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Interval neutrosophic sets
and topology

Francisco Gallego Lupiáñez
Faculty of Mathematics, University Complutense, Madrid, Spain

Abstract

Purpose – In 2005, Smarandache generalized the Atanassov’s intuitionistic fuzzy sets (IFSs) to
neutrosophic sets (NS), and other researchers introduced the notion of interval neutrosophic set (INSs),
which is an instance of NS, and studied various properties. The notion of neutrosophic topology on the
non-standard interval is also due to Smarandache. The purpose of this paper is to study relations
between INSs and topology.

Design/methodology/approach – The paper investigates the possible relations between INSs and
topology.

Findings – Relations on INSs and neutrosophic topology.

Research limitations/implications – Clearly, the paper is confined to IFSs and NSs.

Practical implications – The main applications are in the mathematical field.

Originality/value – The paper shows original results on fuzzy sets and topology.

Keywords Set theory, Topology, Cybernetics, Fuzzy logic

Paper type Research paper

1. Introduction
In various recent papers, Smarandache (2002, 2003, 2005) generalizes intuitionistic
fuzzy sets (IFSs) and other kinds of sets to neutrosophic sets (NSs).

The notion of IFSs defined by Atanassov (1983, 1986) has been applied by Çoker
(1997) for study intuitionistic fuzzy topological spaces (IFTS). This concept has been
developed by many authors (Bayhan and Çoker, 2003; Çoker, 1996, 1997; Çoker and Eş,
1995; Eş and Çoker, 1996; Gürçay et al., 1997; Hanafy, 2003; Hur et al., 2004; Lee and
Lee, 2000; Lupiáñez, 2004a, b, 2006a, b, 2007; Turanh and Çoker, 2000).

Smarandache also defined the notion of neutrosophic topology on the non-standard
interval (Smarandache, 2002).

One can expect some relation between the intuitionistic fuzzy topology (IFT) on an
IFS and the neutrosophic topology. We show in (Lupiáñez, 2008) that this is false.
Indeed, an IFT is not necessarilly a neutrosophic topology.

Also (Wang et al., 2005) introduced the notion of interval neutrosophic set (INSs),
which is an instance of NS and studied various properties. We study in this paper
relations between INSs and topology.

2. Basic definitions
First, we present some basic definitions. For definitions on non-standard analysis
(Robinson, 1996):

Definition 1. Let X be a non-empty set. An IFS A, is an object having the form
A ¼ { , x;mA; gA . =x [ X} where the functions mA : X ! I and gA : X ! I denote
the degree of membership (namely mA(x)) and the degree of non-membership (namely
gA(x)) of each element x [ X to the set A, respectively, and 0 # mAðxÞ þ gAðxÞ # 1 for
each x [ X (Atanassov, 1983).

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/0368-492X.htm

Interval
neutrosophic sets

and topology

621

Kybernetes
Vol. 38 Nos 3/4, 2009

pp. 621-624
q Emerald Group Publishing Limited

0368-492X
DOI 10.1108/03684920910944849

D
ow

nl
oa

de
d 

by
 P

ro
fe

ss
or

 F
lo

re
nt

in
 S

m
ar

an
da

ch
e 

A
t 0

8:
15

 2
7 

A
pr

il 
20

18
 (

PT
)



Definition 2. Let X be a non-empty set, and the IFSs A ¼ { , x;mA; gA .
jx [ X}, B ¼ { , x;mB; gB . jx [ X}. Let:

. �A ¼ { , x; gA;mA . jx [ X};

. A> B ¼ { , x;mA ^ mB; gA _ gB . jx [ X}; and

. A< B ¼ { , x;mA _ mB; gA ^ gB . jx [ X} (Atanassov, 1988).

Definition 3. Let X be a non-empty set. Let 0, ¼ { , x; 0; 1 . jx [ X} and
1, ¼ { , x; 1; 0 . jx [ X} (Çoker, 1997).

Definition 4. An IFT on a non-empty set X is a family t of IFSs in X satisfying:
. 0,; 1, [ t ;
. G1 > G2 [ t for any G1;G2 [ t ; and
. <Gj [ t for any family {Gjj j [ J} , t.

In this case the pair (X, t) is called an IFTS and any IFS in t is called an intuitionistic
fuzzy open set in X (Çoker, 1997).

Definition 5. Let T, I, F be real standard or non-standard subsets of the
non-standard unit interval �20; 1þ½, with:

. supT ¼ tsup , inf T ¼ tinf ;

. supI ¼ isup, inf I ¼ iinf ; and

. supF ¼ f sup , inf F ¼ f inf and nsup ¼ tsup þ isup þ f sup ninf ¼ tinf þ iinf þ f inf .

T, I, F are called neutrosophic components. Let U be an universe of discourse, and M a
set included in U. An element x from U is noted with respect to the set M as x(T, I, F)
and belongs to M in the following way: it is t% true in the set, i% indeterminate
(unknown if it is) in the set, and f% false, where t varies in T, i varies in I, f varies in F.
The set M is called a NS (Smarandache, 2005).

Remark. All IFS is a NS.
Definition 6. Let X be a space of points (objects) with generic elements in X denoted

by x. An INS A in X is characterized by thuth-membership function TA,
indeteminacy-membership function IA and falsity-membership function FA. For each
point x in X, we have that TA (x), IA(x), FAðxÞ [ ½0; 1� (Wang et al., 2005).

Remark. All INS is clearly a NS.
Definition 7.
. An INSs A is empty if inf TAðxÞ ¼ supTAðxÞ ¼ 0, inf IAðxÞ ¼ sup IAðxÞ ¼ 1,

inf FAðxÞ ¼ supFAðxÞ ¼ 0 for all x in X.
. Let _0 ¼, 0; 1; 1 . and _1 ¼, 1; 0; 0 . (Wang et al., 2005).

Definition 8. Let CN denote a neutrosophic complement of A.
Then CN is a function CN : N ! N and CN must satisfy at least the following three

axiomatic requirements:

(1) CN _ð0Þ ¼ _1 and CN ð_1Þ ¼ _0 (boundary conditions);

(2) let A and B be two INSs defined on X, if A(x) # B(x), then
CN ðAðxÞÞ $ CN ðBðxÞÞ, for all x in X (monotonicity); and

(3) let A be an INSs defined on X, then CN ðCN ðAðxÞÞÞ ¼ AðxÞ, for all x in X
(involutivity) (Wang et al., 2005).
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Definition 9. Let IN denote a neutrosophic intersection of two INSs A and B. Then IN
is a function IN : N £ N ! N and IN must satisfy at least the following four axiomatic
requirements:

(1) IN ðAðxÞ; _1Þ ¼ AðxÞ, for all x in X (boundary condition).

(2) B(x) # C(x) implies IN ðAðxÞ;BðxÞÞ # IN ðAðxÞ;CðxÞÞ, for all x inX (monotonicity).

(3) IN ðAðxÞ;BðxÞÞ ¼ IN ðBðxÞ;AðxÞÞ, for all x in X (commutativity).

(4) IN ðAðxÞ; IN ðBðxÞ;CðxÞÞÞ ¼ IN ðIN ðAðxÞ;BðxÞÞ;CðxÞÞ, for all x in X (associativity)
(Wang et al., 2005).

Definition 10. Let UN denote a neutrosophic union of two INSs A and B. Then UN is a
function UN : N £ N ! N and UN must satisfy at least the following four axiomatic
requirements:

(1) UN ðAðxÞ; _0Þ ¼ AðxÞ, for all x in X (boundary condition).

(2) B(x) # C(x) impliesUN ðAðxÞ;BðxÞÞ # UN ðAðxÞ;CðxÞÞ, for all x inX (monotonicity).

(3) UN ðAðxÞ;BðxÞÞ ¼ UN ðBðxÞ;AðxÞÞ, for all x in X (commutativity).

(4) UN ðAðxÞ;UN ðBðxÞ;CðxÞÞÞ ¼ UN ðUN ðAðxÞ;BðxÞÞ;CðxÞÞ, for all x in X
(associativity) (Wang et al., 2005).

3. Results
Proposition 1. Let A be an IFS in X, and j(A) be the corresponding INS. We have that
the complement of j(A) is not necessarily jð �AÞ.

Proof. If A ¼, x;mA; gA . is jðAÞ ¼, mA; 0; gA ..
Then:

. for 0, ¼, x; 0; 1 . is jð0,Þ ¼ jð, x; 0; 1 .Þ ¼, 0; 0; 1 .– _0 ¼, 0; 1; 1 .;
and

. for 1, ¼, x; 1; 0 . is jð1,Þ ¼ jð, x; 1; 0 .Þ ¼, 1; 0; 0 .¼ _1

Thus, 1, ¼ �0, and jð1,Þ ¼ _1 – CN ð jð�0,ÞÞ because CN ð_1Þ ¼ _0 – jð�0,Þ. A
Definition 11. Let us construct a neutrosophic topology onNT ¼�20; 1þ½, considering

the associated family of standard or non-standard subsets included inNT, and the empty set
which is closed under set union and finite intersection neutrosophic. The interval NT
endowed with this topology forms a neutrosophic topological space (Smarandache, 2002).

Proposition 2. Let (X, t) be an IFTS. Then, the family of INSs {jðU ÞjU [ t} is not
necessarily a neutrosophic topology.

Proof. Let t ¼ {1, , 0, , A} where A ¼, x; 1=2; 1=2 . then jð1,Þ ¼ _1, jð0,Þ ¼
, 0; 0; 1 .– B and jðAÞ ¼, 1=2; 0; 1=2 .. Thus, {jð1,Þ; jð0,Þ; jðAÞ} is not a
neutrosophic topology, because the empty INS is not in this family. A
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