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Abstract.  

 Baryons are considered to be intricate particles having real geometrical structure 

based on our earlier proton design. Inherent baryon spin is proportional to mass and radius. 

The well-known octets and decuplets fit into groups wherein mass-squared is associated with 

quantised-action. Magnetic moments are described in terms of a spin-loop and coupled 

electron(s).  Lifetime of a baryon is governed by action of guidewave coherence around these 

structures. 
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1. Introduction 

 Baryons are considered here to be complicated particles related directly to the earlier 

proton and meson designs [Wayte, Papers 1, 2].  Thus, half the mass energy consists of three 

trineons, bound together by their gluon field, travelling at the velocity of light around the 

spin-loop; at the centre of the spin-loop, there may also be a core particle which has zero net 

angular momentum. The remaining half mass energy consists of an external radial non-

rotating pionic-type field, emitted by the trineons and core, plus electromagnetic field energy. 

Overall mass is entirely accounted for in terms of the localised energy constituting these 

parts; so there is no place for a Higgs ether theory. 
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For comparison, the Standard QCD model is a '' black-box system'' crafted to describe 

how particles interact with each other; but physical reality of the internal mechanism is 

secondary. Thus, quarks possess inherent charge and spin-½ even though they are formless 

singular points of infinite density; see Amsler et al (2008), Perkins (2000). The range in mass 

over the many particles of discrete mass is hardly addressed. There is also a problem with the 

origin of mass, entailing the ethereal Higgs field. Classical conservation laws are broken at 

will during various acts of materialisation. Fundamental problems like these have been 

reluctantly incorporated, in order to achieve some success at explaining empirical results by 

way of current quantum theory  

In Section 2, the increase in particle angular momentum with mass-squared, for some 

baryons, is investigated to reveal an underlying action principle. The well known octets and 

decuplets are grouped here but other groups appear discordant. Section 3 covers strangeness 

and particle structure. Sections 4 and 5 explain magnetic moments and lifetimes in a way 

analogous to the proton and neutron. Section 6 shows how these models of internal structure 

can be compatible with aspects of QCD theory of particle interactions in order to explain 

observations. Baryon data has been taken from Patrignani C et al. (Particle Data Group), 

Chin. Phys. C, 40, 100001 (2016) and 2017 update. 

 

2. Spin relative to mass-squared for some baryons 

2.1 J versus M2.  Several Δ and Λ baryons appear to have spin angular momentum (J) 

proportional to their mass-squared (M2), as demonstrated in a Chew-Frautschi plot. This is 

thought to result from a particular internal mechanism. Figure 2.1 illustrates the cases in 

which two or more baryons of a given species lie on straight parallel lines which obey the 

expression: 
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22 )m7.37()AJ(2M   ,    (2.1) 

where (37.7 ≈ 12π) relates to a structure constant from Paper 1, and me is the electron mass. 

For these selected baryons only, factor (A) will be taken to represent the proportion of mass 

which does not contribute to the spin. Its value appears to be a multiple of (1/6), so let [(J+A) 

= N/6] for an integral N; then Eq.(2.1) simplifies to: 

2
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This expression may take other numerical forms, for later consideration: 
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where (137 ≈ ħc/e2) is the inverse fine structure constant, and (en = 2.71828). Factor (/en) 

has previously signified gluon involvement, so coefficient 3 may pertain to trineon pearls 

with their gluonic field. 

 

                   

Figure 2.1   Selected baryons which lie on straight parallel lines obeying Eq.(2.1) 

for the various values of A given. The theoretical mass boundary line is derived 

later as Eq.(2.8). 

 

 To interpret these expressions in terms of baryon structure, we will let J represent real 

spin angular momentum due to mass M1 in a spin-loop, while A represents a spin-less mass 

M2 at the baryon centre. Many mesons analysed in Paper 2 have this two part configuration; 

consequently, we will propose an action expression for the simplest design:   
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where spin radius R will later be set proportional to total mass (R = FbM/c2), and the spin 

period is ( = 2R/c). Then the first term is momentum-action over one orbit, and the second 

term is the associated energy-action of the core mass. As found for the proton, only half the 

mass (M1/2, M2/2) is involved in this expression because the other half mass is in the exterior 

field. Now, (M = M1 + M2), therefore: 
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and using Eq.(2.1), the constant Fb can take a universal form: 
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where mp is the proton mass. For this simplest case, the spin-mass and core-mass are given 

by: 
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and these do not appear to take any special noteworthy values for the  baryons in Figure 2.1. 

Coefficient N does not represent the number of component pieces constituting M. The three  

baryons shown with (A = 0) have no core particles. 

  Equation (2.3a) expresses the fermion spin radius R for the spinning mass M1 , when 

R is proportional to total mass M: 
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and for stability there is an integral number of Compton guidewavelengths around the spin-

loop: 

   )cM/h(J2R2 1   .      (2.5b) 

 Empirically, we shall see in Section 3 that this simplest case does not apply to most 

baryons because the spin-loop probably consists of 9 proton-pearls for stability, and the core 

mass is comparatively small. This necessitates Eq.(2.4) to be developed, namely: 
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where (ε) is a multiple of (1/6) like J and A, selected for each baryon. Then, Eq.(2.3a) should 

be written: 
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2.2 A versus J. Figure 2.2 shows plots of A versus J for baryons in five species. It 

appears that A accommodates the prevailing J almost arbitrarily, as if most baryons are not 

designed to obey Eqs.(2.1), (2.3a). The aggregate plot on the right shows how some A values 

are occupied up to 4 times, while others are vacant. For example, when (J = ½), values of 
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(A×6 = 1, 3, 6, 11) are absent but others are present up to 18. It will be shown in the next 

section that some values of N are preferred, governed by internal action. 

 The empirical diagonal boundary line in Figure 2.2 describes A through the form: 
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Ab    .      (2.7a) 

It cuts the abscissa at (2Jmax = 16, A = 0) where the maximum theoretical mass through 

Eq.(2.1) is: 
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Figure 2.2   Plots to show how factor A varies with spin J for each type of baryon.  The points 

lie within a common boundary line, and the Λs and Ξs may have a zone of avoidance at low A 

values. Baryons of 2-star quality have also been included (). 

 

At the other end (J = 0, Amax ≈ 24/6), the mass is only: 

   2/MM max   ,      (2.7c) 

so (Amax = Jmax /2). Upon introducing Eq.(2.7a) into Eq.(2.1), an empirical mass boundary 

may be drawn on Figure 2.1 as shown for: 
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Thus, hypothetically, a baryon of (J = 15/2) and maximum mass 2859MeV/c2 could contain 3 

trineons of proton mass.  
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2.3 Quantisation of N. Baryon mass-squared given by N (nearest) in Eq.(2.2a) may be 

plotted to reveal quantisation patterns, (data from PDG Baryon Tables). Figure 2.3a shows 

confirmed baryons up to Ω, and many of them linked by an increment (δN = 6) have been 

emphasised as the Os and Xs. Several other intervals of (δN = 3) are apparent. Figure 2.3b 

illustrates groups of the same spin-parity, including the well-known baryon octet (1/2)
+
, 

decuplet (3/2)+, groups (5/2)+ and (7/2)+. For each group, factor N increases through the 

species range N, Δ, Λ, Σ, Ξ, Ω so factor A must be increasing even if interpretation Eq.(2.3a) 

may not apply. 

 

Significant characteristics of Figure 2.3a  are: 

1. Five of the Λs increase in equal steps of (δN = 6) from (N = 7 to 31), while their spin-

parity increases as (1/2+, 3/2, 5/2+, 7/2, 9/2+), and (A = 4/6) is constant. 

2. Four of the Σs increase in equal steps of (δN = 6)  from (N = 11 to 29), with their spin-

parity increasing as (3/2+, 5/2, 7/2+, 9/2), and (A = 2/6) is constant. 

3. Five of the Ξs increase in equal steps of (δN = 3), from (N = 10 to 22) with their spin-

parity varying as (1/2+, 3/2+, 1/2?  3/2, 1/2+? ), and A varying as (7/6, 4/6, 13/6, 10/6, 19/6). 

The queried values need confirmation. 

4. Three of the Δs increase in equal steps of (δN = 12)  as (N = 9, 21, 33), while their spin-

parity increases as (3/2+, 7/2+, 11/2+), and (A = 0) is constant. 

5. Three of the Ns increase in equal steps of (δN = 12) as (N = 5, 17, 29), while their spin-

parity increases as (1/2+, 3/2+, 9/2) and A varies. 

6. Three other Ns increase in equal steps of (δN = 6) as (N = 15, 21, 27), with their spin-

parity increasing as (1/2, 3/2+, 7/2) and A varying. 

7. A wide range of Λ masses with (N = 7, 11, 15, 16, 18, 19) have spin-1/2. 

8. Those massive Ns with (N = 27, 28, 29, 38) have high spin values (7/2, 9/2, 9/2, 11/2). 

9. Massive baryons in general have greater spin with larger circumferences, as if to reduce 

material density. Therefore, maximum density may exist for [Δ(1910) ½+] or  [Ξ(1950) ½+]. 
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 Figure 2.3   (a) Quantisation number N plotted to reveal patterns for the six species of 

baryons. The Os and Xs are the noteworthy points of a pattern linked by (δN = 6, or 12).  

(b) The grouping of baryons with the same spin-parity into octet, decuplet and smaller groups 

reveals partial correspondence with the noteworthy points in part (a), see 11 larger spots. 

Baryons shown as □ need confirmation. 

 

 The most occupied value of N in Figure 2.3a is 16, where for example (J = 3/2, A = 

7/6) or (J = 5/2, A = 1/6). Then Eq.(2.2a) evaluates to: 
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     (2.9) 

which is near to the proton-pearl mass (ml  = mp/9 = 104.25MeV/c2). However, this does not 

necessarily mean that there are 16 pearls in these baryons, because N is concerned with units 

of action, see Eq.(2.10). For our proton model, N is 5 but there are 9 pearls. 

 Except for the s and s on the lines in Figure 2.1, it is impossible to know whether 

N should be split into J and A components. Again, the proton has (N = 5) which might imply 

that (A = 2/6) for a particle core, but this would be wrong. Consequently, the N value may 

not be interpretable as 6(J + A) because for example, the material may all be in the spin-loop 

at a radius which decreases with mass but increases with J as in Eq.(2.6a) when (M1 → M). 
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 In Figure 2.3a, the way that N clearly increments most often by a multiple of (δN = 6) 

will be explained by introducing it into Eq.(2.3b) to produce a precise action increment (h) 

for many baryons: 
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or for mass-squared, Eq.(2.2a) gives: 
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Therefore, the members of a species often increase in steps of mass-squared by adding action 

(h) quanta. If A is held constant say, then J must increase by unity (e.g. from 1/2 to 3/2). Since 

the different species clearly show (δN = 6), they probably have a common structure. Smaller 

action increments also occur; for example (δN = 1), then Eq.(2.2a) produces: 
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Given that the nucleon-nucleon force constant is (1/√3) in Paper 1, this expression contains 

three fundamental constants. For the most occupied value of (N = 16), this Eq.(2.10c) means 

that:  

      2e16
2 m13724M    ,     (2.10d) 

which reflects another structure constant seen in Paper 1, (24 loops in a proton pearl). 

According to Eq.(2.9), an increment in N from 16 to 17 requires an increase in mass of mx /2. 

 It is possible that all baryon masses are stable configurations determined primarily by 

an action principle related to absolute M2 because there are examples of N incrementing by 6, 

4, 3, 2 or 1, in addition to those satisfying Eq.(2.3a,b). Then according to Eq.(2.2a), total 

action of a baryon’s existence for one spin-loop period is equal to: 
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This expression applies whatever the mass M1 happens to be in the spin-loop, and spin radius 

is given by: 
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These two independent conditions can be combined by introducing a coefficient (n) into 

Eq.(2.3a) to compensate for small J and A values, while N may be large: 
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For example, the proton has no core particle so (J = 1/2, A = 0, n = 5/3, N = 5). In effect, (n) 

becomes equivalent to a number of spin-loop periods. High mass baryons with small spin can 

be accommodated this way. A baryon like (1600) which would appear to fit well on the (A 

= 0) line at (J = 5/2) in Figure 2.1 has instead fitted (J = 3/2, A = 1). Thus, given a measured 

M and J for any baryon, interpretation Eq.(2.10g) may apply more often than Eq.(2.3a,b). 

 In Figure 2.3b, the groups JP = 1/2+, JP = 5/2+ and JP = 9/2+, for (N, Λ, Σ, Ξ) appear to 

be related approximately. Likewise, groups JP = 3/2+, JP = 7/2+ and JP = 11/2+, for (Δ, Σ, Ξ, 

Ω) appear related. The absolute (mass)2 difference between these groups for (δN ≈ 12) in 

Eq.(2.2a) may be expressed as: 
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This is a square-law relationship, so the mass of any M5 baryon relative to its M1 baryon 

depends upon its species. They probably have similar designs and primarily satisfy action 

expressions like Eq.(2.10a,b). The same could be said for (M9) relative to (M5), and (M7) 

relative to (M3) groups. When J changes by 2 between these groups, then individual A values 

change little or not at all. 

The low positioning of the decuplet 3/2+ group between the octet 1/2+ and 5/2+ groups 

implies that each member is deficient by (δN ≈ 3) due to a reduced A value. The same could 

be said for the low positioning of the 7/2+ group. 

 Figure 2.4b shows the second (JP = 1/2) group as having N values greater than the 

lowest octet by (δN ≈ 7-8). The third (JP = 1/2) group runs parallel to the lowest octet at (δN 

≈ 12), so action equation (2.10a) is clearly operating. Possibly, Eq.(2.3a) would imply a large 

spin-less central mass M2; on the other hand, these heavier groups with small J might be 

compact, obeying Eq.(2.10g) with small mass M2 but large (n). 
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 Figure 2.4   (a) Quantisation number N plotted for the six species of baryon.  

(b) The higher mass (JP = 1/2) groups are shown relative to standard (JP = 5/2, 3/2, 

1/2) groups. 

 

 Figure 2.5b shows the (JP = 1/2) groups as having extra mass, with (δN ≈ 7-11) 

relative to the lower (JP = 1/2) octet. Again, these baryons must be physically small, to 

contain the mass without increasing spin, or they have large central masses.  
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 Figure 2.5   (a) Quantisation number N plotted for the six species of baryon.  

(b) The higher mass (JP = 1/2) groups are shown relative to the standard (JP = 5/2, 

3/2, 1/2) groups.  
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 Figure 2.6b shows the (JP = 3/2) group as having increased N values; eg., (δN ≈ 6) 

relative to the lower original (JP = 3/2) decuplet. Two higher mass (JP = 3/2) groups are also 

shown. 
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 Figure 2.6   (a) Quantisation number N plotted for the six species of baryon.  

(b) Two higher mass (JP = 3/2) groups are shown relative to the standard (JP = 3/2, 1/2) 

groups.  

 

 Figure 2.7b shows the higher mass (JP = 5/2) group as having N values greater than 

the lower (JP = 5/2) octet by (δN ≈ 6). 
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Figure 2.7   (a) Quantisation number N plotted for the six species of baryon.  

(b) The higher mass (JP = 5/2) group and various weakly-grouped species are shown 

relative to the standard (JP = 5/2, 3/2, 1/2) groups. Terms in brackets represent 

additional baryons with different JP values but similar mass. 

 

3. Strange, charmed and bottom baryons 

 The concept of baryon strangeness is founded upon the very long lifetimes of those 

with the lowest mass in their group, (1116), (1193), (1315), (1672). More massive 

strange baryons have short lifetimes, so strangeness is only apparent upon decay into their 

lowest states. Accordingly, strange baryons appear to possess a latent structure which is 

transferred during rapid decay, until at the lowest level it is revealed by a relatively long 

lifetime. The following proposed designs assume that baryons are an assembly of parts so 

that decay is a disintegration process, with minimal creation of any new particles and kinetic 

energy. The observed repeatability of creation and decay processes, and baryon masses, 

requires distinct components of discrete sizes; otherwise a continuum of masses and species 

would exist. 

There appears to be a need to satisfy Eq.(2.10) with N increasing in possible steps of 

(δN = 6, 3, 2, 1), but at the same time M probably consists of a number of well-defined stable 

pieces which separate during decay processes. These two conditions can be satisfied only 

approximately by building baryons from proton-pearl masses (ml ) for the spin loop, and 

pionet masses for the core (ie. a miniaturised pion, mπ= 134.976MeV/c2, and (mπo/4 = 

33.744MeV/c2) which is the mass of a pionic pearl, in Paper 2).  The many cases of baryons 

of one species decaying into other species and back indicate that they are all similar in 

essence, using a range of common component parts combined in various ways with 

correspondingly different binding energies. Equation (2.6a) is used to calculate individual 

values for (ε) after setting M1 = mp. 

Table 1a illustrates feasible designs for (JP = 1/2) baryons, with their N (nearest) 

values plus corresponding masses. The proton has 3 trineons consisting of 3 pearls each, 

(Paper 1). 
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    Table 1a.  Proposed structure for the (JP = 1/2+) baryon octet.  
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,c/MeV1208m2mm 2
op



   

 

 

(1315)  

1/2(
1/2),  = 2.90x10-10s, Dy(

3/2,6/7A,10N

,c/MeV1343m3mm 2
op



   

 

 

 

 In Table 1b, the (JP = 3/2+) baryon decuplet reveals strangeness operating without 

apparently satisfying Eqs.(2.3a,b). Non-strange baryon (1232) consists of a spin-loop, 

comprising 3 trineons of 3 proton-pearls each, plus a central core of 21/4 pionets. If a (1232) 

were to consist of only a spin-loop comprising 3 trineons of 4 proton-pearls each, then the 

decay process into Nπ would be less straightforward because a pion consists of 50% 

antimatter. Strange (1385) has a spin-loop of 9 proton-pearls plus a central 31/2 pionets. The 

(1530) has 4½ core pionets, and the (1672) has  5½ core pionets, 4 of which become a 

 

 

 

p 
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K¯ during decay. Numerical exactness between theoretical and experimental masses is not 

expected because unspecified binding energy will depend upon the particular designs. 

 

 Table 1b.   Proposed structure for the (JP = 3/2+) baryon decuplet.  

 

 

(1232)  
3/2(

3/2), Γ =118 MeV, Dy(N) 

3/1,0A,9N

,c/MeV1242m2mm 2
op 4

1



   

 

 

(1385)  

1(3/2
), Γ =36 MeV, Dy() 

12/3,3/1A,11N

c/MeV1410m3mm 2
op 2

1



   

 

 

(1530)  
1/2(

3/2), Γ =9.1 MeV, Dy() 

6/1,3/2A,13N

c/MeV1545m4mm 2
op 2

1



   

 

 

(1672)  

0(3/2
),  = 0.821x10-10s, Dy() 

0,6/7A,16N

c/MeV1681m5mm 2
op 2

1



   

 

 

 

 In Table 1c, the (JP = 5/2+) baryon group reveals strangeness operating without 

satisfying Eqs.(2.3a,b). Non-strange baryon N(1680) consists of a spin-loop, comprising 3 

trineons of 3 proton-pearls each, plus 5½ core pionets. Strange Λ(1820) has a similar spin-

loop but 6½  core pionets, 4 of which become a K̅ during the decay process. The Σ(1915) has 

7½  core pionets, and the (2030) has 8.  

 

 

 


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 Table 1c.   Proposed structure for the (JP = 5/2+) baryon group. 

 

 

N (1680)  
1/2(

5/2), Γ =130 MeV, Dy(N) 

1,6/1A,16N

c/MeV1681m5mm 2
op 2

1



   

 

 

(1820) 

0(5/2
), Γ =80 MeV, Dy(K̅, Σ) 

12/11,3/2A,19N

c/MeV1816m6mm 2
op 2

1



   

 

 

Σ(1915) 

1(5/2
), Γ =120 MeV, Dy(K̅) 

6/5,1A,21N

c/MeV1951m7mm 2
op 2

1



 
 

 

 

 

(2030) 
1/2(

5/2), Γ =20 MeV, Dy(ΛK̅, ΣK̅) 

3/2,3/4A,23N

c/MeV2018m8mm 2
op



   

 

 

 Other groups (JP = 7/2+, 1/2‾, 3/2‾, etc) are probably based upon these structures 

because Figure 2.3 is linked to Eqs.(2.10) and (2.11), in regard to action requirements.  

 In these three tables above we have used the proton spin-loop mass for all, while 

varying the core mass. However, the six types of baryon must have different designs, as 

indicated by the observed magnetic moments given in Table 4. For example, in the proton 

design of Paper 1, the 3 trineons and 9 pearls rotate anti-parallel to the spin-loop, thereby 

opposing the spin-loop’s magnetic moment. In Table 1d we set these trineons, pearls and the 

 

Σ 

 

N 
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core particle to rotate parallel or anti-parallel to the spin-loop, in order to account for the six 

types of baryon. These orientations will affect the interactions and binding energy/mass of 

each baryon. All six species have a baryon in the N = 16, M ≈ 1677MeV/c2 range. Decay 

from one species to another will be fast or slow, subject to conservation of spin and whether 

the spin has to change orientation or not. 

 

Table 1d.   The proposed orientations of trineons, pearls, and core 

particle for six species of baryons. 

   N   Δ   Λ   Σ   Ξ   Ω 

Spin of all 

3 trineons 

anti-

parallel 

anti-

parallel 

parallel parallel parallel parallel 

Spin of all 

9 pearls 

anti-

parallel 

anti-

parallel 

anti-

parallel 

anti-

parallel 

parallel parallel 

Net core 

spin 

anti-

parallel 

parallel parallel anti-

parallel 

anti- 

parallel 

parallel 

 

 

 

Charmed baryons. In Tables 2a,b the proposed structures for some charmed baryons of spin 

1/2+ and 3/2+ are given. These have a spin-loop of mass 2mp and a central core of muonets 

with overall zero spin. A muonet has mass (m' = (4/3)m = 140.88MeV/c2), as commonly 

used for mesons in Paper 2. Each trineon here has the mass of two proton-trineons and it is 

expected to have a radius of (π/2)(e2/2mpc
2), which is 137(2/π) times less than the baryon 

spin-loop radius. This trineon mass consists of matter plus anti-matter given that c(2880)+  

and c(2940)+  can decay into a proton plus a D0(1864.84) meson made of 50% anti-matter. 

The mass range of charmed baryons appears limited, from (2mp + 3mμ
/) for c

 (2286.46) to 

(2mp + 8.5mμ
/) for c(3080). Where appropriate, the mass difference between charged 

components of a baryon is given. For example, for c
 (2455), the mass difference (m0 – m+) is 

due to a single heavy-electron orbiting around the positive spin-loop, while (m++ m+) is due 

to an orbiting heavy-positron. These heavy electron or positron will help determine any 

magnetic moments, as explained in Section 4. 
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 Table 2a.   Proposed structure for the charmed baryons with (JP = 1/2+). 

 

 

c
 (2286.46)  

0(1/2
),  = 200x10-15s, Dy(pK) 

3/11,2/9A,30N

c/MeV2299m3m2m 2/
p



   

 

 

c
 (2455), m++m+= 2.1me , mm+=1.66me 

1(1/2
), Dy(c

 ) 

6/23,6/31A,34N

c/MeV2475m4m2m 2/
p 4

1



 
 

 

 

c
(2467.87),  mm+ = 5.87me 

1/2(
1/2),  = 442x10-15s, Dy(2) 

4,3/16A,35N

c/MeV2475m4m2m 2/
p 4

1



 
 

 

 

c
( 2695.2)  

0(1/2
),  = 69x10-15s, Dy() 

6/25,3/19A,41N

c/MeV2722m6m2m 2/
p



   

 

 

 

 

 

 

 

 

 

 

 

c 

c
 

c 

c
 
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Table 2b.   Proposed structure for the charmed baryons with (JP = 3/2+), plus the 

most massive confirmed charmed baryon.   

 

 

c
 (2520),  

 (m++m+ = 1.78me ;  mm+ = 1.92me ) 

1(3/2
), Dy(c

 ) 

3,2/9A,36N

c/MeV2511m4m2m 2/
p 2

1



   

 

 

c(2645),   (mm+ = 1.54me ) 
1/2(

3/2), Dy(c
c

 

6/19,6/31A,40N

c/MeV2651m5m2m 2/
p 2

1



   

 

 

c( 2770)0  

0(3/2
), Dy(c

0γ) 

2/7,6/35A,44N

c/MeV2792m6m2m 2/
p 2

1



   

  

 

 

c(3080),   (mm+ = 5.28me ) 
1/2(), Dy(c

 K̅π  

54N

c/MeV3074m8m2m 2/
p 2

1



   

 

 

 

Bottom baryons.   In Tables 3a,b the proposed structures for some bottom baryons are given. 

The (J = ½) bottom baryon designs are similar to the (J = ½) charmed baryons, with 6mp 

replacing the 2mp spin-loop. All but one have a lower mass central core of zero spin. A 

trineon here might have the substance of a proton/anti-proton pair within a radius of 

(π/2)(e2/6mpc
2), which is 137(2/π) times less than the spin-loop radius. The mass range of 

bottom baryons is small, from (6mp) for b
0(5619.58) to (6mp + 3mμ

/) for b
( 6046.1).  

c 

c 

c 

c 
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Where appropriate, the mass difference between charged components of a baryon is given. 

For example, in b
+(5811.3) the mass difference (m – m+) is due to two heavy-electrons 

orbiting around the positive spin-loop; while for b
0(5791.9),  the mass difference (m  m0) 

is due to only the second orbiting heavy-electron. 

 

 

 Table 3a.   Proposed structure for the lowest bottom baryons with (JP = 1/2+). 

 

 

b
0 (5619.58) 

0(1/2
),  = 1.47 × 10−12 s, Dy(c

lυ̅l 

180N

c/MeV5629m6m 2
p




 

 

 

b
+(5811.3),   (mm= 8.22me ) 

1(1/2
)  Dy(b

π  

192N

c/MeV5841m1m6m 2/
p 2

1



   

 

 

b
0(5791.9),  (mm0 = 5.09me ) 

1/2(
1/2),  = 1.48 × 10−12 s, 

191N

c/MeV5841m1m6m 2/
p 2

1



   

 

 

b
-( 6046.1)   

0(1/2
),  = 1.64 × 10−12 s, Dy(J/ψΩ-) 

208N

c/MeV6052m3m6m 2/
p



   

 

 

 

 

 

b


b
0 

b
+ 

b
0 
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 Table 3b.   Proposed structure for the bottom baryons with (JP = 3/2+). 

 

 

b
 *+(5832),   (mm+= 5.87me ) 

1(3/2
) Dy(b

π  

193N

c/MeV5841m1m6m 2/
p 2

1



   

 

 

b(5945)0 

(3/2
) Dy(b

π+  

201N

c/MeV5982m2m6m 2/
p 2

1



   

 

Exotic baryons. In Table 3c the proposed structures for two exotic baryons are given. The 

designs are similar to the charmed baryons, with 4mp replacing the 2mp spin-loop. They have 

a lower mass central core of zero spin. Given the decay products, a trineon structure might 

have the appearance of a pion (ie. matter + anti-matter, see Paper 2) but it is expected to have 

a radius around (π/2)(e2/4mpc
2),   which   is  137(2/π)  times  less  than  the  spin-loop  radius.  

Masses  are  around  (4mp + 5mμ
/), after binding energy losses which depend upon internal 

orientation detail. These proposed structures are easily accommodated here, between charmed 

and bottom baryons, without invoking pentaquarks. 

 

Table 3c.   Proposed structure for two exotic baryons. 

 

 

Pc
 (4380)+ 

(3/2
?), Dy(J/ψp) 

109N

c/MeV4387m4m4m 2/
p 2

1



   

 

 

Pc
 (4450)+ 

(5/2
?), Dy(J/ψp) 

113N

c/MeV4457m5m4m 2/
p



   

Pc 

Pc 

b
 

b 
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4. Magnetic moments of baryons. 

 Proton and neutron magnetic moments were calculated from a simple structural model 

in Paper 1.  Namely, the three positively charged trineons travelled around the proton spin-

loop circumference to produce a magnetic moment 2.7928μN, and in the neutron, one orbiting 

heavy electron produced a magnetic moment of -4.70589μN.  Since all baryon designs here 

are based upon protons, their magnetic moments μb probably have similar structural origins 

and can be interpreted by comparison with the proton. 

 First, it is only the charge qs in the positive baryon spin-loop of mass M1 which 

produces the actual measured positive magnetic moment: 

    1sb M2/q     .      (4.1a) 

We will presume that charge is distributed such  that  the charge/mass ratio of the spin loop 

(qs /M1) is equal to that observed for the whole baryon (q/M). Then the baryon has a magnetic 

moment: 

        ppb m2/eM/me/qM2/q      ,  (4.1b) 

where the last factor is the  nuclear magneton (μN). Therefore, published standardised 

magnetic moments μb must be multiplied by (M/mp) to reveal the effective charge ratio (q/e) 

for comparison with the proton (2.7928), see column 3 of Table 4. Thus, only the observed Σ+ 

at (q/e = 3.116) can be compared directly with the proton, in order to reveal that its internal 

mechanism adds 0.116 to the basic value of 3.0, in contrast to the proton wherein 0.207 was 

subtracted to derive 2.793. 

 Second, for the neutral baryon, a co-rotating heavy-electron at radius (rhe) will 

produce its own negative magnetic moment (μhe): 

       Nphepphehehe r/rm2/er/r2/ecr   , (4.2) 

where proton spin radius is [   fm2103.0cm/r pp   ]. This magnetic moment is equal to the 

difference between the neutral and original positive state, as given in Table 4 by (rhe /rp). Now 

the heavy-electron mass mhe relative to normal electron mass me is given by:  

   
p

oe

he

p

he

oe

e

he

r

r

r

r

r

r

m

m














    ,     (4.3) 

where (roe = e2/mec
2 = 2.817940fm) is the classical electron radius. It can be calculated 

directly, given that rp and roe are known, and it should account for the difference (δM) 

between the original positive baryon mass and the neutral baryon mass. In practice, the 

measured δM is a little less than the calculated mhe because of binding energy loss, see 

Eq.(10.2.2) of Paper 1. 
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Table 4    Baryon magnetic moments interpreted in terms of one or two   

                 electrons orbiting a proton-type of spin-loop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Values in round brackets are estimates for unmeasured baryons Λ+, Σ0 , Ξ+, 

Ω+. Column μb is the measured moment in nuclear magnetons; q is the effective 

charge in the baryon; rhe is the  heavy-electron  radius  around  the  baryon;  ratio 

rhe /rp is the coefficient of magnetic moment attributable to one or two orbiting 

heavy-electrons; the heavy-electron mass is given by (mhe /me = roe /rhe); δM is the 

measured increase in baryon mass being attributed to the heavy-electron(s); baryon 

values of (χ) from Eq.(4.4c) are given. For (Ω the estimated high factor (5.276) 

is due to its high spin radius for (J = 3/2). 

 

 

 

μb(μN) q/e   

   

rhe /rp 

 
mhe  /me                         δM/me χ 

       

  p 2.7928 2.7928     

  n -1.913  n - p 

4.706 

n - p 

 2.85 

n - p 

2.53 

 

       

 (Λ+) (2.620) (3.116)     

  Λ0 -0.613  Λ0 –(Λ+) 

(3.23) 

Λ0 – (Λ+)  

(4.11) 

 

   

 

5.5 

       

  Σ+ 2.458 3.116      

  (Σ0) (+0.60)  Σ Σ+ 

(1.86) 

Σ Σ+ 

 (7.2) 

Σ Σ+ 

 6.40 

 

3 

  Σ -1.160 

 

 Σ Σ+ 

1.25 

2.37 

Σ Σ+ 

 10.7 

 5.65   

 16.4 

ΣΣ+ 

 

 

15.8 

 

1 

4 

       

 (Ξ (2.236) (3.134)     

  Ξ0 -1.250  Ξ0 – (Ξ 

 (3.49) 

Ξ0 – (Ξ 

(3.84) 

 

    

 

6 

  Ξ -0.651  Ξ– (Ξ 

 (1.37) 

 (1.51) 

Ξ (Ξ 

 (9.78) 

 (8.87) 

(18.6) 

ΞΞ0 

 

 

13.4 

 

1.5 

2 

       

 (Ω (5.276) (3.134)     

  Ω -2.02  Ω(Ω 

 (3.65) 

 (3.65) 

Ω (Ω 

(3.67) 

(3.67) 

(7.35) 

 

    

    

 

6 

6 
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Third, for the negative baryon there are 2 heavy electrons, see Σ Σ+, with their 

estimated values of ( rhe /rp)1 = 1.25 and ( rhe /rp)2  = 2.37, and heavy electron masses which 

should sum to slightly over the observed result 15.8. This Σ had to be allocated two heavy 

electrons in separate orbits, in order to get viable values for (mhe /me).  

When the baryon cannot be observed directly [as for Λ+, Σ, Ξ+, Ω+], its magnetic 

moment can still be estimated, as shown bracketed in Table 4, so that a viable (mhe /me) can 

be postulated. For example, between Ξ and Ξ0 it is (18.6 - 3.84 = 14.76), achieved by 

proposing [q/e = 3.134] for unobserved (Ξ). 

It was discovered for the neutron in Paper 1, Eq.(10.2.8), that the relative size of the 

heavy-electron radius (rhe /rp) satisfies an action integral which serves to stabilise the orbit.  

The radius of the neutron’s heavy-electron [rhe = rp(en√3)] is critical because quantisation is 

suggested by the formula: 

  2/)r/rln( phe        (4.4a)  

This will be interpreted such that the toroidal heavy-electron propagates spiralling circular 

feeler guidewaves inwards from its position at rhe to the proton spin-loop at rp.  These are 

reflected back so continual interaction helps keep the heavy-electron stable in position.  For an 

equivalent guidewave charge δe2 and mass δmhe, the action integral for this loop spiralling 

inwards and reflecting back is from Eq.(4.4a) by differentiation: 

   












her2

pr2

2

0

he
he

2

dcr
2

m
dt

z

e
2    ,     (4.4b) 

where (e2/c = mhecrhe) and (dz = cdt).  

Other baryon values of (rhe /rp) can be explained in a similar way to the neutron, such 

that Eq.(4.4b) should become: 

   
















 






d
e

1
cr

2

m
dt

z

e
2

2
n

her2

pr2

2

0

he
he

2

   ,   (4.4c) 

see values of coefficient χ given in column 7 of Table 4. The (1/en
2) term signifies that a third 

harmonic guidewave is operating, see Eq.(10.3.4) in Paper 1. 

 The magnetic moment of Σ is anomalously high like the proton in Paper 1 and it may 

be expressed in a similar way: 
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 .  (4.5) 

As for the proton, (α-1 ≈ 137) is the inverse fine structure constant, and there are 24 gluonic-

loops constituting a pearl. Each of the three trineons has charge e, but unit charge emanates 

from the spin-loop overall.  However, in contrast to the proton, these Σ trineons are aligned 

parallel to their spin-loop and have a weighting factor of (3mt /2)/(3me), so a higher magnetic 

moment results for Σ. This weighting factor represents the number of charge loops around a 

trineon in terms of trineon mass (mt = mp /3) relative to electron mass per trineon (me).  

 The magnetic moments of (Ξand (Ωare also anomalous (q/e = 3.134), as 

estimated by setting the trineons and pearls in Eq.(4.5) parallel to the spin-loop, according to  

Table 1d. 

 

5. Lifetimes of baryons 

 Analogous to the neutron in Paper 1, the mean lifetimes of the 4 long-lived baryons 

might be related to the presence of an orbiting heavy-electron. Given the heavy-electron 

period (the = 2πrhe /c), then: 

   )c/r2)(r/r(t pphehe     .     (5.1) 

Table 5 lists the (rhe /rp) values from Table 4 and the calculated (the) values, with the measured 

lifetimes τb .  Now if we say (cτb) is equal to a number Nb of heavy-electron circumferences 

(cthe), then upon taking logarithms, we have for Λ say in Table 5: 

     2
nheb e3/)2/(13754.30ct/cln     .   (5.2) 

By differentiating this and introducing (e2/c = mhecrhe), an expression for the electromagnetic 

action around the Nb circumferences is obtained:  
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Table 5  Measured baryon lifetimes τb relative to the calculated heavy electron  

periods the. Baryon + has been added because a similar decay law may be 

operating around its spin-loop. 

 rhe /rp the() 

secs 

τb (1010) 

secs 

τb / the 

(1013) 

ln(τb /the) 

n 4.706 2.075 [887.0s] 4.274x1012 59.0172 

Λo (3.23) 1.424 2.631 1.847 30.55 

Σ 2.37 1.053 1.479 1.404 30.27 

Ξo (3.49) 1.539 2.90 1.884 30.57 

Ξ (1.51) 0.667 1.639 2.458 30.83 

Ω (3.65) 1.609 0.822 0.511 29.26 

Σ+  (0.441) 0.8018 (1.82) (30.53) 

 

 

Factor en
-2 on the right of this represents third harmonic guidewaves for stabilising the 3 

components of the heavy-electron; in agreement with the original neutron equation (10.3.4) in 

Paper 1. On the left, the unit distance (2rhe(/2)) is the length of the helix structure around 

the  heavy-electron, rotating  at  velocity c' = c(/2);  see  Paper 3, electron  model.  Length 

(z' = c't) is then instantaneous length around this helix many times, up to Nb orbits in total. 

Lifetime distance cτb might represent a coherence length for the guidewaves operating 

around the heavy-electron, which govern its stability. Table 5 shows that action for the 

baryons is around half that for the neutron, viz: ln(τn /the) ≈ (59.0172). For comparison 

purposes, baryon Σ+ has been included as it could indicate that a similar decay law is 

operating around the 3 trineons of its spin-loop. 

 

6. Compatibility with Standard Model 

 The model for a static proton in Paper 1 was very successful at explaining the 

Yukawa potential, the reality of spin and anomalous magnetic moment for structured 

particles. On the other hand, the QCD Standard Model of particle interactions has been very 

successful at accounting for observations from high energy collision experiments. The 

conceptual differences between these two models might be explained if particles in collisions 

engender characteristics not apparent in static models. That is, the trineons in a proton may 

interact with incident particles in the same way as quarks do in QCD. 
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 Consider Figure A1 wherein the proton is depicted as trineons A, B, C, travelling 

around the spin-loop at the velocity of light. Each trineon has a charge (+e) but only emits an 

electromagnetic field due to (+e/3) into the exterior space, so the proton's total external 

charge is (+e) as observed. Trineons also emit an e.m field in the direction of travel around 

the spin-loop, equivalent to (+2e/3) each.  

 

 

 

 

 

 

 

 

 

         

  

Fig.A1   A schematic proton consisting of 3 trineons in the spin-loop, each with 

external and internal electromagnetic fields due to charge (e/3) and (2e/3), as 

experienced by an incident charged particle D. 

 

 Consequently, an energetic incident particle D (charge +e) could interact with an 

individual trineon, depending upon the position and direction of that trineon. For example, let 

interaction of D on A vary as e[e/3 + (2e/3)cos(θ)], whereas D on B will vary as e[e/3 + 

(2e/3)cos(θ+120o)], and D on C will vary as e[e/3 + (2e/3)cos(θ+240o)]. These three 

interactions of particle D are shown overlaid in Figure A2. Clearly the effective interaction 

charge for each trineon can vary from (e) to (-e/3). The sum for all three trineons is (e). 
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  Fig.A2   Variation of interaction charge for trineons A,B,C. 

 

 

 For correspondence with the Standard Model, we require the apparent effect of 

quarks, namely A(+2e/3), B(-e/3), and C(+2e/3), which occur at (θ = 60o) where the squared 

values are nearest to each other and sum to (e2), ie: A(4e2/9) + B(e2/9) + C(4e2/9). The 

average of [e/3 + (2e/3)cos(θ)]2 over one spin-loop cycle, summed for 3 trineons, is also (e2). 

 Thus, the effect of a negative interaction charge (-e/3) can happen for a collision 

process wherein a trineon reacts according to its internal mechanism and direction of travel. 

Trineons are tightly confined by strong force gluons within a proton, so any collision of an 

incident particle with a single trineon might appear to involve a quark of spin (1/2). 

 For the neutron model in Paper 1, a heavy-electron closely orbits the proton to 

neutralise its exterior positive charge. In this case, interaction of D on A varies as 

e[(2e/3)cos(θ)], whereas D on B will vary as e[(2e/3)cos(θ+120o)], and D on C will vary as 

e[(2e/3)cos(θ+240o)]. Then the effective interaction charge for each trineon can vary from 

(2e/3) to (-2e/3). The sum for all three trineons is always zero. For correspondence with the 

Standard Model, we require the apparent effect of quarks such as A(-e/3), B(-e/3), and 

C(+2e/3), which occurs at (θ = 120o) where the squared values are nearest to each other.  

 

7. Conclusions. 

 Baryon designs in general have been described as being like over developed protons. 

For many baryons, mass-squared is a function of spin, and quantised action. Empirical 

magnetic moments have been explained in terms of a positively charged baryon spin-loop 

surrounded by one or two heavy-electrons.  Lifetime of a baryon appears to be related to 

guidewave coherence around these structures. Within baryon internal structure, conservation 
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laws are upheld; real spin-radius varies with mass, and mass is understood as localised energy 

without any ethereal Higgs mechanism. Finally, compatibility with the quarks of the Standard 

Model has been established regarding interactions between particles.  
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