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Abstract This paper proposes a family of estimators of population mean using information on
several auxiliary variables and analyzes its properties in the presence of measurement errors.

Introduction
The discrepancies between the values exactly obtained on the variables under
consideration for sampled units and the corresponding true values are termed
as measurement errors. In general, standard theory of survey sampling
assumes that data collected through surveys are often assumed to be free of
measurement or response errors. In reality such a supposition does not hold
true and the data may be contaminated with measurement errors due to
various reasons (see, for example Cochran (1963) and Sukhatme et al. (1984)).
One of the major sources of measurement errors in survey is the nature of
variables. This may happen in case of qualitative variables. Simple examples of
such variables are intelligence, preference, specific abilities, utility,
aggressiveness, tastes, etc. In many sample surveys it is recognized that
errors of measurement can also arise from the person being interviewed, from
the interviewer, from the supervisor or leader of a team of interviewers, and
from the processor who transmits the information from the recorded interview
on to the punched cards or tapes that will be analyzed, for instance, see Cochran
(1968). Another source of measurement error is when the variable is
conceptually well defined but observations can be obtained on some closely
related substitutes termed as proxies or surrogates. Such a situation is
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encountered when one needs to measure the economic status or the level of
education of individuals, see Salabh (1997) and Sud and Srivastava (2000). In
the presence of measurement errors, inferences may be misleading, see Biermer
et al. (1991), Fuller (1995) and Manisha and Singh (2001).

There is today a great deal of research on measurement errors in surveys.
An attempt has been made to study the impact of measurement errors on a
family of estimators of population mean using multiauxiliary information.

The suggested family of estimators

Let Y be the study variate and its population mean w to be estimated using
information on p(> 1) auxiliary variates Xi,Xo,...,X,. Further, let the
population mean row vector W = (uy,pg, ", p,p) of the vector
X = (X 1,X9, X p) Assume that a simple random sample of size # is drawn
from a population, on the study character Y and auxiliary characters
X1,Xs,...,X,. For the sake of simplicity we assume that the population is
infinite. The recorded fallible measurements are given by:

=Y +E;
Xij ZXZJ+nlJ7Z: 172a'”7p7

=12

where Y; and X are correct values of the characteristics ¥ and
XG=12,...p;7=1,2,....n).

For the sake of 51mphclty in exposmon we assume that the error Ejs are
stochastic with mean “zero” and variance 02) and uncorrelated with Ys The
eITOrS 7); n X are distributed mdependently of each other and of the X,] with

mean “zero” and variance 0'(2)2(2 .p). Also Ejs and m;s are
uncorrelated although Yjs and Xj;s are correlated
Define
Xi
M=_7l:1727 7p7
l w( )
ul = (%1,M2,"'Mp)1xp,

7= (L1 ),
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With this background we suggest a family of estimators of u as:

fe=g@u’). 21

839
where g(7,u") is a function of 7, u1, us, "+, uy such that:
g(uo,eT) = M
= &_) =1
W (e

and such that it satisfies the following conditions:
+ the function g (¥,« ") is continuous and bounded in Q);
+ the first and second order partial derivatives of the function g (51, u T) exist
and are continuous and bounded in ).

To obtain the mean squared error of {i,, we expand the function g(jl, u T) about
the point (,uQeT) in a second order Taylor’s series. We get:

o0( -
fe = g (o, e”) + (7 = o) i(y ) ( )+(u o) gV (ug,e") 22
}LO:eT
1( . _ 282g(-) - _ T(')g(l)(')
+§ { (y MO) 0y (&*,M*T)+2(y MO)(u ¢ oy G uT)

+u — o) g® (G, ux")(u - e)},
where:

Jr =g+ 007 — wg),ux = e+ 6u—¢),0 <6 <1Lg()

denote the p element column vector of first partial derivatives of g(-) and g® ()
denotes a p X p matrix of second partial derivatives of g(-) with respect to u.
Noting that g(uo,e’) = o, it can be shown that:

E(fig) = po+ O™, (2.3)

which follows that the bias of i, is of the order of »~!, and hence its
contribution to the mean squared error of fi, will be of the order of 7 2. From
(2.2), we have to terms of order 7z !
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MSE(@g) = E{(J_’ - P«o) +(u — e)Tg(D(M()aeT)}Z
= B|(5= )" +20 ~ o)~ 0"gV(pp. ")

gV eh) = o = 0 (¢ Vg, |

1
= [ng (C% + Cﬁ») + 200b g V1, N+ (gV) A (g Vi, eT>)]

(2.4)

where .bT = (b1,b2,...,0),b;,= poiCoCi, 0 = 1,2,...,p); G = o0i/m;,Ciiy =
O-l//“l’za (Z = 1727 . 7p) and CO = O-O/MO:

(CI+Chy pCiCe pisCiCs - pyCiCy |
p12C1Co C5+ C?z) p23CoCs -+ ppCoCy
A= | P3CiCs  p3CoCs G5+ C(g) o p3p GGy
pCiCy  ppCaCy ppCsCy - C+Cy)
| dpxp

The MSE (i) at equation (2.4) is minimized for
gD (ug,e") = —poA "D, (2.5)
Thus the resulting minimum MSE of [i, is given by:
min MSE (1) = (/) |GG+ Cly — b"A b (2.6)

Now we have established the following theorem.
Theorem 2.1=up to terms of order 7 !,

MSE(f) = (1d/n) | €5+ Cl, —b7A 3] 2.7)
with equality holding if:
gV =—pA'0.

It is to be mentioned that the family of estimators i, at equation (2.1) is very
large. The following estimators may be identified as particular members of the
suggested family of estimators flg:

fgd = yz w (“) Z w; =1, (Olkin, 1958).

Z
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>

i=q+1
(Srivastava, 1965; Rao and Mudholkar, 1967).

P =\ Y

- 1P = j)l | <—l> (oys are suitably constants) (Srivastava, 1967).
L\
=1 ?
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- A = yH {2 — <—l> } (Sahai and Ray, 1980).

(Walsh, 1970).

14) _
yH {m + o (% — )}

1o = yexp{z 6;log u;} (Srivastava, 1971).
i=1

b
10 = jzexp{z 0;(u; — 1)} (Srivastava, 1971).
=1

b b
a7 = yz wiexp{ (6;/ w;)log u;}; Z w; = 1, (Srivastava, 1971).
=1 =1

)4
. l1g(18) =75+ Eai(xi — Mz’)v etc.
=1

The MSE of these estimators can be obtained from equation (2.4).
It is well known that:

V@) = (nd/n) (CO + C(O)) 2.8)

It follows from equation (2.6) and equation (2.8) that the minimum variance of
fiy is no longer than conventlonal unbiased estimator 3.

On substituting 02 =0, 0(1 =0Vi=1,2,...,pin equation (2.4), we obtain
the no- measurement error case. In that case, the MSE of i, is given by:

MSE (i) = [CWW 20007 * (g, ) + (¢ %V (g, €M) A x (gx)]
= MSE(fig*),
2.9)
where:

NI Ky

:g*(Y,U )

(2.10)

and YandX; (i = 1,2,"-+,p) are the sample means of the characteristics ¥ and
X; based on true measurements. (Y;,X;,i=1,2,....p;7=1,2,...,n). The
family of estimators fi,* at equation (2.10) is a generalized version of
Srivastava (1971, p. 80).
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The MSE of [ig* is minimized for:

g * D (ug,eh) = —A x " b, (2.11)
Thus the resulting minimum MSE of i, * is given by:
min MSE () = £ [ €] — 574 1 0] 2.12)
=—(1-R
" (1 R?)

where Ax = [ax;] is a p X p matrix with ax; = p;(GC; and R stands for the
multiple correlation coefficient of ¥ on X, Xo, ..., X,.

From equations (2.6) and (2.12) the increase in minimum MSE(pLg) due to
measurement errors is obtained as:

2
min.MSE (ji) — min.MSE (i *) = <%) [C(ZO) +bTAx1p - bTA*Ib}

> (.

This is due to the fact that the measurement errors introduce the variances
fallible measurements of study variate ¥ and auxiliary variates X;. Hence there
is a need to take the contribution of measurement errors into account.

Biases and mean square errors of some particular estimators in the
presence of measurement errors

To obtain the bias of the estimator fi;, we further assume that the third partial
derivatives of g(j), u T) also exist and are continuous and bounded. Then
expanding g(j,u”) about the point (¥,u”) = (mg,e’) in a third-order
Taylor’s series we obtain:

a .
fe =g (1ose”) + (7= o) ga(j—} ) ( )+(74 =)'V, e")
MOseT
1, \20%8(") . T T
+§{(y o) o5 (uo,uT)—i_Z(y o) —e)' gV (g, e’) 3.1)

+u — o) (gP (g, eD))w — o)}
1, 9 95
+6{(y - P«o)@'i‘ (u — e)ﬁ}?’g(y 7%*T)7

where g1 (o, e”) denotes the matrix of second partial derivatives of g (7, u”)
at the point (y,u7) = (pg,e’).
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Noting that:
g (%0e T) = Mo
ag( ) —1
(Mo 67)
),
85)2 (hoe™) 7

and taking expectation we obtain the bias of the family of estimators fig to the
first degree of approximation:

1
B(iig) =5 [E (=) (g% (g, eh)) @ — o)} + 2(%>ng“2)(uo,eT)]
(3.2)

where b7 = (b1, by, ... ., bp) with b = p,;CoC; (0 = ., D). Thus we see that
the bias of [ig depends also on the second order partlal derivatives of the
function on g( U ) at the point (wo,e?), and hence will be different for
different optimum estimators of the family.

The biases and mean square errors of the estimators fig; 7 = 1 to 18 up to
terms of order # ! along with the values of g™ (uo,e 7g) 2@ (uo,eT) and
g1 (ug, eT) are given in the Table L.

Estimators based on estimated optimum

It may be noted that the minimum MSE, equation (2.6), is obtained only when
the optimum values of constants involved in the estimator, which are functions
of the unknown population parameters wo, b and A, are known quite accurately.

To use such estimators in practice, one has to use some guessed values of the
parameters uo, b and A, either through past experience or through a pilot
sample survey. Das and Tripathi (1978, sec. 3) have illustrated that even if the
values of the parameters used in the estimator are not exactly equal to their
optimum values as given by equation (2.5) but are close enough, the resulting
estimator will be better than the conventional unbiased estimator y. For further
discussion on this issue, the reader is referred to Murthy (1967), Reddy (1973),
Srivenkataramana and Tracy (1984) and Sahai and Sahai (1985).

On the other hand if the experimenter is unable to guess the values of
population parameters due to lack of experience, it is advisable to replace the
unknown population parameters by their consistent estimators. Let d) be a
consistent estimator of ¢ = A ~1b. We then replace ¢ by d) and also uo by ¥ if
necessary, in the optimum i, resulting in the estimator fig(ss), say, which will
now be a function of j, # and ¢. Thus we define a family of estimators (based on
estimated optimum values) of ug as:
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figesy = * x(3,u”, b7, 4.1)
where g * *() is a function of (3,u”,$”) such that:
g**(p"()7eT7¢T):}.LO forall Mo,iag‘*aijk(-) :1
> oD 4.2)
og * x(+) 0g(+) B .
u (H‘OseT(I)T) u (”‘036)
and:
0g * *(+) —0
adb (o ”.67)

With these conditions and following Srivastava and Jhajj (1983), it can be
shown to the first degree of approximation that:

MSE (figesn)) = min MSE (jig) = (%) [Co+Chy—b7A™ ).

Thus if the optimum values of constants involved in the estimator are replaced
by their consistent estimators and conditions (4.2) hold true, the resulting
estimator fi(s Will have the same asymptotic mean square error, as that of
optimum fi,. Our work needs to be extended and future research will explore
the computational aspects of the proposed algorithm.
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