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And Jesus said unto them, I am the bread of life: he that cometh to me shall
never hunger; and he that believe on me shall never thirst. John 6:35.

ABSTRACT. I derive an infinite product for the ratio of k-th power and factorial.
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1. INTRODUCTION

In present paper, I derive the following infinite products:

and, obviously,

2. THE MAIN THEOREM

2.1. The Infinite Product for the Ratio of K-th Power and Factorial.

Theorem 2.1. If z€C and k € Z™, then
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where k! denotes the factorial.

Proof. I well know the finite product identity
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2 ON THE INFINITE PRODUCT FOR THE RATIO OF k-TH POWER AND FACTORIAL

On the other hand, I have the infinite product representation [1, Lemma 1, p. 2]
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Replace a by z and b by r in (2.3) and encounter
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From (2.2) and (2.4), it follows that
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which is the desired result. ]

2.2. The Infinite Products for the K-th Power and the z.

Theorem 2.2. [fz€C and k€ Z*, then
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where z* denotes the k-th power of z.

Proof. I well know the finite product identity

Zk B Zk(k_ 1)| _ Zk
== =aT®. (2.6)

On the other hand, I know the Euler's infinite product representation for gamma func-
tion [1, (1), p. 1]
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From Theorem 2.1, (2.6) and (2.7), I conclude that
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which is the desired result. ]



Corollary 2.3. Ifz€C, then
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Proof. Set k=1 in the Theorem 2.2. This gives the desired result. O

3. EXERCISES

Exercise 3.1. Prove that
oFi(a,b;c;2)+oF(a,b;c+ 1;,2)=3F»(2,a,b; 1,c+ 1;2)+ caF(a,b; c+ 1;2).
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Exercise 3.2. Prove that
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