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Abstract: Fuzzy graph theory plays an important role in the study of the symmetry and asymmetry 

properties of fuzzy graphs. With this in mind, in this paper, we introduce new neutrosophic graphs 

called complex neutrosophic graphs of type 1 (abbr. CNG1). We then present a matrix representation 

for it and study some properties of this new concept. The concept of CNG1 is an extension of the 

generalized fuzzy graphs of type 1 (GFG1) and generalized single-valued neutrosophic graphs of type 1 

(GSVNG1). The utility of the CNG1 introduced here are applied to a multi-attribute decision making 

problem related to Internet server selection. 
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1. Introduction 

Smarandache [1] introduced a new theory called neutrosophic theory, which is basically a branch 

of philosophy that focuses on the origin, nature, and scope of neutralities and their interactions with 

different ideational spectra. On the basis of neutrosophy, Smarandache defined the concept of a 

neutrosophic set (NS) which is characterized by a degree of truth membership T, a degree of 

indeterminacy membership I, and a degree of falsity membership F. The concept of neutrosophic set 

theory generalizes the concept of classical sets, fuzzy sets by Zadeh [2], intuitionistic fuzzy sets by 

Atanassov [3], and interval-valued fuzzy sets by Turksen [4]. In fact, this mathematical tool is apt for 

handling problems related to imprecision, indeterminacy, and inconsistency of data. The 

indeterminacy component present in NSs is independent of the truth and falsity membership values. 

To make it more convenient to apply NSs to real-life scientific and engineering problems, 

Smarandache [1] proposed the single-valued neutrosophic set (SVNS) as a subclass of neutrosophic 

sets. Later on, Wang et al. [5] presented the set-theoretic operators and studied some of the properties 

of SVNSs. The NS model and its generalizations have been successfully applied in many diverse 

areas, and these can be found in [6]. 

Graphs are among the most powerful and convenient tools to represent information involving 

the relationship between objects and concepts. In crisp graphs, two vertices are either related or not 

related to one another so, mathematically, the degree of relationship is either 0 or 1. In fuzzy graphs 

on the other hand, the degree of relationship takes on values from the interval [0, 1]. Subsequently, 
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Shannon and Atanassov [7] defined the concept of intuitionistic fuzzy graphs (IFGs) using five types 

of Cartesian products. The concept fuzzy graphs and their extensions have a common property that 

each edge must have a membership value of less than, or equal to, the minimum membership of the 

nodes it connects. 

In the event that the description of the object or their relations or both is indeterminate and 

inconsistent, it cannot be handled by fuzzy, intuitionistic fuzzy, bipolar fuzzy, vague, or interval-

valued fuzzy graphs. For this reason, Smarandache [8] proposed the concept of neutrosophic graphs 

based on the indeterminacy (I) membership values to deal with such situations. Smarandache [9,10] 

then gave another definition for neutrosophic graph theory using the neutrosophic truth-values (T, I, 

F) and constructed three structures of neutrosophic graphs: neutrosophic edge graphs, neutrosophic 

vertex graphs and neutrosophic vertex-edge graphs. Subsequently, Smarandache [11] proposed new 

versions of these neutrosophic graphs, such as the neutrosophic off graph, neutrosophic bipolar graph, 

neutrosophic tripolar graph, and neutrosophic multipolar graph. Presently, works on neutrosophic 

vertex-edge graphs and neutrosophic edge graphs are progressing rapidly. Broumi et al. [12] 

combined the SVNS model and graph theory to introduce certain types of SVNS graphs (SVNG), 

such as strong SVNG, constant SVNG, and complete SVNG, and proceeded to investigate some of 

the properties of these graphs with proofs and examples. Broumi et al. [13] then introduced the 

concept of neighborhood degree of a vertex and closed neighborhood degree of a vertex in SVNG as 

a generalization of the neighborhood degree of a vertex and closed neighborhood degree of a vertex 

found in fuzzy graphs and intuitionistic fuzzy graphs. In addition, Broumi et al. [14] proved a 

necessary and sufficient condition for a SVNG to be an isolated SVNG. 

Recently, Smarandache [15] initiated the idea of the removal of the edge degree restriction for 

fuzzy graphs, intuitionistic fuzzy graphs and SVNGs. Samanta et al. [16] proposed a new concept 

called generalized fuzzy graphs (GFG) and defined two types of GFG. Here the authors also studied 

some of the major properties of GFGs, such as the completeness and regularity of GFGs, and verified 

the results. In [16], the authors claim that fuzzy graphs and their extensions are limited to the 

representations of only certain systems, such as social networks. Broumi et al. [17] then discussed the 

removal of the edge degree restriction of SVNGs and presented a new class of SVNG, called generalized 

SVNG of type 1, which is an extension of generalized fuzzy graphs of type 1 proposed in [16]. Since the 

introduction of complex fuzzy sets (CFSs) by Ramot et al. in [18], several new extensions of CFSs have 

been proposed in literature [19–25]. The latest model related to CFS is the complex neutrosophic set 

(CNS) model which is a combination of CFSs [18] and complex intuitionistic fuzzy sets [21] proposed 

by Ali and Smarandache [26]. The CNS model is defined by three complex-valued membership 

functions which represent the truth, indeterminate, and falsity components. Therefore, a complex-

valued truth membership function is a combination of the traditional truth membership function 

with the addition of the phase term. Similar to fuzzy graphs, complex fuzzy graphs (CFG) introduced 

by Thirunavukarasu et al. [27] have a common property that each edge must have a membership 

value of less than or equal to the minimum membership of the nodes it connects. 

In this paper, we extend the research works mentioned above, and introduce the novel concept 

of type 1 complex neutrosophic graphs (CNG1) and a matrix representation of CNG1. To the best of 

our knowledge, there is no research on CNGs in the literature at present. We also present an 

investigation pertaining to the symmetric properties of CNG1 in this paper. In the study of fuzzy 

graphs, a symmetric fuzzy graph refers to a graph structure with one edge (i.e., two arrows on 

opposite directions) or no edges, whereas an asymmetric fuzzy graph refers to a graph structure with 

no arcs or only one arc present between any two vertices. Motivated by this, we have dedicated an 

entire section in this paper (Section 7) to study the symmetric properties of our proposed CNG1. 

The remainder of this paper is organized as follows: in Section 2, we review some basic concepts 

about NSs, SVNSs, CNSs, and generalized SVNGs of type 1; in Section 3, the formal definition of CNG1 

is introduced and supported with illustrative examples; in Section 4 a representation matrix of CNG1 

is introduced; some advanced theoretical results pertaining to our CNG1 is presented in Section 5, 

followed by an investigation on the shortest CNG1 in Section 6; the symmetric properties of ordinary 
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simple CNG1 is presented in Section 7; and Section 8 outlines the conclusion of this paper and suggests 

directions for future research. This is followed by the acknowledgments and the list of references. 

2. Preliminaries 

In this section, we present brief overviews of NSs, SVNSs, SVNGs, and generalize fuzzy graphs 

that are relevant to the present work. We refer the readers to [1,5,17,18,27] for further information 

related to these concepts. 

The key feature that distinguishes the NS from the fuzzy and intuitionistic fuzzy set (IFS) models 

is the presence of the indeterminacy membership function. In the NS model the indeterminacy 

membership function is independent from the truth and falsity membership functions, and we are 

able to tell the exact value of the indeterminacy function. In the fuzzy set model this indeterminacy 

function is non-existent, whereas in the IFS model, the value of the indeterminacy membership 

function is dependent on the values of the truth and falsity membership functions. This is evident 

from the structure of the NS model in which 𝑇 + 𝐼 + 𝐹 ≤ 3, whereas it is 𝑇 + 𝐹 ≤ 1 and 𝐼 = 1 − 𝑇 −

𝐹 in the IFS model. This structure is reflective of many real-life situations, such as in sports (wining, 

losing, draw), voting (for, against, abstain from voting), and decision-making (affirmative, negative, 

undecided), in which the proportions of one outcome is independent of the others. The NS model is 

able to model these situations more accurately compared to fuzzy sets and IFSs as it is able to 

determine the degree of indeterminacy from the truth and falsity membership function more 

accurately, whereas this distinction cannot be done when modelling information using the fuzzy sets 

and IFSs. Moreover, the NS model has special structures called neutrosophic oversets and 

neutrosophic undersets that were introduced by Smarandache in [11], in which the values of the 

membership functions can exceed 1 or be below 0, in order to cater to special situations. This makes 

the NS more flexible compared to fuzzy sets and IFSs, and gives it the ability to cater to a wider range 

of applications. The flexibility of this model and its ability to clearly distinguish between the truth, 

falsity, and indeterminacy membership functions served as the main motivation to study a branch of 

graph theory of NSs in this paper. We refer the readers to [28,29] for more information on the degree 

of dependence and independence of neutrosophic sets, and [11] for further information on the 

concepts of neutrosophic oversets and undersets. 

Definition 1 [1]. Let 𝑋 be a space of points and let 𝑥 ∈ 𝑋. A neutrosophic set 𝐴 ∈ 𝑋 is characterized by a 

truth membership function 𝑇, an indeterminacy membership function 𝐼, and a falsity membership function 

𝐹. The values of 𝑇, 𝐼, 𝐹  are real standard or nonstandard subsets of ]−0, 1+[, and 𝑇, 𝐼, 𝐹: 𝑋 →]−0, 1+[. A 

neutrosophic set can therefore be represented as: 

𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋} (1) 

Since 𝑇, 𝐼, 𝐹 ∈ [0, 1], the only restriction on the sum of 𝑇, 𝐼, 𝐹 is as given below: 

−0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3
+ (2) 

Although theoretically the NS model is able to handle values from the real standard or non-

standard subsets of ]−0, 1+[, it is often unnecessary or computationally impractical to use values from 

this non-standard range when dealing with real-life applications. Most problems in engineering, and 

computer science deal with values from the interval [0, 1] instead of the interval ]−0, 1+[, and this led 

to the introduction of the single-valued neutrosophic set (SVNS) model in [5]. The SVNS model is a 

special case of the general NS model in which the range of admissible values are from the standard 

interval of [0, 1], thereby making it more practical to be used to deal with most real-life problems. 

The formal definition of the SVNS model is given in Definition 2. 

Definition 2 [5]. Let 𝑋 be a space of points (objects) with generic elements in 𝑋 denoted by 𝑥. A single-

valued neutrosophic set 𝐴  (SVNS A) is characterized by a truth-membership function 𝑇𝐴(𝑥),  an 

indeterminacy-membership function 𝐼𝐴(𝑥), and a falsity-membership function 𝐹𝐴(𝑥). For each point 𝑥 ∈ 𝑋, 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1]. The SVNS 𝐴 can therefore be written as: 
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𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋} (3) 

Definition 3 [26]. Denote 𝒾 = √−1. A complex neutrosophic set 𝐴 defined on a universe of discourse 𝑋, 

which is characterized by a truth membership function 𝑇𝐴(𝑥), an indeterminacy-membership function 𝐼𝐴(𝑥), 

and a falsity-membership function 𝐹𝐴(𝑥)  that assigns a complex-valued membership grade to 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) for any 𝑥 ∈ 𝑋. The values of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) and their sum may be any values within 

a unit circle in the complex plane and is therefore of the form 𝑇𝐴(𝑥) = 𝑝𝐴(𝑥)𝑒
𝒾𝜇𝐴(𝑥), 𝐼𝐴(𝑥) = 𝑞𝐴(𝑥)𝑒

𝒾𝜈𝐴(𝑥), 

and 𝐹𝐴(𝑥) = 𝑟𝐴(𝑥)𝑒
𝒾𝜔𝐴(𝑥).  All the amplitude and phase terms are real-valued and 𝑝𝐴(𝑥), 𝑞𝐴(𝑥), 𝑟𝐴(𝑥) ∈

[0, 1], whereas 𝜇𝐴(𝑥), 𝜈𝐴(𝑥), 𝜔𝐴(𝑥) ∈ (0, 2𝜋], such that the condition: 

0 ≤ 𝑝𝐴(𝑥) + 𝑞𝐴(𝑥) + 𝑟𝐴(𝑥) ≤ 3 (4) 

is satisfied. A complex neutrosophic set 𝐴 can thus be represented in set form as: 

𝐴 = {〈𝑥, 𝑇𝐴(𝑥) = 𝑎𝑇 , 𝐼𝐴(𝑥) = 𝑎𝐼 , 𝐹𝐴(𝑥) = 𝑎𝐹〉: 𝑥 ∈ 𝑋}, (5) 

where 𝑇𝐴: 𝑋 → {𝑎𝑇: 𝑎𝑇 ∈ 𝐶, |𝑎𝑇| ≤ 1},  𝐼𝐴: 𝑋 → {𝑎𝐼: 𝑎𝐼 ∈ 𝐶, |𝑎𝐼| ≤ 1},  𝐹𝐴: 𝑋 → {𝑎𝐹: 𝑎𝐹 ∈ 𝐶, |𝑎𝐹| ≤ 1},  and 

also: 

|𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥)| ≤ 3. (6) 

Definition 4 [26]. Let 𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋} and 𝐵 = {(𝑥, 𝑇𝐵(𝑥), 𝐼𝐵(𝑥), 𝐹𝐵(𝑥)): 𝑥 ∈ 𝑋} be 

two CNSs in 𝑋. The union and intersection of 𝐴 and 𝐵 are as defined below. 

(i) The union of 𝐴 and 𝐵, denoted as 𝐴 ∪𝑁 𝐵, is defined as: 

𝐴 ∪𝑁 𝐵 = {(𝑥, 𝑇𝐴∪𝐵(𝑥), 𝐼𝐴∪𝐵(𝑥), 𝐹𝐴∪𝐵(𝑥)): 𝑥 ∈ 𝑋}, (7) 

where 𝑇𝐴∪𝐵(𝑥), 𝐼𝐴∪𝐵(𝑥), 𝐹𝐴∪𝐵(𝑥) are given by: 

𝑇𝐴∪𝐵(𝑥) = max(𝑝𝐴(𝑥), 𝑝𝐵(𝑥)) . 𝑒
𝒾𝜇𝐴∪𝐵(𝑥), 

𝐼𝐴∪𝐵(𝑥) = min(𝑞𝐴(𝑥), 𝑞𝐵(𝑥)) . 𝑒
𝒾𝜈𝐴∪𝐵(𝑥), 

𝐹𝐴∪𝐵(𝑥) = min(𝑟𝐴(𝑥), 𝑟𝐵(𝑥)) . 𝑒
𝒾𝜔𝐴∪𝐵(𝑥) . 

 

(ii) The intersection of 𝐴 and 𝐵, denoted as 𝐴 ∩𝑁 𝐵, is defined as: 

𝐴 ∩𝑁 𝐵 = {(𝑥, 𝑇𝐴∩𝐵(𝑥), 𝐼𝐴∩𝐵(𝑥), 𝐹𝐴∩𝐵(𝑥)): 𝑥 ∈ 𝑋}, (8) 

where 𝑇𝐴∩𝐵(𝑥), 𝐼𝐴∩𝐵(𝑥), 𝐹𝐴∩𝐵(𝑥) are given by: 

𝑇𝐴∩𝐵(𝑥) = min(𝑝𝐴(𝑥), 𝑝𝐵(𝑥)) . 𝑒
𝒾𝜇𝐴∩𝐵(𝑥), 

𝐼𝐴∩𝐵(𝑥) = max(𝑞𝐴(𝑥), 𝑞𝐵(𝑥)) . 𝑒
𝒾𝜈𝐴∩𝐵(𝑥), 

𝐹𝐴∩𝐵(𝑥) = max(𝑟𝐴(𝑥), 𝑟𝐵(𝑥)) . 𝑒
𝒾𝜔𝐴∩𝐵(𝑥). 

 

The union and the intersection of the phase terms of the complex truth, falsity and indeterminacy 

membership functions can be calculated from, but not limited to, any one of the following operations: 

(a) Sum: 

𝜇𝐴∪𝐵(𝑥) = 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥), 

𝜈𝐴∪𝐵(𝑥) = 𝜈𝐴(𝑥) + 𝜈𝐵(𝑥), 

𝜔𝐴∪𝐵(𝑥) = 𝜔𝐴(𝑥) + 𝜔𝐵(𝑥). 

 

(b) Max: 

𝜇𝐴∪𝐵(𝑥) = max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), 

𝜈𝐴∪𝐵(𝑥) = max(𝜈𝐴(𝑥), 𝜈𝐵(𝑥)), 

𝜔𝐴∪𝐵(𝑥) = max(𝜔𝐴(𝑥), 𝜔𝐵(𝑥)). 

 

(c) Min: 

𝜇𝐴∪𝐵(𝑥) = min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), 

𝜈𝐴∪𝐵(𝑥) = min(𝜈𝐴(𝑥), 𝜈𝐵(𝑥)), 

𝜔𝐴∪𝐵(𝑥) = min(𝜔𝐴(𝑥), 𝜔𝐵(𝑥)). 

 

(d) “The game of winner, neutral, and loser”: 
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
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x

x if q q








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 , 

( )
( )

( )

A A B

A B

B B A

x if r r
x

x if r r








= 

 . 

 

Definition 5 [17]. Let the following statements hold: 

(a) 𝑉 is a non-void set. 

(b) 𝜌̆𝑇, 𝜌̆𝐼, 𝜌̆𝐹 are three functions, each from 𝑉 to [0, 1]. 

(c) 𝜔̆𝑇, 𝜔̆𝐼 , 𝜔̆𝐹 are three functions, each from 𝑉 × 𝑉 to [0, 1]. 

(d) 𝜌̆ = (𝜌̆𝑇 , 𝜌̆𝐼 , 𝜌̆𝐹) and 𝜔̆ = (𝜔̆𝑇 , 𝜔̆𝐼 , 𝜔̆𝐹). 

Then the structure 𝜉 = 〈𝑉, 𝜌̆, 𝜔̆〉 is said to be a generalized single valued neutrosophic graph of type 1 

(GSVNG1). 

Remark 1. (i) 𝜌̆  depends on 𝜌̆𝑇 , 𝜌̆𝐼 , 𝜌̆𝐹  and 𝜔̆  depends on 𝜔̆𝑇 ,𝜔̆𝐼 ,𝜔̆𝐹 .  Hence there are seven mutually 

independent parameters in total that make up a CNG1: 𝑉, 𝜌̆𝑇 , 𝜌̆𝐼 , 𝜌̆𝐹 , 𝜔̆𝑇,𝜔̆𝐼,𝜔̆𝐹. 

(i) For each 𝑥 ∈ 𝑉, 𝑥 is said to be a vertex of 𝜉. The entire set 𝑉 is thus called the vertex set of 𝜉. 

(ii) For each 𝑢, 𝑣 ∈ 𝑉, (𝑢, 𝑣) is said to be a directed edge of 𝜉. In particular, (𝑣, 𝑣) is said to be a loop of 𝜉. 

(iii) For each vertex: 𝜌̆𝑇(𝑣), 𝜌̆𝐼(𝑣), 𝜌̆𝐹(𝑣) are called the truth-membership value, indeterminate membership 

value, and false-membership value, respectively, of that vertex 𝑣.  Moreover, if 𝜌̆𝑇(𝑣) = 𝜌̆𝐼(𝑣) =

𝜌̆𝐹(𝑣) = 0, then 𝑣 is said to be a void vertex. 

(iv) Likewise, for each edge (𝑢, 𝑣): 𝜔̆𝑇(𝑢, 𝑣), 𝜔̆𝐼(𝑢, 𝑣),  𝜔̆𝐹(𝑢, 𝑣)  are called the truth-membership value, 

indeterminate-membership value, and false-membership value, respectively of that directed edge (𝑢, 𝑣). 

Moreover, if 𝜔̆𝑇(𝑢, 𝑣) = 𝜔̆𝐼(𝑢, 𝑣) = 𝜔̆𝐹(𝑢, 𝑣) = 0, then (𝑢, 𝑣) is said to be a void directed edge. 

Here we shall restate the concept of complex fuzzy graph of type 1. Moreover, for all the 

remaining parts of this paper, we shall denote the set {𝑧 ∈ ℂ: |𝑧| ≤ 1} as 𝑂1. 

Definition 6 [27]. Let the following statements hold: 

(a) 𝑉 is a non-void set. 

(b) 𝜌̇ is a function from 𝑉 to 𝑂1. 

(c) 𝜔̇ is a function from 𝑉 × 𝑉 to 𝑂1. 

Then: 

(i) the structure 𝜉̇ = 〈𝑉, 𝜌̇, 𝜔̇〉 is said to be a complex fuzzy graph of type 1 (abbr. CFG1). 

(ii) For each 𝑥 ∈ 𝑉, 𝑥 is said to be a vertex of 𝜉̇. The entire set 𝑉 is thus called the vertex set of 𝜉̇. 

(iii) For each 𝑢, 𝑣 ∈ 𝑉, (𝑢, 𝑣) is said to be a directed edge of 𝜉̇. In particular, (𝑣, 𝑣) is said to be a loop of 𝜉̇. 

3. Complex Neutrosophic Graphs of Type 1 

By using the concept of complex neutrosophic sets [26], the concept of complex fuzzy graph of 

type 1 [27], and the concept of generalized single valued neutrosophic graph of type 1 [17], we define 

the concept of complex neutrosophic graph of type 1 as follows: 

Definition 7. Let the following statements hold: 

(a) 𝑉 is a non-void set. 

(b) 𝜌𝑇, 𝜌𝐼, 𝜌𝐹 are three functions, each from 𝑉 to 𝑂1. 

(c) 𝜔𝑇, 𝜔𝐼 , 𝜔𝐹 are three functions, each from 𝑉 × 𝑉 to 𝑂1. 
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(d) 𝜌 = (𝜌𝑇 , 𝜌𝐼 , 𝜌𝐹) and 𝜔 = (𝜔𝑇 , 𝜔𝐼 , 𝜔𝐹). 

Then the structure 𝜉 = 〈𝑉, 𝜌, 𝜔〉 is said to be a complex neutrosophic graph of type 1 (abbr. CNG1). 

Remark 2. 𝜌  depends on 𝜌𝑇 , 𝜌𝐼 , 𝜌𝐹 , and 𝜔  depends on  𝜔𝑇 , 𝜔𝐼 , 𝜔𝐹 . Hence there are seven mutually 

independent parameters in total that make up a CNG1: V, 𝜌𝑇, 𝜌𝐼, 𝜌𝐹, 𝜔𝑇, 𝜔𝐼 , 𝜔𝐹. Furthermore, in analogy 

to a GSVNG1: 

(i) For each 𝑥 ∈ 𝑉, 𝑥 is said to be a vertex of 𝜉. The entire set 𝑉 is thus called the vertex set of 𝜉. 

(ii) For each 𝑢, 𝑣 ∈ 𝑉, (𝑢, 𝑣) is said to be a directed edge of 𝜉. In particular, (𝑣, 𝑣) is said to be a loop of 𝜉. 

(iii) For each vertex: 𝜌𝑇(𝑣) , 𝜌𝐼(𝑣) , 𝜌𝐹(𝑣)  are called the complex truth, indeterminate, and falsity 

membership values, respectively, of the vertex 𝑣. Moreover, if 𝜌𝑇(𝑣) = 𝜌𝐼(𝑣) = 𝜌𝐹(𝑣) = 0, then 𝑣 is 

said to be a void vertex. 

(iv) Likewise, for each directed edge (𝑢, 𝑣):  𝜔𝑇(𝑢, 𝑣),  𝜔𝐼(𝑢, 𝑣),  𝜔𝐹(𝑢, 𝑣)  are called the complex truth, 

indeterminate and falsity membership value, of the directed edge (𝑢, 𝑣) . Moreover, if 𝜔𝑇(𝑢, 𝑣) =

𝜔𝐼(𝑢, 𝑣) = 𝜔𝐹(𝑢, 𝑣) = 0, then (𝑢, 𝑣) is said to be a void directed edge. 

For the sake of brevity, we shall denote 𝜔(𝑢, 𝑣) = (𝜔𝑇(𝑢, 𝑣), 𝜔𝐼(𝑢, 𝑣), 𝜔𝐹(𝑢, 𝑣))  and 𝜌(𝑣) =

(𝜌𝑇(𝑣), 𝜌𝐼(𝑣), 𝜌𝐹(𝑣)) for all the remaining parts of this paper. 

As mentioned, CNG1 is generalized from both GSVNG1 and CFG1. As a result, we have 𝜔𝑇, 𝜔𝐼  

and 𝜔𝑇 being functions themselves. This further implies that 𝜔𝑇(𝑢, 𝑣), 𝜔𝐼(𝑢, 𝑣) and 𝜔𝑇(𝑢, 𝑣) can only 

be single values from O1. In particular, 𝜔𝑇(𝑣, 𝑣), 𝜔𝐼(𝑣, 𝑣), and 𝜔𝑇(𝑣, 𝑣) can only be single values. 

As a result, each vertex 𝑣 in a CNG1 possess a single, undirected loop, whether void or not. 

And each of the two distinct vertices 𝑢, 𝑣 in a CNG1 possess two directed edges, resulting from (𝑢, 𝑣) 

and (𝑣, 𝑢), whether void or not. 

Recall that in classical graph theory, we often deal with ordinary (or undirected) graphs, and 

also simple graphs. To further relate our CNG1 with it, we now proceed with the following definition. 

Definition 8. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be a CNG1. 

(a) If 𝜔(𝑎, 𝑏) = 𝜔(𝑏, 𝑎), then {𝑎, 𝑏} = {(𝑎, 𝑏), (𝑏, 𝑎)} is said to be an (ordinary) edge of 𝜉. Moreover, {𝑎, 𝑏} 

is said to be a void (ordinary) edge if both (𝑎, 𝑏) and (𝑏, 𝑎) are void. 

(b) If 𝜔(𝑢, 𝑣) = 𝜔(𝑣, 𝑢) holds for all 𝑢, 𝑣 ∈ 𝑉, then 𝜉 is said to be ordinary (or undirected), otherwise it is 

said to be directed. 

(c) If all the loops of 𝜉 are void, then 𝜉 is said to be simple. 

Definition 9. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. If for all 𝑢, 𝑣 ∈ 𝑉 with 𝑢 ≠ 𝑣, there exist non-void 

edges {𝑢 = 𝑤1, 𝑤2}, {𝑤2, 𝑤3}, …, {𝑤𝑛−1, 𝑤𝑛 = 𝑣} for some 𝑛 ≥ 2, then 𝜉 is said to be connected. 

Definition 10. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑢, 𝑣 ∈ 𝑉. Then: 

(a) {𝑢, 𝑣} is said to be adjacent to 𝑢 (and to 𝑣). 

(b) 𝑢 (and 𝑣 as well) is said to be an end-point of {𝑢, 𝑣}. 

We now discuss a real life scenario that can only be represented by a CNG1. 

The Scenario 

Note: All the locations mentioned are fictional 

Suppose there is a residential area in Malaysia with four families: 𝑎, 𝑏, 𝑐, 𝑑. All of them have 

Internet access. In other words, they are Internet clients, which will access the Internet servers from 

around the world (including those servers located within Malaysia) depending on which website 

they are visiting. 

If they access the internet on their own, the outcomes can be summarized as given in the Table 1 and 

Figure 1. 
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Table 1. The outcomes of individuals, for Scenario 3.1. 

Activities 𝒂 𝒃 𝒄 𝒅 

Some members 

will seek 

excitement 

(e.g., playing 

online games) 

Happens on 80% of the 

day, and those will be 

connecting towards 0° 

(because that server is 

located in China ⋇) 

Happens on 70% 

of the day, and 

those will be 

connecting 

towards 30° 

Happens on 90% 

of the day, and 

those will be 

connecting 

towards 120° 

Happens on 80% 

of the day, and 

those will be 

connecting 

towards 250° 

Some members 

will want to surf 

around  

(e.g., online 

shopping) 

Happens on 50% of the 

day, and those will be 

connecting towards 

130° (because that server 

is located in Australia ⋇) 

Happens on 60% 

of the day, and 

those will be 

connecting 

towards 180° 

Happens on 20% 

of the day, and 

those will be 

connecting 

towards 340° 

Happens on 40% 

of the day, and 

those will be 

connecting 

towards 200° 

Some members 

will need to 

relax 

(e.g., listening to 

music) 

Happens on 20% of the 

day, and those will be 

connecting towards 

220° (because that 

server is located in 

Sumatra ⋇, Indonesia) 

Happens on 30% 

of the day, and 

those will be 

connecting 

towards 200° 

Happens on 50% 

of the day, and 

those will be 

connecting 

towards 40° 

Happens on 10% 

of the day, and 

those will be 

connecting 

towards 110° 

(⋇) as illustrated in Figure 1. 

 

Figure 1. The illustration of the servers’ relative positions using a public domain map, for Scenario 3.1. 

Moreover, the following (unordered) pairs of the four families are close friends or relatives: 

{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑑}. 
 

Thus, each pair of family mentioned (e.g., {𝑎, 𝑏}) may invite one another for a visit, accessing the 

Internet as one team. In particular: 

(i) When {𝑎, 𝑏}  or {𝑎, 𝑑}  access the internet together, they will simply search for “a place of 

common interest”. This is regardless of who initiates the invitation. 

(ii) 𝑎 and 𝑐 rarely meet. Thus, each time they do, everyone (especially the children) will be so 

excited that they would like to try something fresh, so all will seek excitement and connect 

towards to a local broadcasting server at 240° to watch soccer matches (that server will take care 



Symmetry 2018, 10, 190 8 of 30 

 

of which country to connect to) for the entire day. This is also regardless of who initiates the 

visitation. 

(iii) The size and the wealth of 𝑑 far surpasses 𝑏. Thus, it would always be 𝑑 who invites 𝑏 to 

their house, never the other way, and during the entire visit, members of 𝑏 will completely 

behave like members of 𝑑 and, therefore, will visit the same websites as 𝑑. 

Denote the first term of the ordered pair (𝑢, 𝑣) as the family who initiates the invitation, and 

the second term as family who receives the invitation and visit the other family. The outcomes of the 

seven possible teams (𝑎, 𝑏) , (𝑎, 𝑐) , (𝑎, 𝑑) , (𝑏, 𝑎) , (𝑐, 𝑎) , (𝑑, 𝑎) , (𝑑, 𝑏)  are, thus, summarized by 

Table 2. 

Table 2. The outcomes of teams in pairs, for the scenario. 

Activities (𝒂, 𝒃),(𝒃, 𝒂) (𝒂, 𝒄),(𝒄, 𝒂) (𝒂, 𝒅),(𝒅, 𝒂) (𝒅, 𝒃) 

Some members 

will seek 

excitement 

Happens on 80% of 

the day, and those 

will be connecting 

towards 15°  

Happens on the 

entire day, all will 

be connecting 

towards 240° 

Happens on 80% of 

the day, and those 

will be connecting 

towards 305° 

Happens on 80% of 

the day, and those 

will be connecting 

towards 250° 

Some members 

will want to surf 

around 

Happens on 60% of 

the day, and those 

will be connecting 

towards 155° 

Does not happen  

Happens on 50% of 

the day, and those 

will be connecting 

towards 165o 

Happens on 40% of 

the day, and those 

will be connecting 

towards 200° 

Some members 

will need to 

relax 

Happens on 30% of 

the day, and those 

will be connecting 

towards 210° 

Does not happen 

Happens on 50% of 

the day, and those 

will be connecting 

towards 40° 

Happens on 10% of 

the day, and those 

will be connecting 

towards 110° 

On the other hand, {𝑐, 𝑏} and {𝑑, 𝑐} are mutual strangers. So 𝑐 and 𝑏 will visit each other. The 

same goes to 𝑑 and 𝑐. 

3.2. Representation of the Scenario with CNG1 

We now follow all the steps from (a) to (e) in Definition 7, to represent the scenario with a 

particular CNG1. 

(a) Take V0 = {𝑎, 𝑏, 𝑐, 𝑑}. 

(b) In accordance with the scenario, define the three functions on V0 : 𝜌𝑇, 𝜌𝐼, 𝜌𝐹, as illustrated in 

Table 3. 

Table 3. 𝑘(𝑣), where k represents any of the 3 functions on V0 𝜌𝑇 , 𝜌𝐼 , 𝜌𝐹 , for the scenario. Also 

mentioned in Section 4.2. 

v 

k 
𝒂 𝒃 𝒄 𝒅 

𝜌𝑇 0.8e𝒾2𝜋  0.7e𝒾
𝜋

6  0.9e𝒾
2𝜋

3  0.8e𝒾
25𝜋

18  

𝜌𝐼 0.5e𝒾
13𝜋

18  0.6e𝒾𝜋  0.2e𝒾
17𝜋

9  0.4e𝒾
10𝜋

9  

𝜌𝐹  0.2e𝒾
11𝜋

9  0.3e𝒾
10𝜋

9  0.5e𝒾
2𝜋

9  0.1e𝒾
11𝜋

18  

(c) In accordance with the scenario, define the three functions 𝜔𝑇, 𝜔𝐼 , 𝜔𝐹, as illustrated in Tables 4–

6. 
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Table 4. The outcomes of 𝜔𝑇(𝑢, 𝑣), for the scenario. Also mentioned in Section 4.2. 

v 

u 
𝒂 𝒃 𝒄 𝒅 

𝑎 0 0.8e𝒾
𝜋
12 1e𝒾

4𝜋
3  0.8e𝒾

61𝜋
36  

𝑏 0.8e𝒾
𝜋
12 0 0 0 

𝑐 1e𝒾
4𝜋
3  0 0 0 

𝑑 0.8e𝒾
61𝜋
36  0.8e𝒾

25𝜋
18  0 0 

Table 5. The outcomes of 𝜔𝐼(𝑢, 𝑣), for the scenario. Also mentioned in Section 4.2. 

v 

u 
𝒂 𝒃 𝒄 𝒅 

𝑎 0 0.6e𝒾
31𝜋
36  0 0.5e𝒾

33𝜋
36  

𝑏 0.6e𝒾
31𝜋
36  0 0 0 

𝑐 0 0 0 0 

𝑑 0.5e𝒾
33𝜋
36  0.4e𝒾

10𝜋
9  0 0 

Table 6. The outcomes of 𝜔𝐹(𝑢, 𝑣), for the scenario. Also mentioned in Section 4.2. 

v 

u 
𝒂 𝒃 𝒄 𝒅 

𝑎 0 0.3e𝒾
7𝜋
6  0 0.5e𝒾

2𝜋
9  

𝑏 0.3e𝒾
7𝜋
6  0 0 0 

𝑐 0 0 0 0 

𝑑 0.5e𝒾
2𝜋
9  0.1e𝒾

11𝜋
18  0 0 

(d) By statement (d) from Definition 7, let 𝜌0 = (𝜌𝑇, 𝜌𝐼, 𝜌𝐹), and 𝜔0 = (𝜔𝑇, 𝜔𝐼 , 𝜔𝐹). We have now 

formed a CNG1 〈𝑉0, 𝜌0, 𝜔0〉. 

One of the way of representing the entire 〈𝑉0, 𝜌0, 𝜔0〉 is by using a diagram that is analogous 

with graphs as in classical graph theory, as shown in the Figure 2. 

 

Figure 2. A diagram representing 〈𝑉0, 𝜌0, 𝜔0〉, for the scenario. 

In other words, only the non-void edges (whether directed or ordinary) and vertices are to be 

drawn in such a diagram. 
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Hence, we have shown how a CGN1 can be constructed from a data set with four homes. The 

same concept mentioned can certainly be used on a larger dataset, such as one with thousands of 

locations and thousands of homes, which will result in a more complicated diagram being generated. 

However, one will definitely require computer algebraic systems, such as SAGE, to process the data 

and to display the data in diagram form. 

Additionally, recall that, in classical graph theory, a graph can be represented by an adjacency 

matrix, for which the entries are either a positive integer (connected) or 0 (not connected). 

This motivates us to represent CNG1 using a matrix as well, in a similar manner. Nonetheless, 

instead of a single value that is either 0 or 1, we have three values to deal with: 𝜔𝑇, 𝜔𝐼 , 𝜔𝐹, with each 

of them capable of being anywhere in 𝑂1. Moreover, each of the vertices themselves also contain 𝜌𝑇, 

𝜌𝐼, 𝜌𝐹, which must be taken into account as well. 

4. Representation of a CNG1 by an Adjacency Matrix 

4.1. Two Methods of Representation 

In this section, we discuss the representation of CNG1 in two ways, which are both analogous 

to the one encountered in classical literature. 

Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be a CNG1 where vertex set 𝑉 = {𝑣1,𝑣2,…,𝑣𝑛} (i.e., CNG1 has finite vertices). 

We first form an n × n matrix as shown: 

𝐌 = [𝐚𝑖,𝑗]𝑛 = (

𝐚1,1 𝐚1,2
𝐚2,1 𝐚2,2

⋯
𝐚1,𝑛
𝐚2,𝑛

⋮ ⋱ ⋮
𝐚𝑛,1 𝐚𝑛,2 ⋯ 𝐚𝑛,𝑛

),  

where 𝐚𝑖,𝑗 = 𝜔(𝑣𝑖 , 𝑣𝑗) for all i, j. 

In other words, each element of the matrix M is itself an ordered set of three elements, instead 

of just a number of either 0 or 1 in the classical literature. 

Remark 3. Since 𝜉 can only possess undirected loops, we decided not to multiply the main diagonal elements 

of 𝐌 by 2, as seen in adjacency matrices for graphs classical literature (2 for undirected, 1 for directed, 0 for 

void). 

Meanwhile, also recall that each of the vertices in 𝜉 contains 𝜌𝑇, 𝜌𝐼, 𝜌𝐹, which must be taken 

into account as well. 

Thus, we form another matrix 𝐊 as shown: 

𝐊 = [𝐤𝑖]𝑛,1 = (

𝐤1
𝐤2
⋮
𝐤𝑛

), where 𝐤𝑖 = 𝜌(𝑣𝑖) for all 𝑖.  

To accomplish one of our methods of representing the entire ξ we, therefore, augment the 

matrix 𝐊 with M, forming the adjacency matrix of CNG1, [K|M], as shown: 

[𝐊|𝐌] = (

𝐤1 𝐚1,1 𝐚1,2
𝐤2 𝐚2,1 𝐚2,2

⋯
𝐚1,𝑛
𝐚2,𝑛

⋮ ⋱ ⋮
𝐤𝑛 𝐚𝑛,1 𝐚𝑛,2 ⋯ 𝐚𝑛,𝑛

),  

where 𝐚𝑖,𝑗 = 𝜔(𝑣𝑖 , 𝑣𝑗), and 𝐤𝑖 = 𝜌(𝑣𝑖), for all 𝑖, 𝑗. 

Although [K|M] is an n × (n + 1) matrix and therefore not a square, this representation will save 

us another separate ordered set to represent the 𝜌𝑇, 𝜌𝐼, 𝜌𝐹 values of the vertices themselves. 

Sometimes it is more convenient to separately deal with each of the three kinds of membership 

values for both edges and vertices. As a result, here we provide another method of representing the 

entire 𝜉: using three n × (n + 1) matrices, [𝐊|𝐌]𝑇, [𝐊|𝐌]𝐼, and [𝐊|𝐌]𝐹, each derived from [𝐊|𝐌] by 

taking only one kind of the membership values from its elements: 

[𝐊|𝐌]𝑇 = [𝐊𝑇|𝐌𝑇] = (

𝜌𝑇(𝑣1) 𝜔𝑇(𝑣1, 𝑣1) 𝜔𝑇(𝑣1, 𝑣2)
𝜌𝑇(𝑣2) 𝜔𝑇(𝑣2, 𝑣1) 𝜔𝑇(𝑣2, 𝑣2)

⋯
𝜔𝑇(𝑣1, 𝑣𝑛)
𝜔𝑇(𝑣2, 𝑣𝑛)

⋮ ⋱ ⋮
𝜌𝑇(𝑣𝑛) 𝜔𝑇(𝑣𝑛 , 𝑣1) 𝜔𝑇(𝑣𝑛 , 𝑣2) ⋯ 𝜔𝑇(𝑣𝑛 , 𝑣𝑛)

),  
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[𝐊|𝐌]𝐼 = [𝐊𝐼|𝐌𝐼] = (

𝜌𝐼(𝑣1) 𝜔𝐼(𝑣1, 𝑣1) 𝜔𝐼(𝑣1, 𝑣2)
𝜌𝐼(𝑣2) 𝜔𝐼(𝑣2, 𝑣1) 𝜔𝐼(𝑣2, 𝑣2)

⋯
𝜔𝐼(𝑣1, 𝑣𝑛)
𝜔𝐼(𝑣2, 𝑣𝑛)

⋮ ⋱ ⋮
𝜌𝐼(𝑣𝑛) 𝜔𝐼(𝑣𝑛 , 𝑣1) 𝜔𝐼(𝑣𝑛 , 𝑣2) ⋯ 𝜔𝐼(𝑣𝑛, 𝑣𝑛)

), 

[𝐊|𝐌]𝐹 = [𝐊𝐹|𝐌𝐹] = (

𝜌𝐹(𝑣1) 𝜔𝐹(𝑣1, 𝑣1) 𝜔𝐹(𝑣1, 𝑣2)
𝜌𝐹(𝑣2) 𝜔𝐹(𝑣2, 𝑣1) 𝜔𝐹(𝑣2, 𝑣2)

⋯
𝜔𝐹(𝑣1, 𝑣𝑛)
𝜔𝐹(𝑣2, 𝑣𝑛)

⋮ ⋱ ⋮
𝜌𝐹(𝑣𝑛) 𝜔𝐹(𝑣𝑛 , 𝑣1) 𝜔𝐹(𝑣𝑛, 𝑣2) ⋯ 𝜔𝐹(𝑣𝑛 , 𝑣𝑛)

). 

[𝐊|𝐌]𝑇, [𝐊|𝐌]𝐼, and [𝐊|𝐌]𝐹 shall, thus, be called, respectively, the truth-adjacency matrix, the 

indeterminate-adjacency matrix, and the false-adjacency matrix of 𝜉. 

Remark 4. If [𝐊|𝐌]𝐼  = [𝐊|𝐌]𝐹 = [0]𝑛,𝑛+1, 𝐊𝑇 = [1]𝑛,1, all the entries of 𝐌𝑇  are either 1 or 0, then 𝜉 is 

reduced to a graph in classical literature. Furthermore, if that 𝐌𝑇 is symmetrical and with main diagonal 

elements being zero, then 𝜉 is further reduced to a simple ordinary graph in the classical literature. 

Remark 5. If [𝐊|𝐌]𝐼  = [𝐊|𝐌]𝐹 = [0]𝑛,𝑛+1, and all the entries of [𝐊|𝐌]𝑇 are real values from the interval 

[0,1], then 𝜉 is reduced to a generalized fuzzy graph type 1 (GFG1). 

Remark 6. If all the entries of [𝐊|𝐌]𝑇, [𝐊|𝐌]𝐼 , and [𝐊|𝐌]𝐹 are real values from the interval [0, 1], then 𝜉 

is reduced to a generalized single valued neutrosophic graphs of type 1 (GSVNG1). 

Remark 7. If 𝐌𝑇 , 𝐌𝐼 , and 𝐌𝐹  are symmetric matrices, then 𝜉 is ordinary. 

4.2. Illustrative Example 

For the sake of brevity, we now give representation for our example for the scenario in 3.1 by 

the latter method using three matrices: [𝐊|𝐌]𝑇, [𝐊|𝐌]𝐼 , and [𝐊|𝐌]𝐹: 

 

[𝐊|𝐌]𝑇 =

(

  
 

0.8e𝑖2𝜋 0 0.8e𝑖
π
12

0.7e𝑖
π
6 0.8e𝑖

π
12 0

1e𝑖
4π
3 0.8e𝑖

61π
36

0 0

0.9e𝑖
2π
3 1e𝑖

4π
3 0

0.8e𝑖
25π
18 0.8e𝑖

61π
36 0.8e𝑖

25π
18

0 0
0 0

)

  
 

 

 

[𝐊|𝐌]𝐼 =

(

  
 
0.5e𝑖

13π
18 0 0.6e𝑖

31π
36 0 0.5e𝑖

33π
36

0.6e𝑖𝜋 0.6e𝑖
31π
36 0 0 0

0.2e𝑖
17π
9 0 0 0 0

0.4e𝑖
10π
9 0.5e𝑖

33π
36 0.4e𝑖

10π
9 0 0 )

  
 

 

 

[𝐊|𝐌]𝐹 =

(

  
 
0.2e𝑖

11π
9 0 0.3e𝑖

7π
6 0 0.5e𝑖

2π
9

0.3e𝑖
10π
9 0.3e𝑖

7π
6 0 0 0

0.5e𝑖
2π
9 0 0 0 0

0.1e𝑖
11π
18 0.5e𝑖

2π
9 0.1e𝑖

11π
18 0 0 )

  
 

 

 

 

As in Section 3, we have shown how a matrix representation of a CNG1 with |𝑉| = 4 can be 

constructed. Likewise, the same concept mentioned can certainly be used on a larger CNG1 but, 

again, one will definitely require computer algebraic systems, such as SAGE to process the data and 

to display such a matrix representation. 

5. Some Theoretical Results on Ordinary CNG1 

We now discuss some theoretical results that follows from the definition of ordinary CNG1, as 

well as its representation with adjacency matrix. Since we are concerned about ordinary CNG1, all 

the edges that we will be referring to are ordinary edges. 
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Definition 11. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} be the vertex set of 𝜉. Then, 

for each 𝑖, the resultant degree of 𝑣𝑖, denoted as 𝐷(𝑣𝑖), is defined to be the ordered set (𝐷𝑇(𝑣𝑖), 𝐷𝐼(𝑣𝑖), 𝐷𝐹(𝑣𝑖)), 

for which: 

(a) 𝐷𝑇(𝑣𝑖) = ∑ 𝜔𝑇(𝑣𝑖 , 𝑣𝑟)
𝑛
𝑟=1  + 𝜔𝑇(𝑣𝑖 , 𝑣𝑖), 

(b) 𝐷𝐼(𝑣𝑖) = ∑ 𝜔𝐼(𝑣𝑖 , 𝑣𝑟)
𝑛
𝑟=1  + 𝜔𝐼(𝑣𝑖 , 𝑣𝑖), 

(c) 𝐷𝐹(𝑣𝑖) = ∑ 𝜔𝐹(𝑣𝑖 , 𝑣𝑟)
𝑛
𝑟=1  + 𝜔𝐹(𝑣𝑖 , 𝑣𝑖). 

Remark 8. In analogy to classical graph theory, each undirected loop has both its ends connected to the same 

vertex, so is counted twice. 

Remark 9. Each of the values of 𝐷𝑇(𝑣𝑖), 𝐷𝐼(𝑣𝑖), and 𝐷𝐹(𝑣𝑖) need not be an integer as in a classical graph. 

Definition 12. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} be the vertex set of 𝜉. Then, 

the resultant amount of edges of 𝜉, denoted as 𝐸𝜉 , is defined to be the ordered set (𝐸𝑇 , 𝐸𝐼 , 𝐸𝐹) for which: 

(a) 𝐸𝑇 = ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛} , 

(b) 𝐸𝐼  = ∑ 𝜔𝐼(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛} , 

(c) 𝐸𝐹  = ∑ 𝜔𝐹(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛} . 

Remark 10. As in classical graph theory, each edge is counted only once, as shown by {𝑟, 𝑠} ⊆ {1,2, … , 𝑛} in 

the expression. For example, if 𝜔𝑇(𝑣𝑎 , 𝑣𝑏) is added, we will not add 𝜔𝑇(𝑣𝑏 , 𝑣𝑎) again since {𝑎, 𝑏} = {𝑏, 𝑎}. 

Remark 11. Each of the values of 𝐸𝑇, 𝐸𝐼  and 𝐸𝐹  need not be an integer as in a classical graph. As a result, 

we call it the “amount” of edges, instead of the “number” of edges as in the classical literature. 

For each vertex 𝑣𝑖, just because 𝐷(𝑣𝑖) equals 0, that does not mean that all the edges connect to 𝑣𝑖 

are void. It could be two distinct edges {𝑣𝑖 , 𝑣1} and {𝑣𝑖 , 𝑣2} with 𝜔𝑇(𝑣𝑖 , 𝑣1) = −𝜔𝑇(𝑣𝑖 , 𝑣2), 𝜔𝐼(𝑣𝑖 , 𝑣1) =

−𝜔𝐼(𝑣𝑖 , 𝑣2) and 𝜔𝐹(𝑣𝑖 , 𝑣1) = −𝜔𝐹(𝑣𝑖 , 𝑣2) (i.e., equal in magnitude, but opposite in phase). The same 

goes to the value of 𝐸ξ. This differs from the classical theory of graphs and, therefore, it motivates us to 

look at a CNG1 in yet another approach. We, thus, further define the following: 

Definition 13. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} be the vertex set of 𝜉. Then, 

for each i, the absolute degree of 𝑣𝑖 , denoted as |𝐷|(𝑣𝑖) , is defined to be the ordered set 

(|𝐷|𝑇(𝑣𝑖), |𝐷|𝐼(𝑣𝑖), |𝐷|𝐹(𝑣𝑖)), for which: 

(a) |𝐷|𝑇(𝑣𝑖) = ∑ |𝜔𝑇(𝑣𝑖 , 𝑣𝑟)|
𝑛
𝑟=1  + |𝜔𝑇(𝑣𝑖 , 𝑣𝑖)|, 

(b) |𝐷|𝐼(𝑣𝑖) = ∑ |𝜔𝐼(𝑣𝑖 , 𝑣𝑟)|
𝑛
𝑟=1  + |𝜔𝐼(𝑣𝑖 , 𝑣𝑖)|, 

(c) |𝐷|𝐹(𝑣𝑖) = ∑ |𝜔𝐹(𝑣𝑖 , 𝑣𝑟)|
𝑛
𝑟=1  + |𝜔𝐹(𝑣𝑖 , 𝑣𝑖)|. 

Definition 14. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} be the vertex set of 𝜉. Then, 

the absolute amount of edges of 𝜉, denoted as |𝐸|𝜉 , is defined to be the ordered set (|𝐸|𝑇 , |𝐸|𝐼 , |𝐸|𝐹) for which: 

(a) |𝐸|𝑇 = ∑ |𝜔𝑇(𝑣𝑟 , 𝑣𝑠)|{𝑟,𝑠}⊆{1,2,…,𝑛} , 

(b) |𝐸|𝐼 = ∑ |𝜔𝐼(𝑣𝑟 , 𝑣𝑠)|{𝑟,𝑠}⊆{1,2,…,𝑛} , 

(c) |𝐸|𝐹 = ∑ |𝜔𝐹(𝑣𝑟 , 𝑣𝑠)|{𝑟,𝑠}⊆{1,2,…,𝑛} . 

On the other hand, sometimes we are particularly concerned about the number of non-void 

edges in an ordinary CNG1. In other words, we just want to know how many edges {𝑣𝑖 , 𝑣𝑗} with: 

𝜔(𝑣𝑖 , 𝑣𝑗) ≠ (0,0,0).  

Instead of a mere visual interpretation, we must however form a precise definition as follows: 

Definition 15. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1,𝑣2,…,𝑣𝑛} to be the vertex set of 𝜉. Then, 

the number of non-void edges of 𝜉, denoted as 𝑀𝜉 , is defined to be the cardinality of the set: 
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{ {𝑣𝑖 , 𝑣𝑗} ⊆ 𝑉 | 𝜔(𝑣𝑖 , 𝑣𝑗) ≠ (0,0,0) }.  

Definition 16. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1,𝑣2,…,𝑣𝑛} to be the vertex set of 𝜉. Then, 

the number of vertices of 𝜉, denoted as 𝑁𝜉 , is defined to be the cardinality of the set 𝑉 itself. 

Remark 12. In this paper, we often deal with both 𝑀𝜉  and 𝑁𝜉  at the same time. Thus, we will not denote 𝑁𝜉  

as |𝑉|. 

Remark 13. By Definition 7, 𝑉 is non-void, so 𝑁𝜉 ≥ 1 follows. 

Lemma 1. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} be the vertex set of 𝜉. Then, for 

each i: 

(a) 𝐷𝑇(𝑣𝑖) = ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑖)
𝑛
𝑟=1  + 𝜔𝑇(𝑣𝑖 , 𝑣𝑖), 

(b) 𝐷𝐼(𝑣𝑖) = ∑ 𝜔𝐼(𝑣𝑟 , 𝑣𝑖)
𝑛
𝑟=1  + 𝜔𝐼(𝑣𝑖 , 𝑣𝑖), 

(c) 𝐷𝐹(𝑣𝑖) = ∑ 𝜔𝐹(𝑣𝑟 , 𝑣𝑖)
𝑛
𝑟=1  + 𝜔𝐹(𝑣𝑖 , 𝑣𝑖). 

Proof. Since ξ is ordinary, 𝜔(𝑣𝑟 , 𝑣𝑖) = 𝜔(𝑣𝑖 , 𝑣𝑟) for all i and r. The lemma thus follows. □ 

Lemma 2. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 to be an ordinary CNG1. If 𝜉 is simple. then, for each i: 

(a) 𝐷𝑇(𝑣𝑖) = ∑ 𝜔𝑇(𝑣𝑖 , 𝑣𝑟)𝑟∈{1,2,…,𝑛}−{𝑖} , 

(b) 𝐷𝐼(𝑣𝑖) = ∑ 𝜔𝐼(𝑣𝑖 , 𝑣𝑟)𝑟∈{1,2,…,𝑛}−{𝑖} , 

(c) 𝐷𝐹(𝑣𝑖) = ∑ 𝜔𝐹(𝑣𝑖 , 𝑣𝑟)𝑟∈{1,2,…,𝑛}−{𝑖} . 

Proof. Since ξ is simple, 𝜔(𝑣𝑖 , 𝑣𝑖) = (0,0,0) for all i. The lemma thus follows. □ 

Lemma 3. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} be the vertex set of 𝜉. Then, for 

each i: 

(a) |𝐷|𝑇(𝑣𝑖) = ∑ |𝜔𝑇(𝑣𝑟 , 𝑣𝑖)|
𝑛
𝑟=1  + |𝜔𝑇(𝑣𝑖 , 𝑣𝑖)|, 

(b) |𝐷|𝐼(𝑣𝑖) = ∑ |𝜔𝐼(𝑣𝑟 , 𝑣𝑖)|
𝑛
𝑟=1  + |𝜔𝐼(𝑣𝑖 , 𝑣𝑖)|, 

(c) |𝐷|𝐹(𝑣𝑖) = ∑ |𝜔𝐹(𝑣𝑟 , 𝑣𝑖)|
𝑛
𝑟=1  + |𝜔𝐹(𝑣𝑖 , 𝑣𝑖)|. 

Proof. The arguments are similar to Lemma 1. □ 

Lemma 4. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. If 𝜉 is simple. then, for each i: 

(a) |𝐷|𝑇(𝑣𝑖) = ∑ |𝜔𝑇(𝑣𝑖 , 𝑣𝑟)|𝑟∈{1,2,…,𝑛}−{𝑖} , 

(b) |𝐷|𝐼(𝑣𝑖) = ∑ |𝜔𝐼(𝑣𝑖 , 𝑣𝑟)|𝑟∈{1,2,…,𝑛}−{𝑖} , 

(c) |𝐷|𝐹(𝑣𝑖) = ∑ |𝜔𝐹(𝑣𝑖 , 𝑣𝑟)|𝑟∈{1,2,…,𝑛}−{𝑖} . 

Proof. The arguments are similar to Lemma 2. □ 

Lemma 5. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. Then ∑ |𝐷|(𝑣𝑟)
𝑛
𝑟=1  = (0,0,0) if and only if |𝐷|(𝑣𝑖) = 

(0,0,0) for all 𝑖. 

Proof. Without loss of generality, since |𝐷|𝑇(𝑣𝑖) = ∑ |𝜔𝑇(𝑣𝑖 , 𝑣𝑟)|
𝑛
𝑟=1  + |𝜔𝑇(𝑣𝑖 , 𝑣𝑖)| by Definition 13, it 

is always a non-negative real number. Thus, in order that ∑ |𝐷|𝑇(𝑣𝑟)
𝑛
𝑟=1  = 0, there can be only one 

possibility: all |𝐷|𝑇(𝑣𝑖) must be zero. □ 

Remark 14. A similar statement does not hold for the resultant degree. 

We now proceed with two of our theorems which both serve as generalizations of the well-

known theorem in classical literature: 
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“For an ordinary graph, the sum of the degree of all its vertices is always twice the number of 

its edges.” 

Theorem 1. Let 𝜉 = 〈𝑉, 𝜌,𝜔〉 be an ordinary CNG1. Then ∑ 𝐷(𝑣𝑟)
𝑛
𝑟=1  =  2𝐸𝜉. 

Proof. As 𝐷(𝑣𝑖) =(𝐷𝑇(𝑣𝑖), 𝐷𝐼(𝑣𝑖), 𝐷𝐹(𝑣𝑖)) for all i, and 𝐸ξ = (𝐸𝑇 , 𝐸𝐼 , 𝐸𝐹). Without loss of generality, it 

suffices to prove that 2𝐸𝑇 = ∑ 𝐷𝑇(𝑣𝑟)
𝑛
𝑟=1 : 

𝐸𝑇 = ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛}  = ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛}
𝑟≠𝑠

 + ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑟)
𝑛
𝑟=1 .  

Since {𝑟, 𝑠} = {𝑠, 𝑟} for all 𝑠 and 𝑟, it follows that: 

2𝐸𝑇 = 2 ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛}
𝑟≠𝑠

 + 2 ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑟)
𝑛
𝑟=1  

= ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠)𝑟∈{1,2,…,𝑛}

𝑠∈{1,2,…,𝑛}
𝑟≠𝑠

 + 2 ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑟)
𝑛
𝑟=1  

= ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠)𝑟∈{1,2,…,𝑛}

𝑠∈{1,2,…,𝑛}

 + ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑟)
𝑛
𝑟=1  

= ∑ ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠)
𝑛
𝑠=1

𝑛
𝑟=1  + ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑟)

𝑛
𝑟=1  

                      = ∑ ( ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠)
𝑛
𝑠=1

𝑛
𝑟=1  + 𝜔𝑇(𝑣𝑟 , 𝑣𝑟) ) 

                   = ∑ 𝐷𝑇(𝑣𝑟)
𝑛
𝑟=1 . 

  

This completes the proof. □ 

Theorem 2. Let 𝜉 = 〈𝑉, 𝜌,𝜔〉 be an ordinary CNG1. Then ∑ |𝐷|(𝑣𝑟)
𝑛
𝑟=1 = 2|𝐸|𝜉. 

Proof. The arguments are similar to Theorem 1 and can be easily proven by replacing all the terms 

𝜔𝑇(𝑣𝑖 , 𝑣𝑗) with |𝜔𝑇(𝑣𝑖 , 𝑣𝑗)|. □ 

Lemma 6. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1, with ∑ 𝐷(𝑣𝑟)
𝑛
𝑟=1  = (0,0,0). If 𝑀𝜉 > 0, then 𝑀𝜉 ≥ 2. 

Proof. By Theorem 1, ∑ 𝐷(𝑣𝑟)
𝑛
𝑟=1  =  2𝐸𝜉 , so 𝐸𝜉  = (0,0,0) as well. 

If only one edge is non-void, then 𝜔(𝑣𝑟0 , 𝑣𝑠0) ≠ (0,0,0) only for one particular set {𝑟0, 𝑠0}. This 

implies that: 

𝐸𝑇 = ∑ 𝜔𝑇(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛}  = 𝜔𝑇(𝑣𝑟0 , 𝑣𝑠0), 

𝐸𝐼  = ∑ 𝜔𝐼(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛}  = 𝜔𝐼(𝑣𝑟0 , 𝑣𝑠0), 

𝐸𝐹  = ∑ 𝜔𝐹(𝑣𝑟 , 𝑣𝑠){𝑟,𝑠}⊆{1,2,…,𝑛}  = 𝜔𝐹(𝑣𝑟0 , 𝑣𝑠0), 

which contradicts the statement that 𝐸𝜉  = (0,0,0). □ 

Since 𝑀𝜉 ≥ 2, one may have thought either 𝑀𝜉  or 𝑁𝜉  must be even. However, this is proven to 

be false, even by letting 𝜉  to be simple and by letting 𝐷(𝑣) = (0,0,0) for all i, as shown by the 

following counter-example (Figure 3): 

 

Figure 3. A counterexample, showing that 𝑀𝜉 or 𝑁𝜉  need not be even. 𝐚 = (
1

5
e𝒾2𝜋,

1

5
e𝒾
4

3
𝜋,
1

5
e𝒾
2

3
𝜋), 𝐛 =

(
1

5
e𝒾
4

3
𝜋,
1

5
e𝒾
2

3
𝜋,
1

5
e𝒾2𝜋), 𝐜 = (

1

5
e𝒾
2

3
𝜋,
1

5
e𝒾2𝜋,

1

5
e𝒾
4

3
𝜋). 
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for which 𝑀𝜉 = 7, 𝑁𝜉 = 5, and with all vertices being end-points of some edges. Moreover, such a 

result is not related to the value of 𝜌(𝑣) for any of the vertex 𝑣. 

This motivates to consider what is the least possible values of 𝑀𝜉  and 𝑁𝜉 , for the special case of 

an ordinary 𝜉 being simple, with 𝐷(𝑣) = (0,0,0) and 𝜌(𝑣) = (1,0,0) for all of its vertices 𝑣. 

6. The Shortest CNG1 of Certain Conditions 

We now proceed with the following definitions. 

Definition 17. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1. 𝜉 is said to be net if all of the following are satisfied: 

(a) 𝜉 is simple. 

(b) 𝜉 is connected. 

(c) for all 𝑣 ∈ 𝑉, 𝐷(𝑣) = (0,0,0) and 𝜌(𝑣) = (1,0,0). 

Furthermore, 𝜉 is said to be trivial if the entire 𝜉 consist of one single vertex 𝑣 with 𝜌(𝑣) = 

(1,0,0). 

On the other hand, 𝜉 is said to be gross if it is not net. 

Lemma 7. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be a non-trivial net CNG1. Then each vertex must have least two non-void edges 

adjacent to it. 

Proof. Let 𝑣 ∈ 𝑉. Since 𝑁ξ ≥ 2 and 𝜉 is connected, there must exist a non-void edge {𝑣, 𝑢} for some 

𝑢 ∈ 𝑉 − {𝑣}. 

If {𝑣, 𝑢}  is the only non-void edge adjacent to 𝑣 , then 𝐷(𝑣)  = 𝜔(𝑣, 𝑢)  ≠  (0,0,0) . This a 

contradiction. □ 

Theorem 3. Let 𝜉 = 〈𝑉, 𝜌,𝜔〉 be a non-trivial net CNG1. Then 𝑀𝜉 ≥ 4. Moreover, two of those non-void 

edges must be {𝑎, 𝑏} and {𝑎, 𝑐}, for some mutually distinct vertices 𝑎, 𝑏, 𝑐. 

Proof. Since 𝑁𝜉 ≥ 2 and 𝜉 is connected, non-void edge(s) must exist, so 𝑀𝜉 > 0. Furthermore, D(v) 

= (0,0,0) for all 𝑣 ∈ 𝑉 would imply ∑ 𝐷(𝑣)𝑣∈𝑉  = (0,0,0). 𝑀𝜉 ≥ 2 now follows by Lemma 6.  

Let 𝑎 be an end-point of some of those non-void edges. From Lemma 7, we conclude that at 

least two non-void edges must be adjacent to 𝑎. 

Since 𝜉 is simple, it now follows that those 2 non-void edges must be {𝑎, 𝑏} and {𝑎, 𝑐}, with 𝑎, 

𝑏, 𝑐 being 3 mutually distinct vertices of 𝜉. 

If 𝑀𝜉 = 2: 

{𝑎, 𝑏} and {𝑎, 𝑐} are therefore the only two non-void edges. By Lemma 7, both {𝑎, 𝑏} and {𝑎, 𝑐} 

must be adjacent to 𝑏. This is a contradiction. 

If 𝑀𝜉 = 3: 

There can only be one more non-void edges besides {𝑎, 𝑏} and {𝑎, 𝑐}. 

By Lemma 7: 𝑏 must be an end-point of another non-void edge besides {𝑎, 𝑏}; and c must also 

be an end-point of another non-void edge besides {𝑎, 𝑐}. 

We now deduce that the third non-void edge must therefore be adjacent to both 𝑏 and 𝑐. This 

yields Figure 4: 

Since {𝑎, 𝑏} and {𝑐, 𝑎} are non void, 𝜔(𝑎, 𝑏) = 𝐤 = −𝜔(𝑐, 𝑎) for some 𝐤 ≠ (0,0,0).  

Since {𝑏, 𝑐} is adjacent to both 𝑏 and 𝑐, 𝜔(𝑏, 𝑐) = 𝐤 = −𝐤. This is again a contradiction. 

𝑀𝜉 ≥ 4 now follows. □ 

Theorem 4. Let 𝜉 = 〈𝑉, 𝜌,𝜔〉 be a non-trivial net CNG1. Then 𝑀𝜉 ≥ 4 and 𝑁𝜉 ≥ 4. 
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Proof. By Theorem 3, 𝑀𝜉 ≥ 4, and two of those non-void edges must be {𝑎, 𝑏} and {𝑎, 𝑐}, for some 

mutually distinct vertices 𝑎, 𝑏, 𝑐. 

Suppose 𝑁𝜉 < 4. Since ξ is simple, the maximum possible number of edges (whether it is void 

or not) is 3 +
3

2
(3 − 3) = 3 < 4, which is a contradiction. 𝑁𝜉 ≥ 4 now follows. □ 

 

Figure 4. The triangle formed when {𝑎, 𝑏}, {𝑎, 𝑐} and {𝑏, 𝑐} are all non-void. Mentioned in Theorem 

3, 6. 

Theorem 5. The smallest non-trivial net CNG1 must be of the structure in Figure 5: 

 

Figure 5. The smallest non-trivial net CNG1. Mentioned in Theorem 5 and Example 4. 𝐤 ≠ (0,0,0). 

Proof. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be a non-trivial net CNG1. By Theorem 4, 𝑀𝜉 ≥ 4 and 𝑁𝜉 ≥ 4. By Theorem 

3, two of those non-void edges must be {𝑎, 𝑏} and {𝑎, 𝑐}, with 𝑎, 𝑏, 𝑐 being three mutually distinct 

vertices of 𝜉. 

Consider the scenario where 𝑀𝜉 = 4 and 𝑁𝜉 = 4 (i.e., the least possible number). 

If the edge {𝑏, 𝑐} is non-void, then we would have formed Figure 4, as mentioned in the proof 

of Theorem 3 

That leaves us with only one vertex 𝑑 and only one extra non-void edge being adjacent to 𝑑. 

This is a contradiction. 

There is now only one choice left: both the edges {𝑑, 𝑏} and {𝑑, 𝑐} must be non-void. This gives 

rise to the following structure in Figure 6: 

Without loss of generality, let 𝜔(𝑎, 𝑏) = 𝐤. Then both 𝜔(𝑏, 𝑑) = −𝐤 and 𝜔(𝑎, 𝑐) = −𝐤 must 

follow, leaving us with 𝜔(𝑐, 𝑑) = 𝐤 as the only valid option. 

We are therefore left with the only way of assigning 𝜔 as shown by the theorem. □ 

Lemma 8. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be a non-trivial net CNG1. Then 𝑀𝜉 ≥ 𝑁𝜉 . 

Proof. Every single non-void edge is connected to two vertices. Thus, if we count the total number of 

adjacent non-void edges for each vertex, and then summing the results for all the vertices together, 

the result will be 2𝑀𝜉  (note: this paragraph is analogous to classical graph theory).  

By Lemma 7, each vertex must have at least two non-void edges connect to it. We now have 

2𝑀𝜉 ≥ 2𝑁𝜉, so 𝑀𝜉 ≥ 𝑁𝜉  follows. □ 
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Theorem 6. Let 𝜉 = 〈𝑉, 𝜌,𝜔〉 be a non-trivial net CNG1 with both 𝑀𝜉  and 𝑁𝜉  being odd numbers. Then 

𝑀𝜉 ≥ 7 and 𝑁𝜉 ≥ 5. 

Proof. Let ξ = 〈𝑉, 𝜌, 𝜔〉 be a non-trivial net CNG1. By Theorem 4, 𝑀𝜉 ≥ 4 and 𝑁𝜉 ≥ 4. By Theorem 

3, two of those non-void edges must be {𝑎, 𝑏} and {𝑎, 𝑐}, for some 𝑎, 𝑏 and 𝑐 being three mutually 

distinct vertices of 𝜉. 

Since both 𝑀𝜉  and 𝑁𝜉  are odd, it follows that 𝑀𝜉 ≥ 5 and 𝑁𝜉 ≥ 5. So in addition to 𝑎, 𝑏, 𝑐, 

there exist another 2 vertices 𝑑, 𝑒. 

Consider the scenario where 𝑀𝜉 = 5 and 𝑁𝜉 = 5 (i.e., the least possible number). 

 

Figure 6. The only choices left because eace vertex must have at least 2 adjacent non void edges. 

Mentioned in Theorem 5, 6. 

Case 1. Suppose the edge {𝑏, 𝑐}  is non-void. Then we would have formed Figure 4, as 

mentioned in the proof of Theorem 3. 

That leaves us with two vertices 𝑑 and 𝑒, and two extra non-void edge, which both of them 

must be adjacent to 𝑑 . Even if {𝑑, 𝑒} is non-void, the other non-void edge adjacent to 𝑑  cannot 

possibly be {𝑑, 𝑒} itself. Therefore, we have, at most, one non-void edge being adjacent to 𝑒. This is 

a contradiction. 

Case 2. Without loss of generality, suppose the edges {𝑏, 𝑑} and {𝑐, 𝑑} are non-void. Then we 

would have formed Figure 6, as mentioned in the proof of Theorem 5. 

That leaves us with only one vertex 𝑒 and only one extra edge being adjacent to 𝑒, which is, 

again, a contradiction. 

Case 3. Without loss of generality, suppose the edges {𝑏, 𝑑} and {𝑐, 𝑒} are non-void. Then, 

besides {𝑏, 𝑑}, another edge must be adjacent to 𝑑. Likewise, besides {𝑐, 𝑒}, another edge must be 

adjacent to 𝑒. Since we are left with one edge, it must, therefore, be {𝑑, 𝑒}. This gives rise to the 

following structure in Figure 7: 

 

Figure 7. The only choice left for the case of 5 non-void edges connecting to 5 vertices. Mentioned in 

Theorem 6. 
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Without loss of generality, let 𝜔(𝑎, 𝑏) = 𝐤. Then both 𝜔(𝑏, 𝑑) = −𝐤 and 𝜔(𝑎, 𝑐) = −𝐤 must 

follow, leaving us with both 𝜔(𝑐, 𝑒) = 𝐤 and 𝜔(𝑑, 𝑒) = 𝐤. 

We have, thus, arrived at 𝐷(𝑒) = 2𝐤 ≠ (0,0,0), again a contradiction. 

Hence, it is either 𝑀𝜉 > 5 or 𝑁𝜉 > 5. 

Since both 𝑀𝜉  and 𝑁𝜉  are odd, either one of the following must hold: 

(a) 𝑀𝜉 ≥ 7 and 𝑁𝜉 ≥ 7. 

(b) 𝑀𝜉 = 7 and 𝑁𝜉 = 5. 

(c) 𝑀𝜉 = 5 and 𝑁𝜉 = 7. 

Furthermore, by Lemma 8, 𝑀𝜉 ≥ 𝑁𝜉 . Hence (c) will not occur, which implies that 𝑀𝜉 ≥ 7 and 

𝑁ξ ≥ 5. This completes the proof. □ 

Theorem 7. The smallest non-trivial net CNG1 𝜉, with both 𝑀𝜉  and 𝑁𝜉  being odd numbers, must be of the 

structure as shown in Figure 8: 

 

Figure 8. The smallest non-trivial net CNG1, with both Mξ and Nξ being odd numbers. . Mentioned 

in Theorem 7 and Example 5. 𝐩 + 𝐪 + 𝐫 = (0,0,0); |𝐩 + 𝐫|, |𝐪 + 𝐫| ≤ 1. 

Proof. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be a non-trivial net CNG1 with both 𝑀𝜉  and 𝑁𝜉  being odd numbers. Then 

𝑀𝜉 ≥ 7 and 𝑁𝜉 ≥ 5. 

Consider the scenario where 𝑀𝜉 = 7 and 𝑁𝜉 = 5 (i.e., the least possible number). 

Since ξ is an ordinary CNG1, each vertex must have 5 edges adjacent to it (whether void or not). 

Since ξ is simple, one of the five edges for each vertex, which is a loop, must be void. As a result, we 

now conclude that each vertex must have at most 4 non-void edges adjacent to it. 

On the other hand, by Lemma 7, each vertex must have at least two non-void edges adjacent to it. 

Since every single non-void edge is adjacent to two vertices. Thus, if we count the total number 

of adjacent non-void edges for each vertex, and then summing the results for all the vertices together, 

the result will be 7 × 2 = 14 (note: this paragraph is analogous to classical graph theory). 

Hence, the set representing the number of non-void edges adjacent to each of the five vertices, 

must be one of the following: 

(a) {2,3,3,3,3} (most “widely spread” possibility) 

(b) {2,2,3,3,4} 

(c) {2,2,2,4,4} (most “concentrated” possibility) 

We now consider each the three cases: 

Case 1. {2,3,3,3,3} 

Without loss of generality: 

Let 𝑎 be that one vertex which is an end-point to only 2 non-void edges {𝑎, 𝑏} and 

{𝑎, 𝑐}. (i.e., {𝑎, 𝑑}, {𝑎, 𝑒} are void) (Figure 9) 
(9) 

Then, each one among 𝑏, 𝑐, 𝑑, 𝑒 must be an end-point of three non-void edges. 

Besides {𝑑, 𝑎} and {𝑑, 𝑑}, which are both void, there are three more edges adjacent to 𝑑: {𝑑, 𝑏}, 

{𝑑, 𝑐}, {𝑑, 𝑒}. 
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Figure 9. The 2 non-void edges {𝑎, 𝑏} and {𝑎, 𝑐}, for all the 3 cases of Theorem 7. 

Since d is an end-point of exactly three non-void edges, we conclude that: 

{𝑑, 𝑏}, {𝑑, 𝑐}, {𝑑, 𝑒} are all non-void (10) 

Similarly, besides {𝑒, 𝑎} and {𝑒, 𝑒}, which are both void, there are three more edges adjacent to 

𝑒: {𝑒, 𝑏}, {𝑒, 𝑐}, {𝑒, 𝑑}. 

Since e is also an end-point of exactly three non-void edges, we conclude that: 

{𝑒, 𝑏}, {𝑒, 𝑐}, {𝑒, 𝑑} are all non-void. (11) 

From (10) and (11), we conclude that: 

{𝑑, 𝑏}, {𝑑, 𝑐}, {𝑒, 𝑏}, {𝑒, 𝑐}, {𝑑, 𝑒} = {𝑒, 𝑑} are all non void. (12) 

From (9) and (12), we have obtained all the seven non-void edges: 

{𝑑, 𝑏}, {𝑑, 𝑐}, {𝑒, 𝑏}, {𝑒, 𝑐}, {𝑑, 𝑒}, {𝑎, 𝑏}, {𝑎, 𝑐}. 
 

Hence, {𝑏, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑒} must be all void. We, thus, obtain the following structure (Figure 10): 

 

Figure 10. The only possible way of connection for {2,3,3,3,3}. 

Let 𝜔(𝑎, 𝑏) = p, 𝜔(𝑏, 𝑑) = q, 𝜔(𝑏, 𝑒) = r, 𝜔(𝑐, 𝑑) = s, 𝜔(𝑐, 𝑒) = t, 𝜔(𝑑, 𝑒) = u. 

Since {𝑎, 𝑏} and {𝑎, 𝑐} are the only two non-void edges adjacent to 𝑎, we now have 𝜔(𝑎, 𝑐) = 

−𝐩 (Figure 11). 

 

Figure 11. The labeling of the non-void edges for {2,3,3,3,3}. 
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We how have: 𝐫 + 𝐪 + 𝐩 = 𝐬 + 𝐭 − 𝐩 = 𝐬 + 𝐪 + 𝐮 = 𝐫 + 𝐭 + 𝐮 = (0,0,0). 

This further implies that: 𝐫 + 𝐪 + 𝐩 + 𝐬 + 𝐭 − 𝐩 = 𝐬 + 𝐪 + 𝐮 + 𝐫 + 𝐭 + 𝐮 = (0,0,0). 

Therefore, 𝐪 + 𝐫 + 𝐬 + 𝐭 = 𝐪 + 𝐫 + 𝐬 + 𝐭 + 2𝐮 , which implies that 𝐮 = (0,0,0) . This is a 

contradiction.  

Case 2. {2,2,3,3,4} 

Without loss of generality: 

Let 𝑎 be a vertex which is an end-point to only two non-void edges {𝑎, 𝑏} and {𝑎, 𝑐}. 

(i.e., {𝑎, 𝑑}, {𝑎, 𝑒} are void) 
(13) 

as shown in Figure 9. 

Since {𝑎, 𝑑}, {𝑎, 𝑒} are void, both 𝑑 and 𝑒 cannot be that vertex which is an end-point to four 

non-void edges. 

By symmetry, fix 𝑏 to be that vertex which is an end-point to four non-void edges. Then: 

{𝑏, 𝑎}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑏, 𝑒} are all non-void. (14) 

From (13) and (14), we have now arrived at the following structure (Figure 12): 

 

Figure 12. The first 5 non-void edges for {2,2,3,3,4}. 

Suppose {𝑑, 𝑒} is void. Then exactly one out of {𝑑, 𝑐} and {𝑑, 𝑎} must be non-void. Similarly, 

exactly one out of {𝑒, 𝑐}  and {𝑒, 𝑎}  must be non-void. By symmetry and the rules of graph 

isomorphism, fix {𝑑, 𝑎} to be non-void, then 𝑎 would have been an end-point of three non-void 

edges: {𝑑, 𝑎}, {𝑏, 𝑎}, {𝑐, 𝑎}. So {𝑒, 𝑎} must be void and, therefore, {𝑒, 𝑐} is non-void. We, thus, obtain 

the following structure (Figure 13): 

 

Figure 13. The only possible way of connection for {2,2,3,3,4}, if {𝑑, 𝑒} is void. 

Suppose {𝑑, 𝑒} is non-void. Then we now arrived at the following structure (Figure 14): 

 

Figure 14. The first 6 non-void edges for {2,2,3,3,4}, for the case of non-void {𝑑, 𝑒}. 
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By symmetry, fix 𝑎 to be a vertex which is an end-point of three non-void edges. Then exactly 

one edge out of {𝑎, 𝑑} and {𝑎, 𝑒} must be non-void. By the rules of graph isomorphism, we can fix 

{𝑎, 𝑑} to be non-void. Again we obtain the following structure (Figure 15): 

 

  

Figure 15. The only possible way of connection for {2,2,3,3,4}, if {𝑑, 𝑒} is non-void. 

Let 𝜔(𝑎, 𝑏) = g, 𝜔(𝑐, 𝑏) = h, 𝜔(𝑎, 𝑐) = k, 𝜔(𝑏, 𝑑) = p, 𝜔(𝑏, 𝑒) = q. 

Since {𝑎, 𝑑} and {𝑏, 𝑑} are the only two non-void edges adjacent to 𝑑, we now have 𝜔(𝑎, 𝑑) = 

−𝐩. 

Likewise, since {𝑐, 𝑒} and {𝑏, 𝑒} are the only two non-void edges adjacent to 𝑒, we now have 

𝜔(𝑐, 𝑒) = −𝐪 (Figure 16). 

 

Figure 16. The labeling of the non-void edges for {2,2,3,3,4}. 

We how have: 𝐩 + 𝐪 + 𝐠 + 𝐡 = 𝐠 + 𝐤 − 𝐩 = 𝐡 + 𝐤 − 𝐪 = (0,0,0). 

Therefore, 𝐠 = 𝐩 − 𝐤, 𝐡 = 𝐪 − 𝐤 . As a result: 𝐩 + 𝐪 + 𝐩 − 𝐤 + 𝐪 − 𝐤 = 2𝐩 + 2𝐪 − 2𝐤 = (0,0,0), 

which implies 𝐩 + 𝐪 − 𝐤 = (0,0,0). 

Denote −𝐤 = 𝐫 . Then 𝐠 = 𝐩 + 𝐫 , 𝐡 = 𝐪 + 𝐫, and 𝐩 + 𝐪 + 𝐫 = (0,0,0) follows. We have, thus, 

formed the structure as mentioned in this theorem. 

Case 3. {2,2,2,4,4} 

Without loss of generality: 

Let 𝑎 be one of that two vertices which is an end-point to four non-void edges. Then: 

{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑒} are non-void. (15) 

Let 𝑏 be the other one vertices which is also an end-point to four non-void edges. Then: 

{𝑏, 𝑎}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑏, 𝑒} are non-void. (16) 

From (15) and (16), we have obtained the seven non-void edges: 

{𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑒}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑏, 𝑒}, {𝑎, 𝑏}.  

Hence, {𝑐, 𝑑}, {𝑐, 𝑒}, {𝑑, 𝑒} are all void. We, thus, obtain the following structure (Figure 17): 
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Figure 17. The only possible way of connection for {2,2,2,4,4}. 

Let 𝜔(𝑏, 𝑑) = p, 𝜔(𝑏, 𝑒) = q, 𝜔(𝑏, 𝑐) = r, 𝜔(𝑏, 𝑎) = s, 

Since {𝑎, 𝑑} and {𝑏, 𝑑} are the only two non-void edges adjacent to 𝑑, we now have 𝜔(𝑎, 𝑑) = 

−𝐩. 

Since {𝑎, 𝑒} and {𝑏, 𝑒} are the only two non-void edges adjacent to 𝑒, we now have 𝜔(𝑎, 𝑒) = 

−𝐪. 

Since {𝑎, 𝑐} and {𝑏, 𝑐} are the only two non-void edges adjacent to 𝑐, we now have 𝜔(𝑎, 𝑐) = 

−𝐫 (Figure 18). 

 

Figure 18. The labeling of the non-void edges for {2,2,2,4,4}. 

We how have: 𝐬 + 𝐩 + 𝐪 + 𝐫 = 𝐬 − 𝐩 − 𝐪 − 𝐫 = (0,0,0). 

This further implies that: 𝐬 + 𝐩 + 𝐪 + 𝐫 + 𝐬 − 𝐩 − 𝐪 − 𝐫 = (0,0,0). 

We now have 2𝐬 = (0,0,0), which implies that 𝐬 = (0,0,0). This is a contradiction. 

Our proof is now complete. □ 

Note that both 5 and 7 are not divisible even by 3, the next prime number after 2. This yields the 

following corollary: 

Corollary 1. The smallest non-trivial net CNG1 𝜉, with both 𝑀𝜉  and 𝑁𝜉  not divisible by 2 or 3, must also be 

of the structure as shown in Figure: 

7. Symmetric Properties of Ordinary Simple CNG1 

Definition 18. Let 𝑉  and 𝑊 be two non-void sets. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 and 𝜁 = 〈𝑊, 𝜍, 𝜓〉 be two ordinary 

CNG1s. If 𝑉 = 𝑊, 𝜌 = 𝜍 and 𝜔 = 𝜓, then 𝜉 and 𝜁 are said to be equal, and shall be denoted by 𝜉 ≡ 𝜁. 

Definition 19. Let 𝑉  and 𝑊  be a non-void set. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉  and 𝜁 = 〈𝑊, 𝜍, 𝜓〉  be two ordinary 

CNG1s. If there exist a bijection 𝒻: 𝑉 → 𝑊 such that: 

(a) 𝜌(𝑢) = 𝜍(𝒻(𝑢)) for all 𝑢 ∈ 𝑉. 

(b) 𝜔(𝑢, 𝑣) = 𝜓(𝒻(𝑢), 𝒻(𝑣)) for all 𝑢, 𝑣 ∈ 𝑉. 

Then: 

(i) Such 𝒻 is said to be an isomorphism from 𝜉 to 𝜁, and we shall denote such case by 𝒻[𝜉] ≡ 𝜁. 

(ii) 𝜉 and 𝜁 are said to be isomorphic, and shall be denoted by 𝜉 ≅ 𝜁. 
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Remark 15. As both 𝜉 and 𝜁 are ordinary, 𝜔(𝑢, 𝑣) = 𝜔(𝑣, 𝑢) and 𝜓(𝒻(𝑢), 𝒻(𝑣)) = 𝜓(𝒻(𝑣), 𝒻(𝑢)) follow 

for all 𝑢, 𝑣 ∈ 𝑉. 

Example 1. Consider 𝜉0 = 〈𝑉0, 𝜌0, 𝜔0〉 and 𝜁0 = 〈𝑊0, 𝜍0, 𝜓0〉 as follows: 

𝑉0 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}.      𝑊0 = {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6}. 

𝜌0(𝑣1) = 𝐩, 𝜌0(𝑣2) = 𝐪, 𝜌0(𝑣3) = 𝐭,    𝜍0(𝑤1) = 𝐭, 𝜍0(𝑤3) = 𝐩, 𝜍0(𝑤4) = 𝐬, 

𝜌0(𝑣4) = 𝜌0(𝑣6) = 𝐫, 𝜌0(𝑣5) = 𝐬.     𝜍0(𝑤2) = 𝜍0(𝑤4) = 𝐫, 𝜍0(𝑤6) = 𝐪. 

𝜔0(𝑣1, 𝑣2) = 𝜔0(𝑣2, 𝑣1) = 𝜔0(𝑣2, 𝑣2) = 𝐚,    𝜓0(𝑤1 , 𝑤2) = 𝜓0(𝑤2, 𝑤1) = 𝐝, 

𝜔0(𝑣1, 𝑣3) = 𝜔0(𝑣3, 𝑣1) = 𝐜,      𝜓0(𝑤1 , 𝑤3) = 𝜓0(𝑤3, 𝑤1) = 𝐜, 

𝜔0(𝑣2, 𝑣3) = 𝜔0(𝑣3, 𝑣2) = 𝐛,      𝜓0(𝑤1 , 𝑤4) = 𝜓0(𝑤4, 𝑤1) = 𝐞, 

𝜔0(𝑣3, 𝑣4) = 𝜔0(𝑣4, 𝑣3) = 𝐝,       𝜓0(𝑤4, 𝑤5) = 𝜓0(𝑤5, 𝑤4) = 𝐟, 

𝜔0(𝑣3, 𝑣5) = 𝜔0(𝑣5, 𝑣3) = 𝐞,       𝜓0(𝑤1 , 𝑤6) = 𝜓0(𝑤6, 𝑤1) = 𝐛, 

𝜔0(𝑣5, 𝑣6) = 𝜔0(𝑣6, 𝑣5) = 𝐟,      𝜓0(𝑤3, 𝑤6) = 𝜓0(𝑤6, 𝑤3) = 𝜓0(𝑤6, 𝑤6) = 𝐚, 

otherwise, 𝜔0(𝑢, 𝑣) = (0,0,0).      otherwise, 𝜓0(𝑤, 𝜈) = (0,0,0). 

Moreover, |{𝐩, 𝐪, 𝐫, 𝐬, 𝐭}| = 5 and |{𝐚, 𝐛, 𝐜, 𝐝, 𝐞, 𝐟}| = 6 (Figure 19). 

 

Figure 19. Two isomorphic CNG1’s, as mentioned in Example 1. 

Thus, we define the bijection 𝒻0: 𝑉 → 𝑊 as: 

𝒻0(𝑣1) = 𝑣3, 𝒻0(𝑣2) = 𝑣6, 𝒻0(𝑣3) = 𝑣1, 𝒻0(𝑣4) = 𝑣2, 𝒻0(𝑣5) = 𝑣4, 𝒻0(𝑣6) = 𝑣5. 
 

It now follows that 𝒻0 is an isomorphism from 𝜉0 to 𝜁0, so 𝜉0 ≅ 𝜁0. Still, 𝜉0 ≢ 𝜁0 in accordance with 

Definition 18. 

In all the following passages of this paper, let ℐ: 𝑉 → 𝑉 be the identity mapping from 𝑉 to itself. 

Like classical graph theory, whenever 𝜁 ≡ 𝜉 , ℐ  is an isomorphism from 𝜉  to 𝜉  itself in 

accordance with Definition 19. It is, therefore, motivational to investigate if there are other non-

identity bijections from 𝑉 to itself, which is also an isomorphism from 𝜉 to 𝜉 itself. Additionally, 

recall that, in classical graph theory, an isomorphism from a graph to itself will be called an 

automorphism on that graph. Thus, we proceed with the following definition: 

Definition 20. Let 𝑉 be a non-void set. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary CNG1’s. Let 𝒻: 𝑉 → 𝑉 be a bijection 

such that: 

(a) 𝜌(𝑢) = 𝜌(𝒻(𝑢)) for all 𝑢 ∈ 𝑉. 

(b) 𝜔(𝑢, 𝑣) = 𝜔(𝒻(𝑢), 𝒻(𝑣)) for all 𝑢, 𝑣 ∈ 𝑉. 

Then 𝒻 is said to be an automorphism of 𝜉. 

Remark 16. As 𝜉 is ordinary, 𝜔(𝑢, 𝑣) = 𝜔(𝑣, 𝑢) follows for all 𝑢, 𝑣 ∈ 𝑉. 
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Remark 17. Just because 𝜌(𝑢) = 𝜌(𝒻(𝑢)) and 𝜔(𝑢, 𝑣) = 𝜔(𝒻(𝑢), 𝒻(𝑣)), does not mean that 𝑢 = 𝒻(𝑢) or 

𝑣 = 𝒻(𝑣). 

Remark 18. ℐ is thus called the trivial automorphism of 𝜉. 

Example 2. Consider 𝜉1 = 〈𝑉1, 𝜌1, 𝜔1〉 as shown in Figure 20: 

𝑉1 = {𝑎, 𝑏, 𝑐, 𝑑}. 𝜌1(𝑎) = 𝜌1(𝑏) = 𝜌1(𝑑) = 𝐩, 𝜌1(𝑐) = 𝐪. 

𝜔1(𝑎, 𝑐) = 𝜔1(𝑐, 𝑎) = 𝐡, 𝜔1(𝑏, 𝑐) = 𝜔1(𝑐, 𝑏) = 𝜔1(𝑑, 𝑐) = 𝜔1(𝑐, 𝑑) = 𝐠, otherwise, 𝜔1(𝑢, 𝑣) = (0,0,0).  

|{𝐩, 𝐪}| = |{𝐠, 𝐡}| = 2. 

 

Figure 20. 𝜉1 as mentioned in Example 2. 

Let 𝒻1, 𝒷1 , 𝒽1: 𝑉1 → 𝑉1 be three bijections defined as follows: 

(a) 𝒻1(𝑐) = 𝑎, 𝒻1(𝑎) = 𝑑, 𝒻1(𝑑) = 𝑐, 𝒻1(𝑏) = 𝑏. 

(b) 𝒷1(𝑏) = 𝑎,𝒷1(𝑑) = 𝑑,𝒷1(𝑐) = 𝑐, 𝒷1(𝑎) = 𝑏. 

(c) 𝒽1(𝑏) = 𝑑,𝒽1(𝑎) = 𝑎,𝒽1(𝑐) = 𝑐, 𝒽1(𝑑) = 𝑏. 

Then: 

(i) 𝒻1 is an isomorphism from 𝑉1 to the following ordinary CNG1 (Figure 21). 

 

Figure 21. This is not an automorphism of 𝜉1 as mentioned in Example 2. 
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which is not equal to 𝜉1 in accordance with Definition 18. 𝒻1 is therefore not an automorphism of 𝜉1. 

(ii) 𝒷1 is an isomorphism from 𝑉1 to the following ordinary CNG1 (Figure 22). 

 

Figure 22. This is not an automorphism of 𝜉1 as mentioned in Example 2. 

which is also not equal to 𝜉1 in accordance with Definition 18. Likewise 𝒷1 is, therefore, not an automorphism 

of 𝜉1. 

(iii) 𝒽1 is an isomorphism from 𝑉1 to itself and, therefore, it is an automorphism of 𝜉1. Note that, even if 

𝒽1(𝑏) = 𝑑 and 𝒽1(𝑑) = 𝑏, as 𝜌1(𝑏) = 𝜌1(𝑑) = 𝐩 and 𝜔1(𝑏, 𝑐) = 𝜔1(𝑑, 𝑐) = 𝐠, so 𝒽1[𝜉1] ≡ 𝜉1 still 

holds. 

Definition 21. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary simple CNG1. 𝜉 is said to be total symmetric if, for all 

{𝑢1, 𝑣1}, {𝑢2, 𝑣2} ⊆ 𝑉 , with |{𝑢1, 𝑣1}| = |{𝑢2, 𝑣2}| , there exist an automorphism of 𝜉 , 𝒻 , such that 𝑢2 =

𝒻(𝑢1), 𝑣2 = 𝒻(𝑣1). 

Remark 19. In other words, {𝑢1, 𝑣1}, {𝑢2, 𝑣2} can either be two edges, or two vertices as when 𝑢1 = 𝑣1 and 

𝑢2 = 𝑣2. 

Example 3. With this definition, the following CNG1 (Figure 23) is, thus, totally-symmetric. 

 

Figure 23. A totally-symmetric CNG1, as mentioned in Example 3. 



Symmetry 2018, 10, 190 26 of 30 

 

However, unlike symmetry of classical graphs, the concept of total symmetry takes all the edges into 

account, whether void or not. As a result, the following graph (Figure 24), though looks familiar to the classical 

literature, is not totally-symmetric. 

 

Figure 24. This graph is not totally-symmetric. Mentioned in Example 3. 

As a result, the concept of total-symmetry in ordinary simple CNG1 proves even more stringent 

than the concept of symmetry in classical ordinary simple graphs. Additionally, recall that edges and 

vertices in CNG1 have three membership values instead of only 0 (disconnected, void) and 1 

(connected). To give more characterization of symmetry among ordinary simple CNG1, we now 

proceed with the following definitions. 

Definition 22. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary simple CNG1. 𝜉 is said to be strong edge-wise symmetric 

(abbr. SES) if: For all {𝑢1, 𝑣1}, {𝑢2, 𝑣2} ⊆ 𝑉  with both 𝜔(𝑢1, 𝑣1) and 𝜔(𝑢2, 𝑣2) non-void, there exist an 

automorphism 𝒻 of 𝜉, such that 𝑢2 = 𝒻(𝑢1), 𝑣2 = 𝒻(𝑣1). 

Remark 20. As 𝜉 is simple, it follows that |{𝑢1, 𝑣1}| = |{𝑢2, 𝑣2}| = 2. 

Remark 21. An ordinary simple CNG1 with all edges being void is classified as strong edge-wise symmetric 

as well. 

Definition 23. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary simple CNG1. 𝜉 is said to be strong point-wise(or vertex-

wise) symmetric (abbr. SPS) if: For all 𝑢1, 𝑢2 ∈ 𝑉  with both 𝜌(𝑢1) and 𝜌(𝑢2) non-void, there exists an 

automorphism 𝒻 of 𝜉, such that 𝑢2 = 𝒻(𝑢1). 

Remark 22. An ordinary simple CNG1 with all vertices being void is classified as strong point-wise symmetric 

as well. 

Definition 24. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary simple CNG1. 𝜉 is said to be strong symmetric (abbr. SS) if 

it is both strong edge-wise symmetric and strong point-wise symmetric. 

Definition 25. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary simple CNG1. 𝜉 is said to be weak edge-wise symmetric 

(abbr. wES) if: For all {𝑢1, 𝑣1}, {𝑢2, 𝑣2} ⊆ 𝑉  with 𝜔(𝑢1, 𝑣1) = 𝜔(𝑢2, 𝑣2) ≠ (0,0,0) , there exists an 

automorphism 𝒻 of 𝜉, such that 𝑢2 = 𝒻(𝑢1), 𝑣2 = 𝒻(𝑣1). Otherwise, 𝜉 is said to be edge-wise asymmetric 

(abbr. EA). 

Remark 23. Again, as 𝜉 is simple, it follows that |{𝑢1, 𝑣1}| = |{𝑢2, 𝑣2}| = 2. 

Remark 24. An ordinary simple CNG1 with all non-void edges having different membership value is classified 

as weak edge-wise symmetric as well. 
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Definition 26. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary simple CNG1. 𝜉 is said to be weak point-wise (or vertex-

wise) symmetric (abbr. wPS) if: For all 𝑢1, 𝑢2 ∈ 𝑉  with 𝜌(𝑢1) = 𝜌(𝑢2) ≠ (0,0,0) , there exists an 

automorphism 𝒻 of 𝜉, such that 𝑢2 = 𝒻(𝑢1). Otherwise, 𝜉 is said to be point-wise asymmetric (abbr. PA). 

Remark 25. An ordinary simple CNG1 with all non-void vertices having different membership value is 

classified as weak point-wise symmetric as well. 

Definition 27. Let 𝜉 = 〈𝑉, 𝜌, 𝜔〉 be an ordinary simple CNG1. 𝜉 is said to be asymmetric if it is both edge-

wise asymmetric and point-wise asymmetric. 

Based on the definition, we now state such symmetric properties on the smallest non-trivial net 

CNG1, as mentioned in Theorem 5, as well as the smallest non-trivial net CNG1 with both 𝑀ξ and 

𝑁ξ being odd numbers, as mentioned in Theorem 7. 

Example 4. With regards to the structure of Figure 5, as mentioned in Theorem 5, with 𝜌(𝑎) = 𝜌(𝑏) =

𝜌(𝑐) = 𝜌(𝑑) = (1,0,0). 

Consider the following three automorphisms 𝒻,𝒷, 𝒽 of 𝜉4,4: 

(a) 𝒻(𝑎) = 𝑏, 𝒻(𝑏) = 𝑎, 𝒻(𝑐) = 𝑑, 𝒻(𝑑) = 𝑐, 

(b) 𝒷(𝑎) = 𝑐, 𝒷(𝑏) = 𝑑,𝒷(𝑐) = 𝑎,𝒷(𝑑) = 𝑏, 

(c) 𝒽(𝑎) = 𝑑,𝒽(𝑏) = 𝑐, 𝒽(𝑐) = 𝑏, 𝒽(𝑑) = 𝑎, 

together with ℐ, the trivial automorphism of 𝜉. 

As a result, 𝜉4,4 is thus strong point-wise symmetric (SPS) and weak edge-wise symmetric (wES). 

Example 5. With regards to the structure of Figure 8, as mentioned in Theorem in Theorem 7, with 𝐩 + 𝐪 +

𝐫 = (0,0,0); |𝐩 + 𝐫|, |𝐪 + 𝐫| ≤ 1; and 𝜌(𝑎) = 𝜌(𝑏) = 𝜌(𝑐) = 𝜌(𝑑) = 𝜌(𝑒) = (1,0,0). 

In this case, as non-void vertices having different membership values, only one automorphism of 𝜉5,7, 

which is the identity mapping ℐ: 𝑉 → 𝑉 where ℐ(𝑣) = 𝑣 for all 𝑣 ∈ 𝑉. As ℐ(𝑎) ≠ 𝑏, 𝜉5,7 is, thus, point-wise 

asymmetric (PA). It is, nonetheless, weak edge-wise symmetric (wES). 

We now give an example of CNG1 which is asymmetric (i.e., both edge-wise and point-wise). 

Example 6. 𝜉 = 〈𝑉, 𝜌, 𝜔〉 has the structure as shown in Figure 25: 

 

Figure 25. A 𝜉 which is both point-wise asymmetric and edge asymmetric, as mentioned in Example 6. 

with |{𝐩, 𝐪, 𝐫}| = 3, |{𝐚, 𝐛}| = 2. 

Only the trivial automorphism ℐ can be formed. As ℐ(𝑎) ≠ 𝑑, 𝜉 is point-wise asymmetric. Moreover, as 

ℐ(𝑎) ≠ 𝑏, 𝜉 is edge asymmetric. 

We end this section by giving a conjecture, which shall be dealt with in our future work: 

Conjecture 1. The smallest non-trivial net CNG1 𝜉, with both 𝑀𝜉  and 𝑁𝜉  being odd numbers, and is both 

SPS and wES, must be of the structure as shown in Figure 26: 
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Figure 26. 𝜉 for conjecture 1. 𝐩 + 𝐪 + 𝐫 = (0,0,0). 

8. Conclusions 

In this article, we presented a new concept of the neutrosophic graph called complex neutrosophic 

graphs of type 1 (CNG1), and also proceeded to present a matrix representation of it. 

The strength of CNG1 lies in the presence of both magnitude and direction for the parameters 

involved, as has been illustrated in Section 3. As the parameters have directions, even when the 

resultant degree of a vertex is zero, the edges to that vertex need not necessarily be void. Thus the 

concept of CNG1 may also be used in engineering, such as in metal frameworks, for example in the 

construction of power lines, so that even when the beams are under tension, the resultant force at a 

point (possibly being a cornerstone) joining all those beams are zero. 

The concept of CNG1 can also be applied to the case of bipolar complex neutrosophic graphs 

(BCNG1). We have plans to expand on this interesting concept in the near future, and plan to study 

the concept of completeness, regularity, and CNGs of type 2. 

As we can see in Section 6, when the choices of 𝑀𝜉  and 𝑁𝜉  becomes more restrictive, the 

smallest non-trivial net CNG1 𝜉 increases in complexity. This makes us wonder what will be the 

smallest non-trivial net CNG1 𝜉 in the case when both 𝑀𝜉  and 𝑁𝜉  are not divisible by all primes up 

to 5 (7, 11, etc.), as well as whether their symmetric properties, as outlined in Section 7. However, the 

proof of such cases will become much more tedious and, therefore, we would have to utilize 

computer programs, such as MATLAB and SAGE, in order to find those non-trivial net CNG1 𝜉. 

Therefore our future research in this area involves plans to deal with those non-trivial net CNG1 𝜉. 

We are motivated by the interest to know if there exist some general patterns or general theorems 

governing such smallest non-trivial net CNG1 as 𝑀𝜉  and 𝑁𝜉  become more restrictive. 

We are currently working on developing a more in-depth theoretical framework concerning the 

symmetric properties of CNG1, and have plans to extend this to other types of fuzzy graphs in the 

future. We are also motivated by the works presented in [30–32], and look forward to extending our 

work to other generalizations of neutrosophic sets, such as interval complex neutrosophic sets, and 

apply the work in medical imaging problems and recommender systems.  
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