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Abstract. Multi attribute group decision making with VIKOR (VlseKriterijuska Optimizacija I Komoromisno Resenje) strategy has 
been widely applied to solving real-world problems. Recently, Pramianik et al. [S. Pramanik, S. Dalapati, S. Alam, and T. K. Roy. NC-
VIKOR based MAGDM strategy under neutrosophic cubic set environment, Neutrosophic Sets and Systems, 20 (2018), 95-108] 
proposed VIKOR strategy for solving MAGDM, where compromise solutions are not identified in neutrosophic cubic environment. To 
overcome the shortcomings of the paper, we further modify the VIKOR strategy by incorporating compromise solution in neutrosophic 
cubic set environment. Finally, we solve an MAGDM problem using the modified NC-VIKOR strategy to show the feasibility, 
applicability and effectiveness of the proposed strategy. Further, we present sensitivity analysis to show the impact of different values 
of the decision making mechanism coefficient on ranking order of the alternatives. 

Keywords: MAGDM, NCS, NC-VIKOR strategy.

1. Introduction

Neutrosophic set [1] is derived from Neutrosophy [1], a new branch of philosophy. It  is characterized by the 
three independent functions, namely, truth membership function, indeterminacy function and falsity membership 
function as independent components. Each of three independent components of NS belongs to [-0, 1+]. Wang et 
al. [4] introduced single valued neutrosophic set (SVNS) where each of truth, indeterminacy and falsity 
membership function belongs to [0, 1]. Applications of NSs and SVNSs are found in various areas of research 
such as conflict resolution [5], clustering analysis [6-9], decision making [10-39], educational problem [40, 41], 
image processing [42-45], medical diagnosis [46, 47], social problem [48, 49], etc. Wang et al. [50] proposed in-
terval neutrosophic set (INS). Mondal et al. [51] defined tangent function of interval neutrosophic set and de-
velop a strategy for multi attribute decision making (MADM) problems. Dalapati et al. [52] defined a new cross 
entropy measure for interval neutrosophic set and developed a multi attribute group decision making (MAGDM) 
strategy.  
By combining SVNS and INS, Ali et al. [53] proposed neutrosophic cubic set (NCS). Zhan et al. [54] presented 
two weighted average operators on NCSs and employed the operators for MADM problems. Banerjee et al. [55] 
introduced the grey relational analysis based MADM strategy in NCS environment. Lu and Ye [56] proposed 
three cosine measures between NCSs and presented MADM strategy in NCS environment. Pramanik et al. [57] 
defined similarity measure for NCSs and proved its basic properties. In the same study, Pramanik et al. [57] 
presented a new MAGDM strategy with linguistic variables in NCS environment. Pramanik et al. [58] proposed 
the score and accuracy functions for NCSs and prove their basic properties. In the same study, Pramanik et al. 
[58] developed a strategy for ranking of neutrosophic cubic numbers (NCNs) based on the score and accuracy 
functions. In the same study, Pramanik et al. [58] first developed a TODIM (Tomada de decisao interativa e 
multicritévio), called the NC-TODIM and presented new NC-TODIM [58] strategy for solving MAGDM in 
NCS environment. Shi and Ye [59] introduced Dombi aggregation operators of NCSs and applied them for 
MADM problem. Pramanik et al. [60] proposed an extended technique for order preference by similarity to ideal 
solution (TOPSIS) strategy in NCS environment for solving MADM problem. Ye [61] present operations and 
aggregation method of neutrosophic cubic numbers for MADM.  Pramanik et al. [62] presented some operations 
and properties of neutrosophic cubic soft set. 
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Opricovic [63] proposed the VIKOR strategy for a multi criteria decision making (MCDM) problem with 
conflicting criteria [64-65]. In 2015, Bausys and Zavadskas [66] extended the VIKOR strategy to INS 
environment and applied it to solve MCDM problem. Further, Hung et al. [67] proposed VIKOR strategy for 
interval neutrosophic MAGDM. Pouresmaeil et al. [68] proposed an MAGDM strategy based on TOPSIS and 
VIKOR in SVNS environment. Liu and Zhang [69] extended VIKOR startyegy in neutrosophic hesitant fuzzy 
set environment. Hu et al. [70] proposed interval neutrosophic projection based VIKOR strategy and employed it 
for doctor selection. Selvakumari et al. [71] proposed VIKOR strategy for decision making problem using 
octagonal neutrosophic soft matrix. Pramanik et al. [72] proposed VIKOR based MAGDM strategy under 
bipolar neutrosophic set environment. 
The remainder of the paper is organized as follows: In the section 2, we review some basic concepts and 
operations related to NS, SVNS, NCS. In Section 3, we present a modified NC-VIKOR  strategy to solve the 
MAGDM problems in NCS environment. In Section 4, we solve an illustrative example using the modified NC-
VIKOR in NCS environment. Then, in Section 5, we present the sensitivity analysis. In Section 6, we present 
conlcusion and future scope research. 

2. Preliminaries

Definition 1. Single valued neutrosophic set 

Let X be a space of points (objects) with a generic element in X denoted by x. A single valued neutrosophic set 
[4] B in X is expressed as: 
B = {< x: ( BT (x) , BI (x) , BF (x) )>: xX}, where BT (x) , BI (x) , BF (x) [0, 1].

For each xX, BT (x) , BI (x) , BF (x) [0, 1] and 0  BT (x)  + BI (x)  + BF (x)  3.

Definition 2.  Interval neutrosophic set 

An interval neutrosophic set [50] A(x)  of a nonempty set X is expressed by truth-membership function AT (x) ,

the indeterminacy membership function AI (x) and falsity membership function AF (x) . For each xX, AT (x) ,

AI (x) , AF (x)    [0, 1] and A defined as follows:

A(x) = {< x, A A
[T (x),T (x)] 

  , A A
[I (x),I (x)] 
  , A A

[F (x),F (x)] 
  |  xX}. Here, AT (x)

 , A
T (x)
 , 

AI (x)
 , A

I (x)
 , AF (x)

 , A
F (x)
 : X ]  0, 1  [ and A A A

0 sup (x) sup (x) sup (x) 3T I F         . 

Here, we consider AT (x)
 , A

T (x)
 , AI (x)

 , A
I (x)
 , AF (x)

 , A
F (x)
 : X [0, 1] for real applications.

Definition 3. Neutrosophic cubic set 

A neutrosophic cubic set [53] in a non-empty set X is defined as N = {< x, A(x) , A(x) >:  xX}, where A
~

and A are the interval neutrosophic set and neutrosophic set in X respectively. For convenience, we can simply 

use N = < A
~

, A > to represent an element N in neutrosophic cubic set and the element N can be called a neutro-
sophic cubic number (NCN). 

 Some operations of neutrosophic cubic sets: [53] 

i. Union of any two neutrosophic cubic sets

Let  
1 1 1A (x),A (x)N and 2 2 2A (x),A (x)N   be any two neutrosophic cubic sets in a non-empty set 

H. Then the union of N1  and N 2 denoted by  NN 21 is defined as follows: 

1 2 1 2 1 2A (x) A (x),A (x) A (x), x XN N       , where,
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1 2A (x) A (x)  = {< x , [max{ A1
(x)T

 , A2
(x)T

 },max { A1(x)T
 , A2

(x)T
 }], [min { A1

(x)I , A2
(x)I }, min

{ A1
(x)I , A2

(x)I }], [min { A1
(x)F , A2

(x)F }, min { A1
(x)F , A2

(x)F
 }]>: xX} and 1 2A (x) A (x) = {< x,

max { A1
(x)T , A2

(x)T }, min { A1
(x)I , A2

(x)I }, min { A1
(x)F , A 2

(x)F }>: xX}.

ii. Intersection of any two neutrosophic cubic sets

Intersection of  NandN 21 denoted by  NN 21 is defined as follows: 

 NN 21 = 1 2 1 2A (x) A (x),A (x) A (x) x X     , where 1 2A (x) A (x)  = {< x, [min { A1
(x)T

 , A2
(x)T

 }, 

min {
A1

(x)T
 , A2

(x)T
 }], [max { A1

(x)I , A2
(x)I }, max { A1

(x)I , A2
(x)I }], [max { A1

(x)F , A2
(x)F }, max 

{ A1
(x)F , A2

(x)F
 }]>: xX} and 1 2A (x) A (x) = {< x, min { A1

(x)T , A2
(x)T }, max { A1

(x)I , A2
(x)I },

max { A1
(x)F , A 2

(x )F }>: xX}.

iii. Complement of a neutrosophic cubic set

Let 1 1 1A (x),A (x)N   be an NCS in X. Then compliment of 1 1 1A (x),A (x)N   is denoted by c
1N  = {< 

x, c
1A

~
(x), c

1A (x)>:  xX}.

Here, 
c

1A
~

= {< x, [ cA1
(x)T


, cA1

(x)T


], [ cA1
(x)I


, cA1

(x)I


], [ cA1
(x)F


, cA1

(x)F


]>:  x X},

where, cA1
(x)T


= {1} - A1

(x)T
 , cA1

(x)T


= {1} - A1
(x)T

 , cA1
(x)I


 = {1} - A1

(x)I , cA1
(x)I  = {1} - A1

(x)I ,

cA1
(x)F


= {1} - A1

(x)F , cA1
(x)F


 = {1} - A1

(x)F , and 
cA1

(x)T  = {1} - A1
(x)T , cA1

(x)I = {1} - A1
(x)I ,

cA1
(x)F = {1} - A1

(x)F .

iv. Containment

Let  111 A,A
~

N = {< x, [ A1
T (x)
 , A1

T (x)
 ], A A1 1

[I (x),I (x)] 
  ,  A A A1 1 1

T (x),I (x),F (x)  >: xX} and

 222 A,A
~

N = {< x, [ A2
T (x)
 , A2

T (x)
 ], A A2 2

[I (x),I (x)] 
  ,  A A A2 2 2

T (x),I (x),F (x)  >: xX} be

any two neutrosophic cubic sets in a non-empty set X, 

then, (i) 1N  2N  if and only if A1
(x)T

  A2
(x)T

 , A1
(x)T

 
A2

(x)T
 , A1

(x)I  A2
(x)I , 

A1
(x)I 

A2
(x)I ,

A1
(x)F  A2

(x)F , 
A1

(x)F
 

A2
(x)F

 , and A A1 2
T (x) T (x), A A1 2

I (x) I (x), A A1 2
F (x) F (x) for all xX. 

Definition 4. Distance between two  NCNs 
Let N1= < [a1, a2], [b1, b2], [c1, c2], (a, b, c) > and N2 = < [d1, d2], [e1, e2], [f1, f2], (d, e, f) > be any two NC-

numbers, then distance [58] between them is defined by  

H (N1, N2) = 1 1 2 2 1 1 2 2 1 1 2 2
1 [ a d a d b e b e c f c f a d b e c f ]
9

                  (1) 

 Definition 5. Procedure of normalization 

In general, benefit type attributes and cost type attributes can exist simultaneously in MAGDM problem. 
Therefore the decision matrix must be normalized. Let ija be an NC-number to express the rating value of i-th
alternative with respect to j-th attribute ( j). When attribute  j C or Ψ j  G (where C and G be the set of
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cost type attributes and set of  benefit type attributes respectively), the normalized values for cost type attribute 
and benefit type attribute are calculated  by using the following expression (2).  

 











Cifa1

Gifa
a

jij

jij*
ij  (2) 

where aij is the performance rating of i th alternative for attribute j .

3. VIKOR strategy for solving MAGDM problem in NCS environment

In this section, we propose modified NC-VIKOR strategy fro an MAGDM strategy in NCS environment. 
Assume that 1 2 3 rΦ {Φ , Φ , Φ ,..., Φ } be a set of r alternatives and }...,,,,{ s321   be a set of s 

attributes. Assume that }w...,,w,w,w{W s321  be the weight vector of the attributes, where kw 0 

and 1w
s

1k
k 


. Assume that 1 2 3 ME {E , E , E ,..., E } be the set of M decision makers and 

1 2 3 Mζ {ζ ,ζ ,ζ ,...,ζ } be the set of weight vector of decision makers, where p 0 and
M

p
p 1

1


  . 

The proposed MAGDM strategy consists of the following steps: 

Step: 1. Construction of the decision matrix 

Let DMp = sr
p
ij)a(   (p = 1, 2, 3, …, t) be the p-th decision matrix, where information about the alternative iΦ

provided by the decision maker or expert pE with respect to attribute j (j = 1, 2, 3, …, s). The p-th decision

matrix denoted by pDM  (See Equation (3)) is constructed as follows: 

 

1 2 s
p p p

p 1 11 12 1s
p p p

2 21 22 2s

p p p

r r1 r2 rs

 
...

a a ... a
DM

a a a
. . . . .

a a ... .a

 
   
    
 
  

 (3) 

Here p = 1, 2, 3,…, M; i = 1, 2, 3,…, r;  j = 1, 2, 3,…, s. 

Step: 2. Normalization of the decision matrix 

We use Equation (2) for normalizing the cost type attributes and benefit type attributes. After 
normalization, the normalized decision matrix (Equation (3)) is represented as follows (see Equation 4): 

 

































p
rs

*p
2r

*p
r1

*
r

p
s2

*p
22

*p
21

*
2

p
s1

*p
12

*p
11

*
1

s21

p

aaa

aaa

aaa

....

......

 ...

...

DM  (4) 

Here, p = 1, 2, 3,…, M; i = 1, 2, 3,…, r;  j = 1, 2, 3,…, s. 

Step: 3. Aggregated decision matrix 

For group decision, we aggregate all the individual decision matrices ( pDM , p 1, 2,..., M) to an aggregated 

decision matrix (DM) using the neutrosophic cubic numbers weighted aggregation (NCNWA) [73] operator as 
follows: 
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1 2 M
ij ζ ij ij ija NCNWA (a , a ,...,a )  1 2 3 M

1 ij 2 ij 3 ij M ij(ζ a ζ a ζ a ... ζ a )    =

M M M M(p) (p) (p) (p)
p p p pij ij ij ij

p 1 p 1 p 1 p 1
[ ζ , ζ ],[ ζ , ζ ],T T I I

   

   


    

M M M M M(p) (p) (p) (p) (p)

p p p p pij ij ij ij ij
p 1 p 1 p 1 p 1 p 1

[ ζ , ζ ],( ζ , ζ , ζ ]F F T I F
 

    


     


  (5) 

Therefore, the aggregated decision matrix is defined as follows: 

1 2 s

1 11 12 1s

2 21 22 2s

r r1 r2 rs

 Ψ Ψ ... ..Ψ
Φ a a ... a

DM Φ a a a
. .

Φ a a ... a

 
 
 
 
 
 
 
 

  (6) 

Here, i = 1, 2, 3, …, r; j = 1, 2, 3, …, s; p =1, 2, …., M. 

 Step: 4. Define the positive ideal solution and negative ideal solution 

ijij ij ij ij ij ij ij ijij i i i i i ii i i
a [max , max ],[min i , min i ],[min f , min i ],(max t ,min f , min f )t t        (7) 

ijij ij ij ij ij ij ij ijiji i ii i i i i i
a [min , min ],[max i ,max i ],[max f , max i ],(min t , max f , max f )t t        (8) 

Step: 5. Compute i  and iZ

i and iZ represent the average and worst group scores for the alternative Ai respectively with the relations 

 

*
s j ij ij

i
j 1 ij ij

w D(a ,a )
Γ

D(a ,a )



 


   (9) 











 

 



)a,a(D

)a,a(Dw
maxZ

ijij

*
ijijj

j
i  (10) 

Here, wj is the weight of jΨ .

The smaller values of i and iZ correspond to the better average and worse group scores for alternative Ai , 

respectively. 

Step: 6. Calculate the values of i (i = 1, 2, 3, …, r)

i i
i

(Γ Γ ) (Z Z )
φ γ (1 γ)

(Γ Γ ) (Z Z )

 

   

 
  

 
 (11) 

Here, i i i ii i
Γ min Γ , Γ maxΓ   , i i i ii i

Z min Z , Z max Z                                                                           (12)

and  depicts the decision making mechanism coefficient. If 5.0 , it is for “the maximum group utility”; If 
5.0 , it is “ the minimum regret”, and it is both if γ 0.5.  

Step: 7. Rank the priority of alternatives 

Rank the alternatives by i , i and iZ according to the rule of traditional VIKOR strategy. The smaller value 

reflects the better alternative. 
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Step: 8. Determine the compromise solution 

Obtain alternative 1Φ as a compromise solution, which is ranked as the best by the measure φ (Minimum) if the

following two conditions are satisfied: 

Condition 1. Acceptable stability: 2 1 1φ( Φ ) φ( Φ )
(r 1)

 


, where 1Φ , 2Φ  are the alternatives with first and

second position in the ranking list by φ ;  r is the number of alternatives.

Condition 2. Acceptable stability in decision making: Alternative 1Φ must also be the best ranked by   or/and
Z. This compromise solution is stable within whole decision making process. 
If one of the conditions is not satisfied, then a set of compromise solutions is proposed as follows: 

 Alternatives 1Φ and 2Φ are compromise solutions if only condition 2 is not satisfied, or

 1Φ , 2Φ , 3Φ ,…, rΦ  are compromise solutions if condition 1 is not satisfied and rΦ  is decided by

constraint r 1 1φ( Φ ) φ( Φ )
(r 1)

 


for maximum r. 

4. Illustrative example

To demonstrate the feasibility, applicability and effectiveness of the proposed strategy, we solve an MAGDM 
problem adapted from [74]. We assume that an investment company wants to invest a sum of money in the best 
option. The investment company forms a decision making board comprising of three members (E1, E2, E3) who 
evaluate the four alternatives to invest money. The alternatives are Car company ( 1 ), Food company ( 2 ), 

Computer company ( 3 ) and Arms company ( 4 ). Decision makers take decision to evaluate alternatives 

based on the attributes namely, risk factor ( 1 ), growth factor ( 2 ), environment impact ( 3 ). We consider

three criteria as benefit type based on Pramanik et al. [58]. Assume that the weight vector of attributes is 
T)27.0,37.0,36.0(W  and weight vector of decision makers or experts is T)34.0,40.0,26.0( . Now, we apply 

the modified NC-VIKOR strategy using the following steps. 

Step: 1. Construction of the decision matrix 

We construct the decision matrices as follows:
       Decision matrix for DM1 in NCN form 































>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.7) .6, (.4, .7], [.5, .6], [.5, .4], [.3,<

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,< >.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<

4

3

2

1

321

 (13) 

 Decision matrix for DM2 in NCN form 































>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,< 

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.7) .6, (.4, .7], [.5, .6], [.5, .4], [.3,< 

   

4

3

2

1

321

 (14) 

 Decision matrix for DM3 in NC-number form 
































>.7) .6, (.4, .7], [.5, .6], [.5, .4], [.3,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,< 

>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<>.4) .3, (.8, .4], [.2, .3], [.2, .8], [.6,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,< 

>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,< 

>.2,.2) (.9, .2], [.1, .2], [.1, .9], [.7,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,<>.5) .5, (.5, .5], [.4, .5], [.4, .5], [.4,< 

4

3

2

1

321

 (15) 

Step: 2. Normalization of the decision matrix 

Since all the criteria are considered as benefit type, we do not need to normalize the decision matrices (DM1, 
DM2, DM3). 
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Step: 3. Aggregated decision matrix 

Using equation eq. (5), the aggregated decision matrix of  (13,  14, 15) is presented below: 

1 2 3

1

2

Ψ Ψ Ψ
Φ <[.44, .56], [.36, .46], [.36, .51], (.56, .46,.50)> <[.48, .60], [.32, .42], [.32, .42], (.60, .42,.42)> <[.62, .80], [.18, .28], [.18, .28], (.80, .28, .28)>
Φ <[.45, .58], [.35, .45], [.35, .

3

47], (.58, .45, .47)> <[.50, .64], [.30, .40], [.30, .40], (.64, .40, .40)> <[.60, .76], [.20, .30], [.20, .30], (.76, .30,.30)>
Φ <[.62, .80], [.18, .28], [.18, .28], (.80, .28, .28)> <[.64, .84], [.16, 

4

.26], [.16, .32], (.84, .26, .32)> <[.47, .60], [.33, .43], [.33, .47], (.60, .43, .47)>
Φ <[.56, .73], [.24, .34], [.24, .41], (.73, .34, .41)> <[.40, .50], [.40, .50], [.40, .50], (.50, .50, .50)> <[.56, .73], [.24, .34], [.24, .37], (.73, .34,.37)>

 
 
 
 
 
 
 
 

 (16) 

Step: 4. Define the positive ideal solution and negative ideal solution 

The positive ideal solution 
ija = 

1 2 3Ψ Ψ Ψ
<[.62, .80], [.18, .28], [.18, .28], (.80, .28,.28)> <[.64, .84], [.16, .26], [.16, .32], (.84, .26,.32)> <[.62, .80], [.18, .28], [.18, .28], (.80, .28, .28)>
 and the negative ideal solution 


ija =

1 2 3Ψ Ψ Ψ
<[.44, .56], [.36, .46], [.36, .51], (.56, .46,.50)> <[.40, .50], [.40, .50], [.40, .50], (.50, .50,.50)> <[.47, .60], [.33, .43], [.33, .43], (.60, .43, .47)>

Step: 5. Compute i  and iZ

Using Equation (9) and Equation (10), we obtain 

,43.0
16.0

027.0

25.0

16.037.0

37.0

2.036.0
1 






 







 







 

  ,42.0
16.0

02.027.0

25.0

14.037.0

37.0

18.036.0
2 






 







 







 

  

,32.0
16.0

19.027.0

25.0

037.0

37.0

036.0
3 






 







 







 

  .57.0
16.0

07.027.0

25.0

25.037.0

37.0

08.036.0
4 






 







 







 

  

And ,24.0
16.0

027.0
,

25.0

16.037.0
,

37.0

2.036.0
maxZ1 















 







 







 

  ,21.0
16.0

02.027.0
,

25.0

14.037.0
,

37.0

18.036.0
maxZ2 















 







 







 

  

,32.0
16.0

19.027.0
,

25.0

037.0
,

37.0

036.0
maxZ3 















 







 







 

  
4

0.36 0.08 0.37 0.25 0.27 0.07Z max , , 0.37.
0.37 0.25 0.16

                
       

Step: 6. Calculate the values of i

Using Equations (11), (12) and 5.0 , we obtain 

1
(0.43 0.32) (0.24 0.21)

φ 0.5 0.5 0.31,
0.25 0.16
 

      ,2.0
16.0

)21.021.0(
5.0

25.0

)32.042.0(
5.02 





  

,34.0
16.0

)21.032.0(
5.0

25.0

)32.032.0(
5.03 





  1

16.0

)21.037.0(
5.0

25.0

)32.057.0(
5.04 





 . 

Step 7. Rank the priority of alternatives 

The preference ranking order of the alternatives is presented in Table 1 

1 2 3 4 Ranking order Best alternative 

 0.43 0.42 0.32 0.57 
3  2  1 4 3

Z 0.24 0.21 0.32 0.37 
2  1  3 4 2

( 0.5)   0.31 0.20 0.34 1 
2  1  3 4 2

Table 1 Preference ranking order and compromise solution based on  , Z and 
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Step 8. Determine the compromise solution 

The preference ranking order based on  in decreasing order and alternative with best position is 2 with

2( )  = 0.20, and second best position 1 with 1( )  = 0.31. Therefore,  1 2( ) ( ) 0.11 0.333       (since,

r = 4; 1/(r-1) = 0.333), which does not satisfy the condition 1 

( 2 1 1φ( Φ ) φ( Φ )
(r 1)

 


), but alternative 2 is the best ranked by , Z, which satisfies the condition 2.

Therefore, we obtain the compromise solution as follows: 

1 2( ) ( ) 0.11 0.333      , 3 2( ) ( ) 0.14 0.333      ,  4 2( ) ( ) 0.80 0.333      .

So 1 2 3, ,   are compromise solutions.

5. The influence of parameter 
Table 2 shows  how the ranking order of alternatives )( i  changes with the change of the value of 

 Table 2. Values of i (i = 1, 2, 3, 4) and ranking of alternatives for different values of  .

Values of  Values of i Preference order of alternatives 

 = 0.1 1 = 0.22, 2 = 0.04, 3 = 0.62, 4 = 1 2 1 3 4

 = 0.2 1 = 0.24, 2 = 0.08, 3 = 0.55, 4 = 1 2 1 3 4

 = 0.3 1 = 0.26, 2 = 0.12, 3 = 0.48, 4 = 1 2 1 3 4

 = 0.4 1 = 0.29, 2 = 0.16, 3 = 0.41, 4 = 1 2 1 3 4

 = 0.5 1 = 0.31, 2 = 0.2, 3 = 0.34, 4 = 1 2 1 3 4

 = 0.6 1 = 0.34, 2 = 0.24, 3 = 0.28, 4 = 1 2 3 1 4

 = 0.7 1 = 0.36, 2 = 0.28, 3 = 0.21, 4 = 1 3 2 1 4

 = 0.8 1 = 0.39, 2 = 0.32, 3 = 0.14, 4 = 1 3 2 1 4

 = 0.9 1 = 0.42, 2 = 0.36, 3 = 0.07, 4 = 1 3 2 1 4

6. Conclusion

In this article, we have presented a modified NC-VIKOR strategy to overcome the shortcomings of obtaining 
compromise solution [73]. In the modified NC-VIKOR stratgey, we have incorporated the technique of 
determining  compromise solution. Finally, we solve an MAGDM problem to show the feasibility, applicability 
and efficiency. We present a sensitivity analysis to show the impact of different values of the decision making 
mechanism coefficient on ranking order of the alternatives. 
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