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Abstract  As shown in our work on spacetime structures of quantum particles, Schrödinger wavefunctions in 
quantum mechanics can be utilised to construct the geometric structures of quantum particles which are considered 
to be three-dimensional differentiable manifolds. In this work we will extend this kind of geometric formulation of 
quantum particles by showing that wavefunctions that are normally used to describe wave phenomena in classical 
physics can in fact also be utilised to represent three-dimensional differentiable manifolds which in turns are 
identified with quantum particles. We show that such identification can be achieved by using a three-dimensional 
wave equation to construct three-dimensional differentiable manifolds that are embedded in a four-dimensional 
Euclidean space. In particular, the dual character that is resulted from the identification of a wavefunction with a 
three-dimensional differentiable manifold may provide a classical basis to interpret the wave-particle duality in 
quantum mechanics. 
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1. Introduction 

One of the most confusing concepts that we encounter 
in quantum mechanics is the notion of wave-particle 
duality. The idea emerges when we try to formulate the 
dynamics of a quantum particle using wave equations that 
are formulated in classical physics to describe classical 
wave phenomena [1]. Amazingly, beyond the expectation 
of the perception of physical existence in classical physics, 
the quantum formulation complies with the dual properties 
of quantum particles. Depending on physical settings, a 
quantum object exhibits both seemingly irreconcilable 
characters of a physical object defined in classical physics, 
that is the distinguished character that is associated with a 
particle and that with a wave. How can a single physical 
object manifest the wave character which can only be 
formed by a medium which is a collection of physical 
objects? According to Einstein’s perception, physics 
expressed in terms of particles and their mutual 
interactions should be formulated according to the 
intrinsic geometric structures of spacetime, similar to the 
geometric formulation of his general relativity [2]. This 
has led to our speculation that quantum particles are 
extended physical objects which possess the mathematical 
structure of a three-dimensional differentiable manifold 
that are embedded in a four-dimensional Euclidean space 
[3]. Even with the identification of quantum particles  
with three-dimensional differentiable manifolds, there  
still remains the question of how to describe the  
 
 

wave character of these differentiable manifolds. A 
straightforward answer to the posed question is the 
differentiable manifolds must be solutions of a wave 
equation so that if quantum particles are identified with 
these differentiable manifolds then they can manifest 
wave characteristics. In this work we will endeavour to 
justify this answer by examining wave equations that are 
used to describe the wave motion of physical objects. As 
illustrations and visualisations, first we discuss the wave 
motion of a string in Section 2 in two-dimensional 
Euclidean space and a membrane in Section 3 in three-
dimensional Euclidean spaces and then, most importantly, 
in Section 4 we will discuss the wave motion of a 
vibrating solid ball described by a wave equation whose 
solutions are not considered to describe physical 
phenomena such as fluids and acoustics but differentiable 
manifolds embedded in a four-dimensional Euclidean 
space. In Sections 2 and 3 we show that the curvature of a 
curve and the Ricci scalar curvature of a surface can be 
determined by a wavefunction, but we don’t have a 
relationship between the Ricci scalar curvature and a 3D 
wavefunction therefore as an illustration in Section 5 we 
recapture how Schrödinger wavefunctions can be used to 
determine the Ricci scalar curvature. Finally, in Section 6 
we discuss geometric interactions in which decomposed 
cells from a CW complex could be associated with forces 
encountered in physical dynamics. In particular we show 
that all quantum particles can be formed from mass points 
joined by contact forces which are associated with the 
decomposition of 0-cells from a CW complex which is 
identified with a quantum particle. 
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2. One-dimensional Wave Associated with 
a Vibrating String 

Consider the vibration of a string 𝐷𝐷 = {0 < 𝑥𝑥 < 𝐿𝐿} that 
satisfies the wave equation 
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with boundary conditions 𝜓𝜓(0, 𝑡𝑡) = 0 , 𝜓𝜓(𝐿𝐿, 𝑡𝑡) = 0  and 
initial conditions 𝜓𝜓(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥) , 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ (𝑥𝑥, 0) = 𝑔𝑔(𝑥𝑥) . 
Then the general solution to the wave equation given in 
Equation (1) can be found as [4] 
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By differentiating the wavefunction given in Equation 
(2), we obtain 
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From the shape described by the wavefunction given in 
Equation (2) we observe that at each moment of time the 
vibrating string appears as a 1D differentiable manifold 
which is a geometrical object embedded in a 2D Euclidean 
space. In fact, the wavefunction given in Equation (2)  
can be used to construct the geometric structure of the 
vibrating string. In differential geometry, the curvature 𝜅𝜅 
of a plane curve described by the equation 𝑦𝑦 = 𝜓𝜓(𝑥𝑥) is 
found as [5]  

 

3
2 22

21 d d
dx dx
ψ ψκ

−
   = +     

 (7) 

Using Equations (5) and (6), the curvature 𝜅𝜅 is rewritten as 
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This result shows that the geometric structure of  
the vibrating string can be described by a classical 
wavefunction. In other words, wavefunctions can be 
considered as representations of physical objects. It is also 

interesting to observe the following. An observer in a 
space with dimension greater than 1 can see the whole 
shape of the vibrating string. But for an observer who is a 
1D physical object living on the x-axis, then according to 
this observer the vibrating string appears as an oscillating 
motion of a single particle, which is of course the 
appearance on the x-axis of all particles that join together 
to form the string one after another with respect to time. 
On the other hand, if the vibrating string is in motion in 
space then it can be seen as a particle. With a suitable 
experimental setup, this moving vibrating string may be 
detected as a wave. And furthermore, it can also generate 
a physical wave if the space is a medium. Although these 
observations for the vibrating string are obvious but, as 
will be discussed later, they may not be that obvious when 
we discuss similar situations for the case when the 
vibrating object is three-dimensional and the 
wavefunctions are identified with three-dimensional 
differentiable manifolds that represent quantum particles. 
However, to obtain a closer picture to the three-
dimensional situation, we will give in details in the next 
section the wave motion of a vibrating circular membrane. 

3. Two-dimensional Wave Associated 
with a Vibrating Circular Membrane 

In this section we will extend our discussions in Section 
2 to the two-dimensional wave that is associated with the 
vibration of a circular membrane. In general, the wave 
dynamics of a physical system in two-dimensional space 
can be described by a wave equation written in the 
Cartesian coordinates (𝑥𝑥, 𝑦𝑦) as 
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In particular, Equation (9) can be used to describe the 
dynamics of a vibrating membrane in the (𝑥𝑥, 𝑦𝑦)-plane. If 
the membrane is a circular membrane of radius 𝑎𝑎 then the 
domain 𝐷𝐷  is given as 𝐷𝐷 = {𝑥𝑥2 + 𝑧𝑧2 < 𝑎𝑎2}. In the polar 
coordinates given in terms of the Cartesian coordinates 
(𝑥𝑥, 𝑦𝑦)  as 𝑥𝑥 = 𝑟𝑟cos𝜃𝜃 , 𝑦𝑦 = 𝑟𝑟sin𝜃𝜃 , the two-dimensional 
wave equation given in Equation (9) is rewritten as 
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The general solution to Equation (10) for the vibrating 
circular membrane with the condition 𝜓𝜓 = 0  on the 
boundary of 𝐷𝐷 can be found as [6] 
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where 𝐽𝐽𝑛𝑛��𝜆𝜆𝑛𝑛𝑛𝑛 𝑟𝑟�  is the Bessel function of order 𝑛𝑛  and 
the quantities 𝐴𝐴𝑛𝑛𝑛𝑛 , 𝐵𝐵𝑛𝑛𝑛𝑛 , 𝐶𝐶𝑛𝑛𝑛𝑛  and 𝐷𝐷𝑛𝑛𝑛𝑛  can be specified by 
the initial and boundary conditions. It is also observed that 
at each moment of time the vibrating membrane appears 
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as a 2D differentiable manifold which is a geometric 
object whose geometric structure can be constructed using 
the wavefunction given in Equation (11). We now show 
that the curvature of the surfaces obtained from the 
vibrating membrane at each moment of time can also be 
expressed in terms of the derivatives of the wavefunction 
given in Equation (11). In differential geometry, the Ricci 
scalar curvature 𝑅𝑅 is shown to be related to the Gaussian 
curvature 𝐾𝐾 by the relation 𝑅𝑅 = 2𝐾𝐾, where 𝐾𝐾 is expressed 
in terms of the principal radii 𝑘𝑘1 and 𝑘𝑘2 of the surface as 
𝐾𝐾 = 1 𝑘𝑘1𝑘𝑘2⁄ . Consider a surface defined by the relation 
𝑧𝑧 = 𝜓𝜓(𝑥𝑥, 𝑦𝑦) in Cartesian coordinates (𝑥𝑥, 𝑦𝑦, 𝑧𝑧). The Ricci 
scalar curvature 𝑅𝑅 can be found as [5] 
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where 𝜓𝜓𝜇𝜇 = 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕𝜇𝜇⁄  and 𝜓𝜓𝜇𝜇𝜇𝜇 = 𝜕𝜕2𝜓𝜓 𝜕𝜕𝜕𝜕𝜇𝜇𝜕𝜕𝜕𝜕𝜈𝜈⁄ . It is seen 
that the wavefunction 𝜓𝜓(𝑟𝑟, 𝜃𝜃, 𝑡𝑡) that is obtained from the 
wave equation given in Equation (11) can be used to 
determine the Ricci scalar curvature of a surface, which 
shows that the geometric structure of the vibrating 
membrane can be described by a classical wavefunction. 
In other words, as in the case of the vibrating string, 
wavefunctions that describe the wave motion of a 
vibrating membrane can be considered as a representation 
of physical objects. For the benefit of representation in the 
next section we now give a brief discussion on the 
geometric formation of quantum particles from a wave 
equation. We assumed that the circular membrane is made 
up of particles which are connected with each other by an 
elastic force. As will be discussed in more details on 
geometric interactions in section 6, this assumption leads 
to a more general hypothesis that a vibrating object is 
made up of mass points that join together by contact 
forces. When the membrane vibrates it takes different 
shapes at each moment of time. Each shape is a 2D 
differentiable manifold that is embedded in the three-
dimensional Euclidean space. Now, if we consider the 
whole vibrating membrane as a particle then its geometric 
structure is described by the wavefunction 𝜓𝜓. It is a time-
dependent hypersurface embedded in a three-dimensional 
Euclidean space. Now imagine an observer who is a two-
dimensional object living in the plane (𝑥𝑥, 𝑦𝑦)  and who 
wants to investigate the geometric structure of the 
vibrating membrane. Even though he would not be able to 
observe the shapes of the embedded 2D differentiable 
manifolds in the three-dimensional Euclidean space, he 
would still be able to calculate the value of the 
wavefunction 𝜓𝜓  at each point (𝑥𝑥, 𝑦𝑦)  that belongs to the 
domain 𝑥𝑥2 + 𝑧𝑧2 < 𝑎𝑎2. What would the observer think of 
the nature of the wavefunction 𝜓𝜓? Does it represent a 
mathematical object, such as a third dimension, or a 
physical one, such as fluid pressure? Firstly, because the 
wavefunction 𝜓𝜓 is a solution of a wave equation therefore 
it must be a wave. Secondly, if the observer who is a 2D 
physical object and who does not believe in higher 
dimensions then he or she would conclude that the 
wavefunction 𝜓𝜓 should only be used to describe events of 
physical existence other than space and time. In the next 
section we will show that this situation may in fact be that 
of the wave-particle duality that we are encountering in 

quantum physics when our view of the physical existence 
is restricted to that of a 3D observer. It is also observed 
that according to the 2D observer who is living on the 
(𝑥𝑥, 𝑦𝑦) -plane, the vibrating membrane appears as an 
oscillating motion of a single string. If the vibrating string 
is set in motion in space then it can be seen as a particle. 
With a suitable experimental setup, the moving vibrating 
membrane may be detected as a wave. And furthermore, it 
can also generate a physical wave if the space is a medium. 

4. Three-dimensional Wave Associated 
with a Vibrating Solid Ball 

In this section we want to show that it is possible  
to identify quantum particles with 3D differentiable 
manifolds which in turns are described by the 
wavefunctions which are solutions of a wave equation. In 
classical physics, the three-dimensional wave equation 
written in Cartesian coordinates (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) of the form 
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can be used to describe the wave motion of different 
physical fields. However, if we want to generalise the 
above discussions for 1D and 2D wave equations that 
describe a vibrating string and a vibrating membrane 
respectively then what geometrical characteristic should 
we assign to the wavefunction 𝜓𝜓? Since in 1D and 2D 
wave equations, the wavefunction 𝜓𝜓 are the actual height 
of the particles that form the medium which can be viewed 
in the second and third dimension, respectively, of the 
space in which they are embedded, therefore we may 
suggest that the wavefunction 𝜓𝜓  in 3D should also be 
given the meaning of the height of the particles that form 
the medium. However, if we want to give the meaning of 
the height to the 3D wavefunction then the space in which 
the 3D vibrating object is embedded must be extended  
to a four-dimensional Euclidean space. Whether such 
extension can be justified is a subject that requires further 
investigation and in fact this can be shown to be related to 
the fundamental question of why we exist as 3D physical 
objects. Now, consider a region 𝐷𝐷 which is embedded in a 
three-dimensional Euclidean space and bounded by a 
closed surface. As in the case of the string and the 
membrane considered above, we assume that the region 𝐷𝐷 
is a physical object that is made up of mass points joined 
together by contact forces so that it can vibrate. In general, 
the region 𝐷𝐷 can be any shape, however, as an illustration 
let us consider a simple case of which the region 𝐷𝐷 is a 
solid ball embedded in the (𝑥𝑥, 𝑦𝑦, 𝑧𝑧)-space defined by the 
relation 𝐷𝐷 = {𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 < 𝑎𝑎2}  with the condition 
𝜓𝜓 = 0  on the boundary of 𝐷𝐷 . In a three-dimensional 
Euclidean space, such physical objects can only be 
assumed to vibrate internally inside the solid ball and the 
mathematical object represented by the function 𝜓𝜓  can 
only be assumed to be a physical entity, such as fluids and 
acoustics. However, as in the case of the string considered 
in Section 2 in which the mass points of the string can 
vibrate into the second dimension of the two-dimensional 
Euclidean space and that of the membrane considered in 
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Section 3 in which the mass points of the membrane can 
vibrate into the third dimension of the three-dimensional 
Euclidean space, we may assume that the mass points that 
form the physical object contained in the region  
𝐷𝐷 = {𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 < 𝑎𝑎2}  can vibrate into the fourth 
dimension of a four-dimensional Euclidean space, 
therefore the mathematical object 𝜓𝜓  represents a spatial 
dimension. When vibrating, at each moment of time, the 
solid ball becomes a three-dimensional differentiable 
manifold that is embedded in a four-dimensional 
Euclidean space. In this case, an observer who is a 3D 
physical object can only observe the cross-section which 
is the intersection of the time-dependent differentiable 
manifold and the three-dimensional Euclidean space  
into which that the observer is embedded. And the  
cross-section appears as a 3D wave to the 3D observer. 
Written in the spherical polar coordinates, which are 
defined in terms of the Cartesian coordinates (𝑥𝑥, 𝑦𝑦, 𝑧𝑧)  
as 𝑥𝑥 = 𝑟𝑟sin𝜃𝜃cos𝜙𝜙,  𝑦𝑦 = 𝑟𝑟sin𝜃𝜃sin𝜙𝜙,  𝑧𝑧 = 𝑟𝑟cos𝜃𝜃,  the  
three-dimensional wave equation given in Equation (13) 
becomes 
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The general solution to Equation (14) for the vibrating 
solid ball with a given initial condition can be found by 
separating the variables in the form 𝜓𝜓(𝑟𝑟, 𝜃𝜃, 𝜙𝜙, 𝑡𝑡) =
𝑆𝑆(𝑟𝑟, 𝜃𝜃, 𝜙𝜙)𝑇𝑇(𝑡𝑡) [6] 
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where 𝑃𝑃𝑙𝑙𝑚𝑚(cos𝜃𝜃) is the associated Legendre function and 
𝐽𝐽𝑙𝑙+1

2
��𝜆𝜆𝑙𝑙𝑙𝑙 𝑟𝑟�  is the Bessel function. The wavefunction 

given in Equation (15) is the general time-dependent 
shape of the vibrating solid ball embedded in the  
four-dimensional Euclidean space. Similar to the vibrating 
string and the vibrating membrane, at each moment of 
time the vibrating solid ball appears as a 3D differentiable 
manifold which is a geometric object whose geometric 
structure can be constructed using the wavefunction given 
in Equation (15) and can be identified with a quantum 
particle. Therefore, what we observe as a wave may in fact 
be a particle and this kind of dual existence may be related 
to the problem of wave-particle duality we encounter in 
quantum mechanics. A simpler case is that of a quantum 
particle that appears as a spherical wave. In this case the 
wave equation given in Equation (14) reduces to 
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The general solution to Equation (16) can be found as 
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The above wavefunctions describe the geometric 
structures of quantum particles as differentiable manifolds 
embedded in a four-dimensional Euclidean space, 
therefore, if the Ricci scalar curvature of the vibrating 
solid ball can be formulated in terms of the wavefunction 
𝜓𝜓 and its derivatives then the geometric structure of the 
vibrating solid ball can be determined. In the next section 
we will show how such relation can be realised for the 
case of the hydrogen atom when the Ricci scalar curvature 
can be constructed from the Schrödinger wavefunctions in 
wave machanics. 

5. Further Discussions on the Geometric 
Structures of Quantum Particles 

In this section we will outline our previous works on 
how to invoke Schrödinger wavefunctions in quantum 
mechanics to construct mathematical structures for quantum 
particles which are assumed to possess the geometric and 
topological structures of a three-dimensional differentiable 
manifold. As shown in our works on spacetime structures 
of quantum particles [2], the three main dynamical 
descriptions of physical events in classical physics, 
namely Newton mechanics, Maxwell electromagnetism 
and Einstein gravitation, can be formulated in the same 
general covariant form and they can be represented by the 
following general equation 

 M kJβ∇ =  (18) 

where 𝑀𝑀  is a mathematical object that represents the 
corresponding physical system and ∇𝛽𝛽 is a covariant 
derivative. For Newton mechanics, we have 𝑀𝑀 = 𝐸𝐸 =
1
2
𝑚𝑚∑ (𝑑𝑑𝑥𝑥𝜇𝜇 𝑑𝑑𝑑𝑑⁄ )23

𝜇𝜇=1 + 𝑉𝑉  and 𝐽𝐽 = 0.  For Maxwell 
electromagnetism, 𝑀𝑀 = 𝐹𝐹𝛼𝛼𝛼𝛼 = 𝜕𝜕𝜇𝜇𝐴𝐴𝜈𝜈 − 𝜕𝜕𝜈𝜈𝐴𝐴𝜇𝜇  with the 
four-vector potential 𝐴𝐴𝜇𝜇 ≡ (𝑉𝑉, 𝐀𝐀) and 𝐽𝐽 can be identified 
with the electric and magnetic currents. And for Einstein 
gravitation, 𝑀𝑀 is the Ricci tensor 𝑅𝑅𝛼𝛼𝛼𝛼  and 𝐽𝐽 can be defined 
in terms of a metric and Ricci scalar curvature. It is shown 
in differential geometry that the Ricci tensor 𝑅𝑅𝛼𝛼𝛼𝛼  satisfies 
the Bianchi identities 
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R g Rαβ αβ
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where 𝑅𝑅 = 𝑔𝑔𝛼𝛼𝛼𝛼 𝑅𝑅𝛼𝛼𝛼𝛼  is the Ricci scalar curvature [7]. Even 
though Equation (19) is purely geometrical, it has a 
covariant form similar to the electromagnetic tensor 
𝜕𝜕𝛼𝛼𝐹𝐹𝛼𝛼𝛼𝛼 = 𝜇𝜇𝑗𝑗𝛽𝛽  defined in Euclidean space. If the quantity 
1
2
𝑔𝑔𝛼𝛼𝛼𝛼 ∇𝛽𝛽𝑅𝑅 can be identified as a physical entity, such as a 

four-current of gravitational matter, then Equation (19) 
has the status of a dynamical law of a physical theory. In 
this case a four-current 𝑗𝑗𝛼𝛼 = (𝜌𝜌, 𝐣𝐣𝑖𝑖) can be defined purely 
geometrical as 

 1 .
2

j g Rα αβ
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If we use the Bianchi identities as field equations for 
the gravitational field then Einstein field equations, as in 
the case of the electromagnetic field, can be regarded  
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as a definition for the energy-momentum tensor for the 

gravitational field, 1 Λ
2

.R Rg g Tµν µν µν µνκ− + =  For a 

purely gravitational field in which 1 0,
2

g Rαβ
β∇ =  the 

proposed field equations given in Equation (19) also give 
rise to the same results as those obtained from Einstein 
formulation of the gravitational field. For a purely 
gravitational field, Equation (19) reduces to the equation 

 0.Rαββ∇ =  (21) 

From Equation (21), we can obtain solutions found 
from the original Einstein field equations, such as 
Schwarzschild solution, by observing that since ∇𝜇𝜇𝑔𝑔𝛼𝛼𝛼𝛼 ≡
0, Equation (21) implies 

 ΛR gαβ αβ=  (22) 

where Λ  is an undetermined constant. Furthermore, the 
intrinsic geometric Ricci flow that was introduced by 
Hamilton can also be derived from Equation (21) and 
given as follows 

 .2
g

R
t
αβ

αβ
∂

= −
∂

 (23) 

Mathematically, the Ricci flow is a geometric process 
that can be employed to smooth out irregularities of a 
Riemannian manifold [8,9]. From the four-current of 
matter given in Equation (20), by letting 𝛼𝛼 = 0, we obtain 
the matter density component 

 0 0 01 1 .
2 2

j g R g Rβ β
β βρ = = ∇ = ∂  (24) 

In fact, as shown in our works on space time structures 
of quantum particles, by comparing Equation (24) with the 
Poisson equation for a potential 𝑉𝑉  in classical physics 
∇2𝑉𝑉 = 4𝜋𝜋𝜋𝜋 we can identify the scalar potential 𝑉𝑉 with the 
Ricci scalar curvature as 

 V kR=  (25) 
where 𝑘𝑘 is an undetermined dimensional constant. In the 
following, using the relation between the potential and the 
Ricci scalar curvature given in Equation (25), we will 
show that the Ricci scalar curvature 𝑅𝑅 can be constructed 
from the wavefunctions obtained from the Schrödinger 
wave equation in wave mechanics. In his original works, 
Schrödinger introduced a new function 𝜓𝜓, which is real, 
single-valued and twice differentiable, through the relation 
𝑆𝑆 = ℏln𝜓𝜓, where the action 𝑆𝑆 is defined by 𝑆𝑆 = ∫𝐿𝐿𝐿𝐿𝐿𝐿 and 
𝐿𝐿  is the Lagrangian defined by 𝐿𝐿 = 𝑇𝑇 − 𝜑𝜑  with 𝑇𝑇  is the 
kinetic energy and 𝜑𝜑 is the potential energy. By applying 
the principle of least action defined in classical dynamics, 
Schrödinger arrived at the wave equation to describe the 
stationary state of the hydrogen atom 
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 (26) 

Now we show that Schrödinger wavefunction 𝜓𝜓 can be 
used to construct the Ricci scalar curvature associated 
with the spacetime structures of the quantum states of the 

hydrogen atom. By using the defined relations 𝐿𝐿 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ , 
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = 𝜕𝜕𝑡𝑡𝑆𝑆 + ∑ 𝜕𝜕𝜇𝜇𝑆𝑆 �
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𝜇𝜇=1  

and 𝜑𝜑 = 𝑇𝑇 − 𝐿𝐿, the following relation can be obtained 
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From the relations 𝑉𝑉 = 𝑘𝑘R  and 𝑉𝑉 = 𝜑𝜑 𝑚𝑚⁄ , we obtain 
the following relationship between the Schrödinger 
wavefunction 𝜓𝜓 and the Ricci scalar curvature R 
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It is seen that the Schrödinger wavefunction 𝜓𝜓 that is 
obtained from the wave equation given in Equation (26) 
can be used to determine the Ricci scalar curvature of a 
three-dimensional differentiable manifold that is identified 
with the stationary states of a hydrogen atom. In this case 
of the Schrödinger wavefunction that describes the wave 
motion of the electron of the hydrogen atom can be 
considered as a representation of a physical object. In 
spherical polar coordinates (𝑟𝑟, 𝜃𝜃, 𝜙𝜙) , the Ricci scalar 
curvature given in Equation (28) takes the form 
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The eigen functions 𝜓𝜓𝑛𝑛𝑛𝑛𝑛𝑛 (𝑟𝑟, 𝜃𝜃, 𝜙𝜙)  representing the 
stationary states of the hydrogen atom, which are solutions 
to the Schrödinger wave equation given in Equation (26), 
can be found in the form 𝜓𝜓𝑛𝑛𝑛𝑛𝑛𝑛 (𝑟𝑟, 𝜃𝜃, 𝜙𝜙) = 𝑅𝑅𝑛𝑛𝑛𝑛 (𝑟𝑟)𝑌𝑌𝑙𝑙𝑙𝑙 (𝜃𝜃, 𝜙𝜙), 
where the spherical harmonics 𝑌𝑌𝑙𝑙𝑙𝑙 (𝜃𝜃, 𝜙𝜙)  and the radial 
functions 𝑅𝑅𝑛𝑛𝑛𝑛 (𝑟𝑟) are given as 
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where 𝜌𝜌 = 2𝑟𝑟 𝑛𝑛𝑎𝑎0⁄  and 𝑎𝑎0 = 4𝜋𝜋𝜀𝜀0ℏ2 𝑚𝑚𝑞𝑞2⁄  [10]. From 
these solutions, the first few normalised wavefunctions for 
the stationary states of the hydrogen atom and their 
corresponding Ricci scalar curvatures are given below 
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As a further remark, we want to mention here that 
besides the covariant form given in Equation (18), 
Maxwell field equations of electromagnetism can also be 
shown to have the same quantum formulation as Dirac 
relativistic equation of quantum mechanics. We have 
shown that both Maxwell field equations and Dirac 
equation can be formulated covariantly from a general 
system of linear first order partial differential equations 
[11,12,13]. A matrix form of a system of linear first order 
partial differential equations can be written as follows [14]  

 1 2
1

 
n

i
ii

A k k J
x

ψ σψ
=

 ∂
= +  ∂ 

∑  (38) 

where 𝜓𝜓 = (𝜓𝜓1, 𝜓𝜓2, … , 𝜓𝜓𝑛𝑛)𝑇𝑇 , 𝐴𝐴𝑖𝑖 , 𝜎𝜎 and 𝐽𝐽 are matrices, and 
𝑘𝑘1 and 𝑘𝑘2 are undetermined constants. Now, if we apply 
the operator ∑ 𝐴𝐴𝑖𝑖

𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1  on the left on both sides of 

Equation (38) and if we assume further that the matrices 
𝐴𝐴𝑖𝑖  and 𝜎𝜎 are constant such that 𝐴𝐴𝑖𝑖𝜎𝜎 = 𝜎𝜎𝐴𝐴𝑖𝑖 , then Equation 
(38) becomes 
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In order for the above systems of partial differential 
equations to be used to describe physical phenomena, the 
matrices 𝐴𝐴𝑖𝑖  must be determined. We have shown that for 
both Dirac and Maxwell field equations, the matrices 𝐴𝐴𝑖𝑖  
must take a form so that Equation (39) reduces to the 
following equation 
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Our method of derivation of Dirac equation from a 
system of linear first order particle differential equations 
may be seen as a classical formulation and this is in 
contrast to different methods of derivation of Dirac 

equation within the current framework of quantum 
mechanics. For example, it has been shown that Dirac 
equation can be derived from the main equation of 
relativistic canonical quantum mechanics [15]. From the 
above discussions it seems that physics can be formulated 
purely in terms of differential geometry and topology, and 
to strengthen this view of physical formulation we will 
discuss in the next section whether physical interactions 
may in fact simply be geometrical processes. 

6. A Discussion on Geometric Interactions 

As being assumed in the above sections that vibrating 
physical objects are formed from mass points by contact 
forces, with regard to this view of physical existence in 
this section we will discuss further how mass points and 
contact forces can be assumed and formulated in terms of 
geometric interactions according to decomposed n-cells 
from a CW complex when we consider quantum particles 
as differentiable manifolds and physical interactions are 
identified with geometrical processes [16]. In general,  
we may consider quantum particles as differentiable 
manifolds of dimension 𝑛𝑛 which can emit submanifolds of 
dimension 𝑚𝑚 ≤ 𝑛𝑛 by decomposition. However, in order to 
formulate a physical theory we would need to devise a 
mathematical framework that allows us to account for the 
amount of subspaces that are emitted or absorbed by an 
elementary particle, which are assumed to be a 
differentiable manifold. This assumption leads to the 
visualisation of quantum particles as CW complexes 
which are constructed from m-dimensional closed cells 
topologically glued together through the operation 
of connected sum. The effect of the operation results in a 
joint of two given manifolds. More generally, manifolds 
can be glued together along submanifolds. Let 𝑀𝑀1 and 𝑀𝑀2 
be two smooth oriented manifolds of equal dimension and 
𝑉𝑉  a smooth closed oriented manifold embedded as a 
submanifold into both 𝑀𝑀1 and 𝑀𝑀2. The connected sum of 
𝑀𝑀1  and 𝑀𝑀2  along 𝑉𝑉  is then the space (𝑀𝑀1, 𝑉𝑉)#(𝑀𝑀2, 𝑉𝑉) 
[17]. For the case of three-dimensional manifolds, the 
decomposition will produce three types of prime 
manifolds, which are the spherical types, 𝑆𝑆2 × 𝑆𝑆1  and 
𝐾𝐾(𝜋𝜋, 1) . Only the prime manifold 𝐾𝐾(𝜋𝜋, 1)  can be 
decomposed along embedded tori [18]. In order to 
describe the evolution of a geometric process as a physical 
interaction we assume that an assembly of cells of a 
specified dimension will give rise to a certain form of 
physical interactions and the intermediate particles, which 
are the force carriers of physical fields decomposed during 
a geometric evolution, may possess the geometric 
structures of the n-spheres and the 𝑛𝑛-tori. This speculation 
leads to a more profound speculation that physical 
properties assigned to an elementary particle, such as 
charge, are in fact manifestations due to the force carriers 
rather than physical quantities that are contained inside the 
elementary particle. If this is the case then the analysis of 
physical interactions will be reduced to the analysis of the 
geometrical processes that are related to the geometric 
structures of the force carriers. Therefore, for observable 
physical phenomena, the study of physical dynamics 
reduces to the study of the geometric evolution of 
differentiable manifolds. In particular, if an elementary 
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particle is considered to be a three-dimensional manifold 
then there are four different types of physical interactions 
that are resulted from the decomposition of 0-cells, 1-cells, 
2-cells and 3-cells, and we will discuss this situation 
further in the following. 

Forces associated with 0-cells: For a definite 
perception of a physical existence, we assume that space is 
occupied by mass points which interact with each other 
through the decomposition of 0-cells. However, since 0-
cells have dimension zero therefore there is only contact 
forces between the mass points, which may be assumed to 
be constant for a short range, 𝐹𝐹 = 𝑘𝑘0 . When the mass 
points join together through the contact forces they form 
elementary particles. The 0-cells with contact forces can 
be arranged to form a particular topological structure [19]. 

Forces associated with 1-cells: Depending on the 
topological structure of the cells it is possible to devise 
different forms of force associated with the cells. For the 
case of 1-cells, it is anticipated that they will manifest 
either as a linear force 𝐹𝐹~𝑟𝑟  or a force of inverse law 
𝐹𝐹~ 1 𝑟𝑟⁄  or a combination of the two 

 1k=F r  (41) 
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Forces associated with 2-cells: The decomposed 2-cells 
from an elementary particle can manifest either as a 
square force 𝐹𝐹~𝑟𝑟2  or a force of inverse square law 
𝐹𝐹~ 1 𝑟𝑟2⁄  or a combination of the two 

 3k r=F r  (44) 
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Forces associated with 3-cells: For the decomposition 
of 3-cells from a manifold, even though it should be 
considered as a manifestation of either a cube force 𝐹𝐹~𝑟𝑟3 
or a force of inverse cube law 𝐹𝐹~ 1 𝑟𝑟3⁄  or a combination 
of the two, however, this form of geometric interaction 
can be applied to explain the cosmological evolution in 
general relativity. The cube force and the inverse cube law 
are given as 
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From the above considerations, we can assume a 
general force which is a combination of those forces 
resulted from the decomposition of n-cells of all 
dimensions. For the case of dimension three, the general 
force takes the form 
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where 𝑘𝑘𝑛𝑛  are constants which can be determined from 
physical considerations. 

For the case of physical interactions that are associated 
with the decomposition of 3-cells from a differentiable 
manifold, the physical interactions that are associated with 
the evolution of the geometric processes can be 
formulated in terms of general relativity. Physically, we 
can visualise with a complete picture how 1-cells and  
2-cells are formed and released from a 3-dimensional 
manifold, but for the case of forming and releasing a  
3-cell from a 3-dimensional manifold 𝑀𝑀, such complete 
visualisation seems to be beyond our physical ability, 
except for local observation. This is similar to the 
visualisation of three-dimensional wavefunctions that 
represent three-dimensional differentiable manifolds as 
discussed in Section 4. Mathematically, the forming and 
releasing of a 3-cell from a 3-dimensional manifold 𝑀𝑀 can 
be expressed as a decomposition in the form 𝑀𝑀 = 𝑀𝑀#𝑆𝑆3. 
We assume that the physical interactions associated with 
the forming and releasing of 3-cells are geometric processes 
that smooth out irregularities of the intrinsic geometric 
structure of the manifold. The geometric irregularities can 
be viewed physically as an inhomogeneous distribution of 
matter in space and the forming and releasing of the 𝑆𝑆3 
cells as an expansion. A similar geometric process that 
smooths out an inhomogeneous distribution of a substance 
can be realised on the surface of a 2-dimensional sphere. 
In order to smooth out the irregularities, 1-cells in the 
form of circles can be formed and released from a position 
with dense substance and the geometric process is viewed 
as a local expansion. With this realisation, the geometric 
process of decomposition of 3-cells 𝑆𝑆3  to smooth out 
irregularities of the distribution of matter in the observable 
universe can be formulated in terms of general relativity in 
which the change of intrinsic geometric structures of the 
manifold is due to the change of mathematical objects that 
define the manifold. These mathematical objects are 
perceived as physical entities like the energy-momentum 
tensor and the equations that describe the changes can be 
obtained from mathematical identities, such as Bianchi 
identities, the Ricci flow, or Einstein field equations of 
general relativity given as 

 1 Λ
2

R Rg g Tµν µν µν µνκ− + =  (51) 

with the pseudo-Euclidean Robertson-Walker metric [20] 
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or with the Euclidean Robertson-Walker metric [21] 
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where 𝑘𝑘 = −1, 0, 1. In fact, the geometric interactions can 
also be extended to temporal manifold in which time has 
three dimensions and space has one dimension [22],  
and more general to the case when the spatiotemporal 
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manifold can be described as a six-dimensional spherical 
bundle [23]. 

7. Conclusion 

In this work we have discussed the possibility to 
explain the dual character of a quantum particle in which a 
quantum object can exhibit both seemingly irreconcilable 
characters of a physical object defined in classical physics, 
i.e., the distinguished character that is associated with  
a particle and that with a wave. Following Einstein’s 
perception that physics should be formulated according to 
the intrinsic geometric structures of spacetime, similar to 
the geometric formulation of general relativity, first we 
assume that quantum particles should possess the geometric 
and topological structures of 3D differentiable manifolds. 
Then we show that in order for 3D differentiable 
manifolds to exhibit wave character they must be solutions 
of a wave equation so that if quantum particles are 
identified with these differentiable manifolds then they 
can manifest wave characteristics. As illustrations, we 
have examined wave equations that are used to describe 
the wave motion of physical objects, such as the wave 
dynamics of a vibrating string and a vibrating membrane, 
and in particular the vibration of a solid ball. In fact, the 
main subject that we want to discuss in this work is the 
wave characteristic of a solid ball by suggesting that the 
wave motion of a vibrating solid ball described by a wave 
equation whose solutions are not considered to describe 
physical phenomena as observed by a 3D observer but 
differentiable manifolds embedded in a four-dimensional 
Euclidean space. When the solid ball vibrates into the 
fourth dimension of a four-dimensional Euclidean space, 
then the wavefunction can represent a spatial dimension 
and the solid ball becomes a 3D differentiable manifold 
embedded in a four-dimensional Euclidean space. In this 
case, an observer which is a 3D physical object can only 
observe the cross-section which is the intersection of the 
time-dependent differentiable manifold and the three-
dimensional Euclidean space into which that the observer 
is embedded. And the cross-section appears as a 3D wave 
to the 3D observer. For a complete description in terms of 
geometric formulation we also discuss geometric interactions 
in which decomposed cells from a CW complex could  
be associated with forces encountered in physical 
dynamics. In particular we show that all quantum particles 
can be formed from mass points joined by contact forces 
which are associated with the decomposition of 0-cells 
from a CW complex which is identified with a quantum 
particle. 

Acknowledgements 

I would like to thank the reviewers for their comments 
and suggestions, and the administration of SciEP for their 
advices. 

References 
[1] Erwin Schrödinger, Collected Papers on Wave Mechanics (AMS 

Chelsea Publishing, New York, 1982). 
[2] A. Einstein, The Principle of Relativity (Dover Publications, New 

York, 1952). 
[3] Vu B Ho, Spacetime Structures of Quantum Particles (Preprint, 

ResearchGate, 2017), viXra 1708.0192v2, Int. J. Phys. vol 6, no 4 
(2018): 105-115. 

[4] R. Haberman, Elementary Applied Partial Differential Equations, 
Prentice-Hall Inc, Sydney, 1987. 

[5] E. Kreyszig, Introduction to Differential Geometry and 
Riemannian Geometry (University of Toronto Press, 1975). 

[6] Walter A. Strauss, Partial Differential Equation (John Wiley & 
Sons, Inc., New York, 1992). 

[7] Ray D’Inverno, Introducing Einstein’s Relativity (Clarendon Press, 
Oxford, 1992). 

[8] Richard S. Hamilton, Three-Manifolds with Positive Ricci 
Curvature, J. Diff. Geo., 17 (1982) 255-306. 

[9] Huai-Dong Cao and Xi-Ping Zhu, A Complete Proof of the 
Poincaré and Geometrization Conjectures-Application of the 
Hamilton-Perelman Theory of the Ricci Flow, Asian J. Math.,  
Vol 10, No. 2, 165-492, June 2006. 

[10] B. H. Bransden and C. J. Joachain, Introduction to Quantum 
Mechanics (Longman Scientific & Technical, New York, 1989). 

[11] Vu B Ho, Formulation of Maxwell Field Equations from a 
General System of Linear First Order Partial Differential 
Equations (Preprint, ResearchGate, 2018), viXra 1802.0055v1. 

[12] Vu B Ho, Formulation of Dirac Equation for an Arbitrary Field 
from a System of Linear First Order Partial Differential Equations 
(Preprint, ResearchGate, 2018), viXra 1803.0645v1. 

[13] Vu B Ho, On Dirac Negative Mass and Magnetic Monopole 
(Preprint, ResearchGate, 2018), viXra 1806.0319v1. 

[14] S. V. Melshko, Methods for Constructing Exact Solutions of 
Partial Differential Equations, Springer Science & Business 
Media, Inc, 2005. 

[15] V. M. Simulik and I. Yu. Krivsky, Once more on the derivation of 
the Dirac equation, arXiv: 1309.0573v2 [math-ph] 22 Sep 2013. 

[16] Vu B Ho, A Classification of Geometric Interactions (Preprint, 
ResearchGate, 2018), viXra 1805.0329v1. 

[17] Allen Hatcher, Algebraic Topology, 2001. 
[18] K. Yasuno, T. Koike and M. Siino, Thurston’s Geometrization 

Conjecture and cosmological models, arXiv:gr-qc/0010002v1, 
2000. 

[19] Allen Hatcher and William Thurston, Moduli Spaces of Circle 
Packings, 2015. 

[20] Lewis Ryder, Introduction to General Relativity (Cambridge 
University Press, Melbourne, 2009). 

[21] Vu B Ho, Euclidean Relativity (Preprint, ResearchGate, 2017), 
viXra 1710.0302v1. 

[22] Vu B Ho, Temporal Geometric Interactions (Preprint, Research 
Gate, 2018), viXra 1807.0134v1. 

[23] Vu B Ho, On the Geometric Structure of the Spatiotemporal 
Manifold (Preprint, ResearchGate, 2018), viXra 1808.0144v1. 

 

 


