” Dirac Hamiltonian, which implies that any electromagnetically coupled Dirac particle
always has the speed |t| = cv/3 that egregiously violates the special-relativistic particle speed limit || < c.

This speed result, |i| = cv/3, for the electromagnetically minimally coupled Dirac Hamiltonian of Eq. (4a)
immediately gives the lie to the well-known textbook “theorem” that that Hamiltonian effectively reduces to
the electromagnetically coupled nonrelativistic Pauli Hamiltonian [11, 12],

H = ([P —(e/c)AP/(2m)) + e¢ — (eh/(2mc))(7 - B), (5a)
in the latter’s region of special-relativistic validity, which is, of course, when,
B = (P = (e/0)Al/m) <¢, (5b)
because of the fact that,

t = (—i/h)[r, H] = (=i/h) [r, ([P = (e/c)A]?/(2m))] = (P — (e/c)A)/m). (5¢)

However, there is no overlap whatsoever between |F| = ¢v/3 and |f| < ¢, so this well-known textbook
“theorem” comically falls flat on its face.

The purported “proof” which textbooks proffer for this well-known “theorem” relies on the ostensibly
“plausible” supposition for the Dirac Hamiltonian that if [13, 14],

|P — (e/c)A] < me, (6a)

then,
|E — mc?| < mc?. (6b)

The difficulty with this “plausible” supposition becomes apparent when the Dirac equation’s unavoidable
negative-energy solutions are taken into consideration. For example, it is entirely feasible to have the condi-
tion given by Eq. (6a) in coeristence with,

E ~ —mc?, (6¢)

which, of course, drastically violates the ostensibly “plausible” supposition of Eq. (6b).

The insuperable underlying problems with the Dirac Hamiltonian are Dirac’s two disastrously false ideas
that space-time symmetry of the Schrédinger equation can supplant Lorentz covariance of the Hamiltonian
operator’s associated energy-momentum operator and that the utterly extraneous negative-energy solutions
of the Klein-Gordon equation can be permitted to infiltrate the Schrédinger equation.

Consider the generic single-particle Schrodinger equation in configuration representation,

ithoy /0t = H(x,P)1p. (7a)

If it accords with special relativity, its Hamiltonian operator H(r,P) perforce is such that its associated
energy-momentum operator H* = (H(r, P), c¢P) is Lorentz-covariant. It also turns out that if this associated
energy-momentum operator of the Hamiltonian operator of such a generic Schrédinger equation is Lorentz-
covariant, then that Schrodinger equation is the time component of a Lorentz-covariant four-vector equation
system whose three space components follow from just the familiar configuration-representation fact that,

Py = —ihVy1. (7b)
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To demonstrate this, we first point out that the Eq. (7a) generic single-particle Schréodinger equation in
configuration representation together with Eq. (7b) yields the four-equation system,

the Oy /0x, = H", (7c)
which written out in detail is,
ih(OW/0, eV b) = (H(x, P)b, cPY). (7d)

This four-equation system is satisfied because its time component is precisely the Eq. (7a) generic Schrodinger
equation, and its three space components are equivalent to,

—ihV ) = P, (Te)

which is precisely Eq. (7b).
In addition to merely the straightforward validity of the Eq. (7¢) four-equation system, it is the case that
since the space-time differential operator,

ihc0/0x, = ih(0/0t, —cVy),

manifestly is a Lorentz-covariant four-vector operator, if the Hamiltonian operator H (r,P) of the Eq. (7a)
generic Schrodinger equation is such that its associated energy-momentum operator H* = (H(r,P), cP) is
as well a Lorentz-covariant four-vector operator, then the Eq. (7¢) four-equation system clearly is a Lorentz-
covariant four-vector equation system whose time component of course is the Eq. (7a) generic Schrodinger
equation, and whose three space components follow from just the familiar configuration-representation fact
that Eq. (7b) holds. Therefore if the Hamiltonian operator H(r,P) of the Eq. (7a) generic Schrodinger
equation is such that its associated energy-momentum operator H* = (H(r,P), cP) is a Lorentz-covariant
four-vector operator, then the Eq. (7a) generic Schrédinger equation clearly accords with special relativity.
The converse of this statement is self-evident, so a necessary and sufficient condition for the Eq. (7a) generic
Schrodinger equation to accord with special relativity is that its Hamiltonian operator H(r, P) is such that
its associated energy-momentum operator H* = (H(r,P), cP) is a Lorentz-covariant four-vector operator.

Also, since a generic single-particle, configuration-representation Schrodinger equation which accords
with special relativity is only the time component of a Lorentz-covariant four-vector equation system, it
absolutely cannot be space-time symmetric. Therefore, making such a generic Schrodinger equation space-
time symmetric will always produce a result which violates some aspect of special relativity, which is the
opposite of Dirac’s intuitive impression [1, 2, 3, 4], and provides an explanation why the Dirac Hamiltonian
violates special relativity.

We also note the arcane fact that since a generic single-particle, configuration-representation Schrodinger
equation which accords with special relativity is only the time component of a Lorentz-covariant four-vector
equation system, no homogeneously-linear recasting of such a generic Schrodinger equation that accords
with special relativity is Lorentz-transformation form-invariant. This arcane fact is only of interest because
the Dirac equation has been ad hoc retrofitted with a custom-created claimed extension of the Lorentz
transformation to Dirac’s four-component wave functions under which the Dirac equation multiplied by the
Dirac matrix 3 is form-invariant [15]. Since the Dirac equation’s multiplication by the Dirac matrix 8 is
indeed a homogeneously-linear recasting of the Dirac equation, the above arcane fact tells us that if this ad
hoc retrofitted custom-created claimed extension of the Lorentz transformation to Dirac’s four-component
wave functions really is the Lorentz transformation that it is claimed to be, then the Dirac equation, whose
multiplication by the Dirac matrix 3 is form-invariant under this presumed Lorentz transformation, definitely
cannot be in accord with special relativity. On the other hand, if this ad hoc retrofitted custom-created
claimed extension of the Lorentz transformation to Dirac’s four-component wave functions isn’t really the
Lorentz transformation that it is claimed to be, then we must, of course, directly examine the Dirac equation
to check whether it accords with special relativity. For example, the free particle Dirac Hamiltonian is
inhomogeneously linear in p, which we have seen in detail above isn’t in accord with special relativity. The
moral of this overlong story about the ad hoc retrofitted custom-created claimed extension of the Lorentz
transformation to Dirac’s four-component wave functions, under which the Dirac equation’s multiplication
by the Dirac matrix 3 is form-invariant [15], is that its existence in absolutely no way demonstrates that the
Dirac equation is in accord with special relativity; indeed, if this transformation of Dirac’s four-component
wave functions really is the Lorentz transformation which it is claimed to be, then the Dirac equation
definitely isn’t in accord with special relativity.



We now point out that the relativistic Hamiltonian operator H(p) for a free particle that is given by
Eq. (1f), which we reproduce here, namely,

H(p) = Ho (14 |ep/Ho[?)? (1f)

is outright incompatible with Dirac’s assertion that H(p) is inhomogeneously linear in p. Since the above-
reproduced Eq. (1f) Hamiltonian operator H(p) for a free particle follows from just the principles of special
relativity (i.e., the Lorentz-covariance of the energy-momentum four-vector operator H* = (H(p), cp)), it
is clear that the well-known Dirac “free-particle” Hamiltonian operator of Eq. (2¢), namely,

Hp(p) = ca@ - p + Bmc?, (8a)

which is inhomogeneously linear in p, must contradict special relativity.
Application of the Heisenberg equation of motion using the above-reproduced Eq. (1f) actual relativistic

free-particle Hamiltonian operator H(p) = Ho ((1+ |cp/H0|2)% yields the following result for the actual
relativistic free-particle velocity operator r,

i = (—i/h)[r, H(p)] = (=i/B)[r, Ho (1 + |ep/Ho|?) 2] = (¢*p/Ho) (1 + |cp/Ho[?) "2, (8b)

which already was obtained in Eq. (1c¢) as a consequence of Lorentz-transformation considerations. The
asymptotic form as [p| — 0 of the relativistic ¥ of Eq. (8b) is,

i ~ (c*p/Ho), (8¢)

which we set equal to the well-known nonrelativistic velocity,

t = (p/m), (8d)

to obtain Hy = mc?, which we in turn insert into Eq. (1f) to obtain the mass m relativistic free-particle
Hamiltonian H (p),

H(p) = (m*c* + |cp|2)% ) (8e)

We likewise insert Hy = mc? into Eq. (8b) to obtain the mass m relativistic free-particle velocity T,

i = (p/m) (1 + [p/(mc)[2) % . (f)

Unlike the pathological results ¥ = cd& of Eq. (2¢) and || = ¢v/3 of Eq. (3c) of the Dirac “free-particle”
Hamiltonian Hp(p) = cd@ - p + Bmc? of Eq. (2¢), the correct Eq. (8e) relativistic free-particle Hamiltonian
H(p) = (m204 + |cp|2)% yields the Eq. (8f) free-particle relativistic velocity ¥ that is not independent of p
as the Dirac cd is, that is parallel to p and therefore yields conservation of orbital angular momentum, which
the Dirac c&@ fails to, which does have the correct nonrelativistic |p| — 0 asymptotic behavior ¢ ~ (p/m),
but the Dirac cd@ utterly fails to, which does satisfy the relativistic free-particle speed limit |f| < ¢, whereas
the Dirac c¢@ always corresponds to the fized unphysical speed |¥| = ¢v/3, and whose components do commute
with each other, whereas those of the the Dirac cd pathologically anticommute with each other.

Of course the correct Eq. (8e) relativistic free-particle Hamiltonian H(p) = (m?c* + |cp|2)% implies that
a relativistic free particle experiences no acceleration whatsoever, in accord with Newton’s First Law, as
immediately follows from insertion of Egs. (8f) and (8e) into the Heisenberg equation of motion,

i = (=i/W)li, H(p)] = (=i/h) [(p/m) (1 + [p/(mA)?) *, (m2c* + |ep]?)*| = 0. (32)

The pathological Dirac “free-particle” Hamiltonian Hp(p) = c@ - p + Smc? of Eq. (2¢), however, puts forth
an astoundingly conflicting tale about the spontaneous acceleration of free particles, namely,

i = (—i/h)[t, Hp(p)] = (=i/h) [cd, cd - p + fmc?] = (—ic®/h) ((p x (@ x @) + (2aBmc)), (8h)
which implies that when p = 0, namely in the case of a Dirac free particle of zero momentum,
i = —2ia@B (mc®/h), (8)
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and therefore,

|i| = 2v/3 (mc?/h), (8))

so a p = 0 Dirac “free particle” undergoes spontaneous acceleration (due to varying direction of travel
at special-relativity violating fized speed c¢\/3), completely unlike any relativistically-legitimate free particle
described by Eq. (8g). When we put the mass of the electron into the Eq. (8j) spontaneous acceleration
expression, we obtain an acceleration magnitude |#| of the astounding order of 10?® times g, where g = 9.8
meters per second squared, the acceleration of gravity at the Earth’s surface. The mind-boggling magnitude
of this putative spontaneous acceleration is traced to the occurrence of % in the denominator of Eq. (8j). The
Dirac “free-particle” Hamiltonian’s twisted “ability” to cause the commonplace physical phenomenon of ac-
celeration to come out inversely proportional to h shows how ill-considered a kluge the Dirac Hamiltonian is.
Dirac began by defying elementary physics knowledge about the momentum character of free-particle Hamil-
tonians, both Newtonian and relativistic, by bullheadedly decreeing his “free-particle” Hamiltonian Hp(p)
of Eq. (2¢) to be inhomogeneously linear in the free-particle momentum, which he followed with the clumsily
naive afterthought of requiring (Hp(p))? to equal (H(p))? in order to paper over the consequent theoretical-
physics damage, that in fact only serves to makes matters worse by foisting wildly physically-inappropriate
anticommuting properties on the venerable concepts of velocity and rest energy. A more idiosyncratically
ham-handed, tin-ear performance than Dirac’s can scarcely be imagined.

As a salient example of the physically-muddled nature of the Dirac theory due to the Dirac “velocity”
operator I having the anticommuting components coy,, cay and ca, instead of physically sensible commuting
components, the “famous” Dirac spin-1/2 operator S, namely,

4

S =—i(h/4)(a x @),
can, since I = ca, obviously just as well be written,
S = i (h/ (4)) (i x £),

so the wery existence of the “famous” Dirac spin-1/2 operator S is the entirely artificial consequence of
Dirac-theory physically-pathological velocity-component anticommutation in the place of physically-sensible
velocity-component commutation.

Scrutiny of Eq. (8h) above, which exhibits the underlying causes of special-relativity violating spontaneous
acceleration ¥ of a Dirac “free particle” reveals that existence of the Dirac spin-1/2 operator-related entity
(@ x @) definitely contributes to the special-relativity violating spontaneous acceleration ¥ of a Dirac “free
particle”.

The “automatic emergence” of the spin-1/2 operator S = —i(%i/4)(a@ x @) = —i (h/ (4c?)) (£ x I) in Dirac
theory is traditionally touted as “a great accomplishment” of that theory, but (1) its very existence depends
on the pathological anticommuting property of the components of the particle velocity ¥ in Dirac theory, and
(2) Eq. (8h) tells us that the spin-1/2 operator-related entity (& x &) contributes to the special-relativity
violating spontaneous acceleration ¥ of a Dirac “free particle”. The Dirac theory’s spin-1/2 operator S =
—i(h/4)(a@ x @) = —i (h/ (4c?)) (¥ X T) is a completely chimerical consequence of the egregiously unphysical
velocity-component anticommutation feature of that theory.

There is no doubt that the electromagnetically minimally coupled Dirac Hamiltonian of Eq. (4a),

Hp(r,P)=a- (cP —eA) + ed + fmc?,

which egregiously violates special relativity because its particle velocity T equals ¢ and therefore its particle
speed |¢| = ev/3 always exceeds ¢, cannot correctly describe single-particle relativistic quantum mechanics,
and thus definitely cannot be a physically sensible relativistic extension of the electromagnetically coupled
nonrelativistic Pauli Hamiltonian of Eq. (5a), namely,

H = ([P~ (e/0)A/(2m)) + e6 — (eh/(2me))(& - B),
which apparently is physically unobjectionable in the nonrelativistic regime, namely when,
¥ = ([P = (e/c)Al/m) < c.

However, a powerful way to produce dynamical theories guaranteed to accord with special relativity is
by utilizing Lorentz-invariant action functionals. Furthermore, the relativistic physics of a single particle is
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identical to its nonrelativistic physics when that particle is at rest. Thus given a nonrelativistic single-particle
dynamical theory which one wishes to upgrade to its relativistic counterpart, one proceeds by working out its
nonrelativistic action functional, and then specializes that nonrelativistic action functional to zero particle
velocity, which entity is the base that is to be upgraded to a Lorentz-invariant action functional which is valid
at any particle velocity whose magnitude is less than c.

Given a nonrelativistic Hamiltonian which is to be upgraded to its relativistic counterpart, a great many
steps are necessary. One must pass from the nonrelativistic Hamiltonian to the corresponding nonrelativistic
Lagrangian, thence to the nonrelativistic action functional, which is specialized to zero particle velocity.
This is the base to be upgraded to the Lorentz-invariant action functional, whose integrand then yields the
relativistic Lagrangian, from which one passes to the relativistic Hamiltonian. A cawveat here is that passages
between Lagrangians and Hamiltonians entail solution of algebraic equations, which isn’t always feasible in
closed analytic form.

Action-based unique relativistic extension of the Pauli Hamiltonian

In preparation for the relativistic extension of the nonrelativistic Pauli Hamiltonian of Eq. (5a), we add to

it the particle’s rest-mass energy mc?,

H=me+ ([P = (¢/c)A2/(2m)) + e — (¢h/(2mc))(G - B). (9a)

Note that the addition of such a constant term to a Hamiltonian in no way changes the quantum Heisenberg
or classical Hamiltonian equations of motion.

To obtain the nonrelativistic action Sy, which corresponds to the Hamiltonian H of Eq. (9a), we first
work out the Lagrangian L which corresponds to that Hamiltonian H. The conversion of such a particle
Hamiltonian to a particle Lagrangian requires swapping the Hamiltonian’s dependence on the canonical
three-momentum P for the Lagrangian’s dependence on the particle’s three-velocity r. We obtain that
particle three-velocity I from the Heisenberg equation of motion (or alternatively, in this case, from the
equivalent classical Hamiltonian equation of motion),

r=(—i/h)[r,H] = VeH = (P — (e/c)A)/m. (9b)
We now invert the relation of Eq. (9b) between particle velocity ¥ and canonical momentum P to read,
P =mr + (e/c)A, (9¢)
and insert it into the well-known relationship of the Lagrangian to the Hamiltonian, namely,

L=v-P—-H ’P:mﬁ(e/c)A = —mc® + tmlE|? —e(¢ — (£/c) - A) + (eh/(2mc))(G - B), (9d)

from which we immediately obtain the nonrelativistic action,
Spr = /Ldt = / [—=mc? + tm|i|* —e(¢ — (8/c) - A) + (eh/(2mc))(c - B)] dt.

Of course we don’t want the nonrelativistic action Sy, itself, but its specialization S to the case of zero
particle velocity, namely 1 = 0,

S= / [—me — e+ (ch/(2me))(@ - B)] dt. (9e)

We shall undertake the Lorentz-invariant upgrade of the three terms of this action S individually. The first
term of S which we tackle is that of the free particle,

50— / (—me?)dt. (10a)

To make S° Lorentz-invariant, we only need to replace the time differential dt by the Lorentz-invariant
proper time differential dr, ) )
dr = ((dt)2 — |dr/c\2)E = (1 — |I"/c\2)§ dt. (10b)
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Therefore, .
dr/dt = (1—|t/c[*)?, (10c)

and from this it of course follows that,
dt/dr = (1 —|i/c]?) 2. (10d)

The Lorentz-invariant upgraded S° therefore is,

S0 = \/(7m62)d7'. (10f)

Eq. (10f), by use of Eq. (10c) can of course also be expressed as,

50, = / (=me?) (1 — [¢/c]?)? dt. (10g)

We next tackle the part of the action S which encompasses the interaction of the particle’s charge e with
the electromagnetic potential ¢,

S = / (—eg)dt. (11a)

We carry out the Lorentz-invariant upgrade of S¢ by replacing the time differential d¢ in Eq. (11a) by the
Lorentz-invariant time differential d7, and upgrading the © = 0 static-limit potential energy e¢ to a dynamic
Lorentz-invariant function of r. To do so we first rewrite the static potential energy e¢ as the faux Lorentz
invariant,

ep = eU,(r = 0)A*, (11b)

that has the faux Lorentz-covariant constituent,

U, (& = 0) = 50, (11c)

which is valid only in the particle’s rest frame where the particle’s velocity i = 0. To upgrade the static faux
Lorentz-covariant U, (f = 0) to a dynamic true Lorentz-covariant entity U, (f), we Lorentz-boost it from the
particle’s rest frame to the inertial frame where the particle has velocity r,

Uu(t) = Un(t = 0)A; (1) = 63AZ‘(1’“) = Ag(i'). (11d)
Therefore the dynamic Lorentz-invariant upgrade of the static potential energy e¢ is,
el,(r)A+ = eAg(i‘)A“ =ey(r) (¢ — (t/c) - A), (11e)
where,
Y(#) = (1= ([B[*/c?)) "3 = dt/dr. (11f)
Thus the Lorentz-invariant upgrade of,
5= [-eayar,
is,
Sta = [ (e )4 = [ (~e(o - (i/c)- A (11g)

Finally we tackle the part of the action S that encompasses the interaction of the particle’s spin with the
magnetic field,

S7 = /(eh/(2mc))(6~B)dt. (12a)

Again we replace the differential dt by the Lorentz-invariant differential dr and upgrade the static potential
energy —(eh/(2me))(& - B), which is valid in the & = 0 particle rest frame, to a dynamic Lorentz-invariant
function of r. Preliminary to the upgrading of the static potential energy —(eh/(2mc))(c - B), we write it
as,

—(eh/(2me))( - B) = —(eh/(2mc)) (G - (V x A)) = (eh/(2me))e;jro’ (87 AF). (12b)
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This representation of the static potential energy can be rewritten as the faux Lorentz invariant,
(eh/(2me))eijrot (07 AF) = (eh/(2mc))o ., (B = 0)(9*AY), (12¢)
that has the faux Lorentz-covariant constituent,

0 ifu=0orv=0,

O (F = 0) = {eijkai ifu=jandv==k, jk=1,2,3, (12d)

which is valid only in the particle’s rest frame where the particle’s velocity i = 0. Note that o, (f = 0) is
antisymmetric under the interchange of its two indices p and v. To upgrade the static faux Lorentz-covariant
0, (F = 0) to a dynamic true Lorentz-covariant entity o, (&), we Lorentz-boost it from the particle’s rest
frame to the inertial frame where the particle has velocity r,

O () = oap(t = O)Az‘(f)Af(f) = qjkaiAf;(i‘)Al’f(i‘). (12e)

It is apparent from Eq. (12e) that the Lorentz-covariant second-rank tensor o, (r) is also antisymmetric
under the interchange of its two indices p and v. From Egs. (12b) through (12e) it is clear that the dynamic
Lorentz-invariant upgrade of the static potential energy —(eh/(2me))(d - B) is,

(eh/(2me))o, (1) (0" A¥) = (eh/(2me))eijeo A, () AL () (0" A”) =
(en/(2me)) (7 - [(Au(F)0") x (A, (£)A7)]),
where,
(AL ()" AT ()" and (A, (3)AY)" < AK(F)AY. (12g)
The space components of the Lorentz boost of the four-vector partial-derivative operator,
o = ((1/c)(9/0t),=V),

from the rest frame of the particle to the inertial frame in which the particle has velocity 1 are given by,

(Ap(0)0") = =V = (y(£) = D[E[ 722 (k- V) = y(£) (/) (1/c)(9/01), (12h)
and the space components of the same Lorentz boost of the electromagnetic four-vector potential,

Alu‘ = (d)’ A')7

are given by,
(Ay(£)AY) = A+ (y(2) = DIE[7Z(E - A) = y(B)(E/c)o- (121)
Using Eqgs. (12h) and (12i) one can, with tedious effort, verify that,

(Au()0") x (Ay({)A”) = ~(V x A)=
(1) = D2V x (0 - A)) + (- V) x A)) = () [(1/¢) x (A/e) = V x ((/)8)| =
—~(V % A) = (4(8) = DIE 2 [ % [~V (- A) + (- V)A] +(0) [(8/0) x [~V - (A/e)]] = .
—(V % A) = (1) = DIE2 i x [ x (V7 x A)]] +9(F) [(8/0) x [~V — (A/0)]| =
=B~ ((i) ~ DIi| 2 [[i*B ~ i(i - B)] +(5)((/¢) x B) =
—()B + (1(5) — Vi 28k - B) — () (E x (i/0)).

From Egs. (12f) and (12j) one sees that the dynamic Lorentz-invariant upgrade of the static potential energy
—(eh/(2me))(c - B) is,

(en/(2me))ou, (£) (0" AY) = (eh/(2me)) (7 - [(Au(F)0") x (A, () A")]) = (1210
—(en/(2me)) [y(¥)(F - B) = (v(£) — D)[F|72(7 - £)(£ - B) +7(£)(5 - (B x (i/c)))]
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and thus the Lorentz-invariant upgrade of the Eq. (12a) spin contribution to the action, namely,

S7 = /(eh/(2mc))(5~B)dt.

comes out to be,

o= f/(eh/(ch))aW(i*)(@”AV)dT =
[en/@me) (3 B) ~ (1= (20) G £ B)+ (3 (B x (i/0)))] i = (121)
[(en/(2me)) [G-B) ~ (L4 6@) )@ (1/0)(E/e) B) + (7 x B) - (¢/0)] e,

as we see by using Eq. (12k) and the fact that,

A(E) = (1 [i/e[2)74 = dt/dr.

In the last step of Eq. (121), we have furthermore interchanged the “dot” - with the “cross” x in the triple
scalar product,

(@ (Ex (t/c))),

and have as well applied the identity,

(L= (y(@E) ™ HE 2= 1+ (y@E) e 2

We are now in a position to write down the Lorentz-invariant upgrade S, of the nonrelativistic Pauli
action S of Eq. (9e),

Srel = SO

rel

e _
+ Srel rel =

+ 8% / [—mc? — eU, (8)A* — (eh/(2mc))o, (8) (0 AY)] dr =
/ {‘W(l —[E/e) — e(6— (i/c) - A)+ (13a)
(hi/(2me)) (7 B) = (1+ (1= [i/e?)}) " (& (#/0))(/0) - B) + (£/c) - (& x E))] dt

From this Lorentz-invariant upgrade of the nonrelativistic Pauli action we can immediately write down the
relativistic Pauli Lagrangian,

Liay = —mc*(1 = [i/c[*)% — e(¢ — (i/c) - A)+

o (13b)
(eh/(2me)) (7 B) — (14 (1 = [i/c)) " (@ (#/e)((+/c) - B) + (#/¢) - (7 x B)),
where, of course,
B=VxA and E=-V¢— (A/c). (13c)
From Eq. (13b) we calculate the relativistic Pauli Lagrangian’s corresponding canonical momentum,
P = VL =mi(l—|t/c|?) % + (e/c)A + (eh/(2mc?)) (G x E)—
(ch/(2me?)) (14 (1 = [i/e2)) " |G((i/c) - B) + (5 - (/) B+ (13d)

(14 (1= [/e[)2) 7 (/)1 = [i/el)2(F - (#/0))((i/c) - B) .

The last three terms of Eq. (13d), which all arise from the relativistic distortion of the magnetic field B,
unfortunately preclude solving analytically for the particle’s wvelocity © in terms of the system’s canonical
momentum P. For that reason we cannot in general analytically parlay the relativistic Pauli system’s energy

Erel; namely,
Erel =1r-P- Lreh (136)
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into its relativistic Pauli Hamiltonian Hye (r,d, P, t). However we see from Eq. (13d) that the three offending
terms which arise from the relativistic distortion of the magnetic field B are all higher-order corrections in
powers of |F/c|, so we can easily rewrite Eq. (13d) as a successive-approximation scheme for the desired
inversion of the canonical momentum P that is consonant with the systematic carrying out of relativistic
corrections. The scheme is considerably more transparent, however, after all occurrences of the particle
velocity I on the right-hand side of Eq. (13d) (and as well on the right-hand side of Eq. (13e)) are replaced
by occurrences of the free-particle momentum p, which is,

p def mi(1 — |i/c¢[?)~%, and implies,

(13f)
(£/e)(1 = [£/c?)7% = p/(me), (i/c) =p(m> +|p[)"%, (1 —[i/c[*)% = me(mc + [p[*) 3.

Using Eq. (13f) to eliminate all occurrences of the particle velocity ¥ on the right-hand side of Eq. (13d) in
favor of the free-particle momentum p yields,

P =p+ (e/c)A + (ehi/(2mc?)) (G x E)—
(eh/(2mc?)) (me+ (m?c® + |p|2)%)_1 X (13g)

#(p - B) + (- p)B + (mc+ (m22 + |p[2)) ™ (p/(me))(@- p)(p-B)|.

Eq. (13g) can now be readily rewritten as a successive approzimation scheme for the resolution of the free-
particle momentum p in terms of the canonical momentum P,

p=P —(e/c)A — (eh/(2mc?)) (G x E)+
(eh/(2mc?)) (me+ (m?c® + |p|2)%)_1 X (13h)

#(p - B)+ (- p)B + (mc+ (m22 + |p[2)) " (p/(me))(3- p)(p-B)|.

In order for these successive approximations to p in terms of P to be able to produce successive approxima-
tions to the relativistic Pauli Hamiltonian H.., we must also banish all occurrences of the particle velocity
I in the system’s energy Eye1, which is given on the right-hand side of Eq. (13e), in favor of the free-particle
momentum p.

We shall, however, first calculate that relativistic Pauli energy Fyq =1+ P — Ly of Eq. (13e) entirely in
terms of T by using the L, which is given by Eq. (13b) and the P which is given by Eq. (13d), and then
use the relations given in Eq. (13f) to eliminate ¢ from F, in favor of p.

From Eq. (13b) we obtain that,

—Lea =me(1 = [£/c[*) +e(¢ — (B/c) - A)—
. (131)
(6ﬁ/(2m0))((0 "B) = (1+ (1= [t/c[*)2) (& (¢/c))((E/c) - B) + (i/c) - (5 x E)),
and from Eq. (13d) we obtain that,
i-P=m|t|?(1—|t/¢|?)"% +e(t/c) - A) + (eh/(2me))(i/c) - (& x E)—
) -1, . . )
(eh/(2me)) (1+ (1= [2/c[)3) " (7 - (i/e))((¥/c) - B)x (13j)
(24 (L (L= /el 2) /e (L — [i/el?) ]
The complicated structure of the last term of Eq. (13j) can be simplified markedly, with the result,
- P =m|t|?(1 - |t/c|?)"2 +e(t/c) - A) + (eh/(2me))(i/c) - (F x E)—
(eh/(2me))(@ - (£/¢))((E/c) - B)(1 — |i/c|*) 2
11
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Putting Egs. (13i) and (13k) together produces,

By =1-P — Loy = mc?(1 — |#/c|?) "2 + ep—

L 1 (131)
(eh/(2mc)) [(5 “B) + (- (£/0)((¥/c) - B) (1+ (1 —[i/c[)2) (1~ |1'~/c|2)2}

We now use the relations given by Eq. (13f) to express the Fyq of Eq. (131) entirely in terms of free-particle
momentum p instead of in terms of the particle velocity r,

B = (mzc4 + |cp|2)% + ep—
1 (13m)
(eh/(2me) | (5 B) + (- p) o+ B) (me-+ (e + b)) (me) |

Eq. (13m) is to be used in conjunction with the Eq. (13h) successive approximation scheme for obtaining
the free-particle momentum p in terms of the canonical momentum P, in order to generate successive
approximations to the relativistic Pauli Hamiltonian H,.

In those cases where B = 0, Eq. (13h) immediately yields the ezact relationship of the canonical mo-
mentum P to the free-particle momentum p, namely,

p=P —(e/c)A — (eh/(2mc?))(G x E), (13n)
and for those B = 0 cases Eq. (13m) yields the following the ezact relativistic Pauli Hamiltonian, namely,
Hyo = (m2ct + |cP — A — (ch/(2mc))(G x B)[2)? + eg. (130)

The relativistically extended Pauli Hamiltonian of Eq. (130) clearly bears a very close resemblance to the
relativistic Lorentz Hamiltonian, which describes a spinless relativistic charged particle interacting with an
electromagnetic field. That notwithstanding, the relativistically extended Pauli Hamiltonian of Eq. (130) also
very clearly incorporates the interaction of a moving particle’s spin with an electric field, a phenomenon
that is utterly and completely foreign to the the nonrelativistic Pauli Hamiltonian of Eq. (1), which Eq. (130)
exactly relativistically extends in those special cases where B = 0. The purely relativistic interaction of
a moving particle’s spin with an electric field is, of course the essence of the hydrogen atom’s spin-orbit
interaction. Thus the Eq. (130) B = 0 special case of the relativistically extended Pauli Hamiltonian is
obviously useful for the hydrogen atom.

The very close resemblance to the physically irreproachable Lorentz Hamiltonian which the Eq. (130)
B = 0 special case of the relativistically extended Pauli Hamiltonian manifests shows that the latter has
none of the pathologies which are so typical of the Dirac Hamiltonian.
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