
High-level task planning in Robotics with symbolic
model checking

Frank Schröder

Aug 11, 2018

Abstract
A robot control system contains a lowlevel motion planner and a
high level task planner. The motions are generated with keyframe to
keyframe planning while the the tasks are described with primitive
action-names. A good starting point to formalize task planning is a
mindmap which is created manually for a motion capture recording. It
contains the basic actions in natural language and is the blueprint for
a formal ontology. The mocap annotations are extended by features
into a dataset, which is used for training a neural network. The
resulting modal is a qualitative physics engine, which predicts future
states of the system.

Keywords: Artificial Intelligence, Computer Graphics, PDDL

Contents
1 Planning 1

1.1 Symbolic model checking for PDDL planning 1
1.2 The advantages of a symbolic planner 2
1.3 Emulating IPL-V 3
1.4 Symbolic planner for regrasping task 3
1.5 Qualitative physics engine explained 4
1.6 Intuitive Physics engine for a walking robot 5
1.7 The benefit of a qualitative physics engine 6
1.8 Hierarchical pathplanning 6
1.9 Knowledge based simulation for decision making . . 7
1.10 Everything about a Physics Engine for bouncing balls 8
1.11 Modeling a handover task with two robot hands . . . 8
1.12 Central pattern generators for biped walking 9
1.13 Reducing the state space for a walking robot 11
1.14 States and constraints 11
1.15 Modeling is easier then expected 12
1.16 Model based Central pattern generator for biped walk-

ing . 12
1.17 Model-based game tree search 13
1.18 From action planning to video surveillance 14
1.19 Formalizing task and motion planning 14
1.20 Discretization the state space with macro-actions . . 14
1.21 Symbolic planning 15
1.22 Formalizing task and motion planning 16
1.23 High-level taskplanning with simulation 16
1.24 State transition with petrinets 17
1.25 Task planning with motion graph and tracking control 18
1.26 Task model grounding 19
1.27 Task model as a Finite state machine 20
1.28 Sampling the state space with a animation language . 20

1.29 The RRT Connect algorithm 22
1.30 Random-MMP . 22

2 Neural networks 23
2.1 Converting a domain into a task model 23
2.2 Complex hierarchical annotations 24
2.3 Task model building with motion capture annotations 24
2.4 Motion Synthesis with neural networks 25

3 Example 25
3.1 Creating a task model from scratch 25
3.2 Multimodal solver with unspecified starting point . . 27

References 27

1 Planning

1.1 Symbolic model checking for PDDL planning

Suppose, we have created a pddl model for a pick&place robot. The
pddf file contains action primitives like grasp, pickup, place and
move and has defined the effects of the actions. Now we are planning
something and the planner is producing the plan:

opengripper, move right, down, close gripper
If we want to run the plan on a real robot we will notice a failure.

But why? Was the idea of use a pddl domain model wrong, was
AI planning in general a bad idea? No, what we have recognized is
simple a gap between our domain model and the real world. Such a
gap is natural. The problem is, that an abstract symbolic model is not
able to predict for all cases the future. Compared to the real world,
or a numeric simulation in Box2D such an abstract model is inferior.
That means, the plans which are produced by the system can’t be
executed on the robot, otherwise they will result into failure.

The general question is: can we trust our domain model? This
has to answered with no, in case of doubt, the domain model isn’t
working and only sometimes the produced plans are valuable. But
what prevents us, to make a dedicated model checking step first and
try out, how good our model is? And if the model checking fails, we
simply ignore the generated plan.

The surprising fact is, that it is possible to run a robot with a semi-
accurate domain model. If the PDDL file is only correct in 50% of all
cases, that means, that in thses 50% cases, it will produces valid plans.
Otherwise the planner generates an error message. That the human
operator can improve the action model, or he can simply ignore the
situation.

1

Let us make an example, in which we are using a pddl file which
contains from the beginning an error. The pddl file knows to actions:
“opengripper” and “down”. According to the opengripper command,
the effect will be that the robot gripper opens up, what the PDDL file
isn’t aware is, that this feature never worked, because the servo motor
is broken. In contrast, the other command “down” works great. It
brings down the robotarm to the object. The good news is, that we
can profit from the partly working domain model. It is possible to
control the robot a bit and ignore the non-working parts. That means,
the htn-planner wlll produce the correct plan, if the goal is simply to
move the robotarm. Only if the goal has to do with open the gripper,
the plan isn’t working.

It is important to see a broken domain model not as an exception
but as a normal behavior. Because it is impossible to guarantee that
the pddl file was implemented perfect and that the abstract action
model is able to predict the reality. What we only can say is, that the
PDDL sometimes is right.

Perhaps it is time to explain the difference between lowlevel actions
and a high-level task model. On the lowlevel side, a robot control
system is remarkable simple. A robotarm has not more then 3 dof,
and each of them is realized with a motor. What the system can do is
activate each of the motors:

motor1=-1
motor2=+0.5
motor3=0.2
As a result, the mechanical construction is moving. More switches

and sliders are not available that is the overall robot system. The only
problem is, to transfer these lowlevel actions into a longer plan. In
the timeperiod of 30 seconds, the motor-movement can have different
parameters, and this result into a well known state-space which is
very huge in it’s dimension.

The idea behind HTN-planning is to reduce the state space with
special heuristics. And for doing so, a so called action model is
used. An action model is a constraint which combination of servo
commands are useful and which not.

Structuring the state space The major task of a htn-planner
is to simulate plan execution. It gets a plan like “opengripper”,
“moveright”, “down” and calculates what the future game-state will
be. This evaluation is nessary, because we need to test random plans
until one of the plans is fulfilling the goals. There are two problems
in plan-evaluation: at first it is unknown how the action model looks
like, and first it is unclear if a given action model produces correct
predictions.

Let us go into the details. The lowest layer of the robot control
system is determined by the hardware. If the robotarm consists of 3
servomotors, it is a 3DOF system and each of the motors can be driven
forward and backward. Everything above this lowlevel layer can be
specified freely. We can define an action model which 6 motion
primitives, or with 60. The aim of the action model is to reduce
the state space, that means to give a smaller amount of possibilities
in which the servo motors can be controlled. For example, if the
action model contains only two motion primitives “opengripper” and
“Closegripper” the state-space is very small. We can’t do any useful
task with the robot.

At a baseline we can suppose a physics engine like Box2D which
is similar to to real hardware and is able to predict the reality. The
main problem with Box2D is the same as with the real world: the
state space is huge. LIke in a physical model, we can build a 3DOF

Figure 1: push task

servomotor system in it and let all the motors run forward but it is
unclear what the control parameter are to reach a certain goal in the
simulation. The Box2D engine is forming a game, and the aim is to
find a path through the game.

Describing symbol model checking is complicated so perhaps an
example will help. At first, we need an action plan which is tested
against the HTN-planner:

1 . o p e n g r i p p e r
s e r v o 1 = .5 f o r 2 s e c o n d s
s e r v o 1 =0 a f t e r i t

2 . m o v e r i g h t
i n i t m o v e

s e r v o 2=−1
m o v e r i g h t

s e r v o 3=−−3
3 . down

s e r v o 1 =0
s e r v o 2 =0 .8
s e r v o 3 =0 .2

What is given in the listing is a detailed plan which contains high-
level task descriptions and the detailed lowlevel commands for the
servo motor. There are many possibilities what to do with that plan.
The first option is, to run the plan against the HTN-planner. The
second option is to run it against the Box2D engine and the third
option is to test the plan on the real robot.

According the introductory remarks, the real robot and the box2D
simulation can be stated as equal. So we need to test the plan only
against two remaining instances: the HTN-planner and the box2d
engine.

1.2 The advantages of a symbolic planner

Suppose a robot arm should push a box in a 2d map with a topview,
see the figure 1. The movement of the box is given by the Box2D
physics engine, that means, the box will behave realistic. The ques-
tion is: what are the push-actions to bring the box to a certain point
in space?

The first approach might be to program some kind of behavior
tree. It is possible to write down in the sourcecode that the robot
should push in a certain way to the box. This kind of technique has
the disadvantage that it is fixed, the code for running the robot can’t
be changed later, it is a heuristics but a bad one.

The better idea is to program a declarative model which can be
searched by a planner for an answer. The first model is given by the

2

Box2D engine itself. Bux2D is able to predict future game states by
simulating them:

f uturestate = box2d(input)

Box2D can only predict the next timeframe. We can give as input
a value and box2D will print out the box position as a reaction. If we
are putting this into a for loop it is indeed possible to determine the
plan to push the box. This problem solving technique is similar to
computerchess which is also based on simulation.

The sad news is, that the computational effort is to high. If we
want to solve larger problems with a long time horizon it will become
impractical.

The topic of this chapter isn’t given by random. The term “sym-
bolic planner” is the answer to the problem and helps to reduce the
CPU consumption. The basic idea is to invent an arbitrary game
which follows different rules then the original one. Our original game
was controlled by the robot. The robot (a circle) can move on the
map and as a reaction the box is pushed. In the new game, the box
can be controlled directly, it gets natural language commands like
“left”, “right” and “rotate clockwise”. After the box has received such
a command his position is updated on the screen. To bring the box to
a certain position is simple, because we need only execute a series
of commands like “left, left, up, up” and the box is on topleft of the
map.

Now we have to different games, the original one in which the
robot can be controlled and the more easier game in which the box
can be controlled. The problem of mapping both games together is
called in the literature “grounding”. Grounding means, that there are
at least two physics engine, and a failed grounding is equal that the
mapping is not possible. And now comes the magic trick. We can
use a box2d solver to realize the grounding. A box2d solver can be
used, to determine which movements the robot has to do for execute
a high-level task.

THe new game (direct box movements) is the high-level task-layer,
while the robot pushing actions are the lowlevel motion layer. A
box2d solver produces the lowlevel actions, while the task-planner
answer the question which commands has to be given to the box. Eh
voila, the problem is solved. What i have described here is called in
the literature a hierarchical task and motion planning system. It needs
very little cpu consumption and is able to generate the commands for
pushing a box.

If a combined task- and motion planner is so powerful why it is
not used widely? The problem is, that programming such a planner
in software is complicated. The early attempts were done in the
1960s under the term “production system”, since the 1990’s the
literature has understand the subject better and call it correctly “task
and motion planning problem” because there is a symbolic planner
and a lowlevel numerical planner at the same time active. And it
is possible to extend the basic idea with much more features, for
example to generate the action model autonomously which makes
everything more complicated. The rough basic idea is to use only 2
layers (lowlevel and high-level planner) and to program the action
model by hand.

If somebody reads the last paragraph he will perhaps noticed, that
even in the year 2018 a task- and motion planner is not used by the
mainstream. The reason is, that the most complicated programming
exercise for game programming is a physics-engine itself but not
more complicated tasks like a solver for a physics engine. And to

extend such a solver with a symbolic task model is very advanced.
That means, the number of tutorials and working code is limited.
That means, from a theoretical standpoint it is the right way to go,
but from the programming perspective this is unexplored.

More recent publications since the 2010 are separating between
natural language instructions for describing high-level tasks and nu-
meric values for describing lowlevel actions. That means, a symbolic
planner is always guided by a lexicon or a grammar and understands
action words like “move”, “push”, “left”, while the lowlevel mo-
tion planner is based on numerical simulation and number-crunching
which leads into physics engines like Box2d.

The reason why the high-level part can be expressed in natural
language better has to do, that natural language is per default a
high-abstraction language. A concept like “move right” is a broad
description of a task which is far away from mathematical terms. Or
to explain it from the other side. If the aim is to epxress a task on a
high level layer, it is the perfect choice in describing the task with
natural language. A description like open the box, take the object,
move to the kitchen is very high-level and leaves out all the details.

1.3 Emulating IPL-V
The first AI symbolic reasoning systems were developed in IPL-
V which is a list processing language for mainframes. Or to be
more specific, it is an assembly like programming language without
any syntax which is very powerful but hard to learn. Today, most
programmers are not familiar with IPL-V or the later developed
LISP system. Their main advantage over today’s C++ was, that list
processing allows to change the sourcecode at runtime. The early
symbolic reasoning systems used this feature heavily.

But there is a bypass to that. In C++ it is possible to include the
“python.h” library which gives us access to a runtime virtual machine.
The command for executing a python string is:

PyRun_SimpleString("print 1+1");

That means, we can change the string at runtime and change a
program at runtime. This emulates the IPL-V programming language
but uses modern C++ and Python programming style. What can we
do with an embedded python interpreter? We can at foremost add
and delete sourcecode while the c++ program is running. In normal
C++ programming technique, all classes and methods are fixed. They
are compiled into a binary executable. It is not possible to add a
class after the user has send such a request. With the new embedded
python interpreter, the C++ program contains a somewhere in a class
a string, and the string contains of the python sourcecode. This string
is at the first start empty. And the user can add lines to the string at
runtime, for example he can add new python classes, new variables
and new methods. And this can be executed by the interpreter.

Compared to the powerful IPL-V and LISP language this is not
a new invention. It was realized 50 years ago. But it is a bit hard
to recommend to learn IPL-V only because we need self-modifying
sourcecode. The more modern approach in programming is without
any doubt C++. And the idea with an embedded interpreter is a good
mixture between both.

1.4 Symbolic planner for regrasping task
Suppose a robot hand is holding a box. In the manipulation task
the fingers of the robot hand has to regrasp the object. With manual

3

Figure 2: regrasp planner

control this is an easy challenge, because the human operator simply
changes the position of the fingers. Realizing such behavior with
an automatic planner is much more complicated. At first we can
describe, what the robot can do on a physical level. He can move
each finger, because a servo motor is in control of the system. The
open question is: how does look the servo control parameters in the
regrasp task?

The good news is, that in theory the problem can be solved by
a symbolic planner which works hierarchical. The top layer of the
planner knows high level actions which can regrasp the finger to a goal
position, and the lower level of the planner are calculating the exact
control movement to reach the subgoals. To understand the advantage
we must go a step backward into the domain of reinforcement learning.
The main problem here is, that a planner is able to try out alternatives,
but he is not aware if the action was an improvement or not. Some
authors have mentioned, that this problem can be overcome with
guided policy search and reward shaping, which is equal to invent a
feedback to the planner.

Let us go into the detail. The planner can execute a random move-
ment. He sends a randomized parameter to the servo control. After
executing the action, the system is in a new state. The question is:
does this action has improved the situation or not? The idea of a sym-
bolic planner is, to answer this question. A symbolic planner is some
kind of subgoal generator. The main goal was: regrasp the object, and
the symbolic planner is converting this goal into the subgoal: move
the right finger below the object.

The transformation from higher goals into lower goals is driven
by simulation. That means, the symbolic planner is able to execute
also random actions and can determine the follow up state of the
system. If the system is in the goal state, then the subaction was right.
From a game-theory perspective, a symbolic planner is inbetween the
high-level goal of “win the game”, to the low level possible actions
in the game.

Predicting the future A symbolic planner works as a qualitative
physics simulation. It is possible to send a command to the engine,
and the simulator predicts the follow state. In contrast to a numerical
Box2d like simulation, the prediction step is longer. The idea is get a
higher abstraction level.

The derivative game consists of 10 possible places and 3 pieces
who can moved between the places. The game engine is able to parse
an action like “move A to place 1”. And the current state space is
described by “A=2, B=7, C=5”. It is some kind of semantic enriched
game, because it is not storing the physical location of the robot
fingers, but the game engine thinks, that the game has to do with a
table like arrangement in which the pieces can be moved on positions.
Suppose the piece A is on place 2. Now we want to move also the
piece B to the same position 2. If the game engine is programmed

Figure 3: derivativegame

right, it will prevent such a move and call it illegal. It doesn’t fit to
the rules. Or suppose we generate another condition, in which the
bottom line (contains the positions, 6,7,8) is empty. This will produce
an output “object lost”.Because it is also given by the rules, that on
every line at least one pieces must be available.

The advantage of a derivative physics engine is, that it is possible
to calculate possible moves very fast. We doesn’t need to ask the real
Box2D engine what happens in a certain condition, we simply ask the
symbolic game engine. In theory, this will save a lot of CPU power.
The only bottleneck is, to program the qualitative physics engine.

Suppose a qualitative physics engine is available. The benefit is,
that we no longer need the Box2D physics engine. Instead we can play
the game against the symbolic game engine. We can enter commands
which are executed and the new game state is shown on the screen. It
is from a technical perspective a normal simulator. We can start the
game, execute some moves, for example “move A to 1, move C to 6”
and then we can see how the new state look like. The most important
feature is, that it is possible to send even random actions to the game
engine and see what will happen. And we can generate a game tree
out of these movement to track longer action sequences. This allows
us to bring the game engine into a goal state. That means, we only
say that we want to reach state “A=3, B=8 and C=10” and the planner
will find the correct action sequence autonomously. It is the same
method, that be used for playing computer chess.

Physics Engine How can we call a qualitative physics engine, a
derivative game or a high level prediction engine? According to
the definition it is simply a physics engine, because it can predict
the future position of objects in space.There is no need for a new
name, the old one is well enough. The only difference to a out-of-the-
box physics engine like Box2d is, that our new engine is developed
from scratch and isn’t very realistic. For example if we execute the
command “move A to place 3”, then without any delay, the piece A
is on position 3. That is completely unrealistic, because in reality
such a finger movement takes time and will produce steps in-between.
The system can be called a bad programmed physics engine, which
is usually given by HTML5 cooking games in the internet. They
are simulate a situation, but because of any reason, the programmers
didn’t implemented a realistic physics engine but only utilized a fall
back system from the 1980’s in which cpu time was expensive.

1.5 Qualitative physics engine explained
Before introducing qualitative physics simulation, first a short look
into traditional physics. In a blogpost is explained what the idea is:

“When you throw a baseball, it moves forward at a constant

4

velocity. [...] Every method of numerical integration for
Newton’s laws involves some manner of maintaining a
clock and doing calculations for tiny little snapshots in
time.” Burak Kanber, 2012, 1

From a programming perspective, numerical integration is realized
with a vector class and mathematical formulas. In the blogpost
sourcecode is given, and it is very helpful if somebody want’s to
program a physics engine from scratch. The sad news is, that this
is not the way what Artificial Intelligence need. Because at the end,
we will only have a discrete timestep based physics engine which is
comparable to Box2d, ODE and all the other well working engines
available. From the perspective of game programming there is no
problem with it, because a timestep based simulation is exactly this
what Angry Birds and topdown carracing software needs. The game
loop is executed 60 times per second, and the physics engine delivers
the coordinates of the sprites, which can be displayed by the graphics
card.

Qualitative physics engine is about high abstraction. It means to
ignore the mathematics and control the simulation with language
commands. In the example with baseball throwing the question is:
what is the position if we throw it hard, soft or middle? Sometimes
such a software is called “Intuitive Physics Engine” [10], but the aim
is the same: to predict an outcome of an action on a high-level. What
fuzzy logic and qualitative physics is about is to raise the abstraction
level. The sideeffect is, that such a physics engine is faster, that
means it can predict in one step a large timehorizont into the future.
This makes its perfect for running a solver on top of it to determine
the correct actions. Such a solver is called a task planner.

ACT-R can combined with a modul called “Predictive ACT-R”
which is a qualitative physics engine. [11]. In the paper the term
“predictive thinking” is introduced which is heuristics for reducing
the state space. Instead of playing according to a policy, the idea is
to simulate the game into the future and decide which is the better
outcome. Or to make the point clear. Without thinking some steps
forward, it is not possible to make a decision.

Programming a naive physics engine There are two possibilities:

1. Data driven approach with neural networks [12]

2. manual programming

The data-driven approach seems at the first impression the better
way of implementing a physics engine, because no programming is
needed. But the concept didn’t work for normal physics engine, so
why should it work for naive physics? All the mainstream physics
engine like Box2D and others are not generated with deeplearning but
programmed by hand. The usual workflow is, that the programmer
at first read a theoretical paper about Newton law and linear algebra,
programs then some C++ classes and releases version 0.1 of his own
physics engine. Another github user is testing out the sourcecode.

According to the literature there were also some trials undergone
to build physics engine not with programming but with neural net-
works. But these attempts failed. So it is rational to accept, that also
for a naive physics engine which works more abstract only manual
programming will work. That means, somebody has to write down
the theoretical idea, for example a grasping model, and then the pro-
grammer can implement the model in sourcecode. The bottleneck

1http://buildnewgames.com/gamephysics/

Figure 4: walking model

todate is, that only few theoretical descriptions about naive physics
model are available. In most cases such a model is equal to a board
game. There are some rules, action primitives and an outcome. It is
not so complicated to describe it in a paper, and it makes no sense to
discard the idea and switch over to neural networks.

Example A good example for a naive physics engine is the “Soc-
cero Board Game”, it is a soccer simulation for the tabletop and
works with dices and movable player position. The main advantage
over a normal physics simulater like Box2D is, that Soccero has some
rules. That means, the player can only move in a certain way. This
reduces the state space. The soccer game is tranformed into an easier
to manage game, and the gametree can be searched completely like
the chess game can be searched. Transforming a domain into a board
game is equal to a naive physics engine and this is equal to be able to
program an Artificial Intelligence. Another example is the Formula
D boardgame, which comes from the domain of racing and also helps
to reduce the state space.

1.6 Intuitive Physics engine for a walking robot
An intuitive physics engine has nothing to do with a mathematical
model or differential equations, it is instead a physics engine which
receives commands from the environment and is able to predict the
outcome. In the figure “walking model” a game is presented which
contains of two legs. Instead of using a sophisticated Box2D engine,
the physics engine was self programmed, but the model can parse text
commands like “front leg up”. After receiving such a command, the
physics engine shows a reaction, in this case the fore leg position is
changed. It is simply an animation system which allows the designer
to try out some movement and see how the result will look like.

The most interesting aspect is, that such model isn’t an artificial
intelligence, it is more an animation simulator. That means, it is
created from scratch, contains a class and in the class the angle of
the two legs are stored. Additionally the output is graphically to get
a better impression. And for the environment, the physics engine
provides some basic commands. What the user can do is sending a
command to the engine, and then he sees what the result is.

It is obvious, that the engine is not very accurate, because according
to the physics laws, the resulting second picture isn’t possible in
reality. The biped robot would fall down, but in hour model such a
condition works. That means, there is a gap between the intuitive
physics engine and a realistic box2d physics engine.

The reason why such a intuitive physics engine is valuable has to
do with a simplified state space. If the engine contains variables and
a fixed amount of commands, then the number of possible states is
limited. There are no longer millions of possible ways the legs can
look like, but only a limited amount of them. In our case the physics
engine can interpret only one command, but it is possible to extend

5

http://buildnewgames.com/gamephysics/

Figure 5: walking physics engine

the model so that 10 commands are understood. And now comes the
magic. If the engine works, it is possible to script a walking gait. It
is simply a number of commands which are send in sequence to the
physics engine, and this will make the model walk.

Such a script can be interpreted like a trajectory through the state
space of the newly created game. The game is invented from scratch,
it is called “physics engine” and contains the variables and commands
the programmer need. Or to explain it from a different angle: it is a
high-level task planner for testing out possible plans. The pipline for
creating such a model is remarkable easy. The original vector graphic
was designed with the inkscape software, it is simply a concept
drawing. After drawing some examples, the next step is to program
the engine in a high-level programming language like C/C++. And
that is our walking model.

1.7 The benefit of a qualitative physics engine
The best practice method for a robot control system is a physics
engine from scratch which is tailored for the domain. The principle
is called in the literature a “naive physics engine” and is equal to a
predictive simulator. But why exactly should somebody invest his
time into programming such an engine, if this new engine is different
from the physics which is happening in the normal simulator?

Let us investigate a given physics model in detail. The figure
“walking physics engine” shows a model which contains of a torso,
two legs and some commands the engine is able to parse. The user
can enter an action, and the physics engine will move the legs. What
the engine is doing is mainly to convert a textual input like “leftleg
forward” into a mathematical notation which changes the position
of the legs. On the first look, the model is useless because we want
no animate a ragdoll body which is hanging in the air, but a robot
who walks in a Box2D physics engine. If we are executing the action
“leftleg forward” in a physics simulator like Box2d the robot will not
walk, he will loose his balance. So what is the deal, why is the naive
physics engine right?

It is important to distinguish between taskplanning and motion
planning. It is correct, that the naive physics engine is not a motion
planner, the system was never developed to control the servo motors
on a lowlevel layer and balance the robot. The better name is a
symbolic physics engine, because it gives abstract subgoals. Let us
investigate the first frame after the command “leftleg forward”. What
the engine is telling us is only how the general idea is. That means,
what the robot has to do in the next 2 seconds. The engine is telling a
story about which leg has to moved, and how the system will look
after the action was executed. A separate motion planner is needed to
convert this high-level action into a lowlevel servo command. That
means, we are developing the taskmodel for the reason to develop the
motion model next.

Figure 6: hierarchical pathplanner and graph grammar

It is right, a high level task model is useless without the lowlevel
motion model. But without a high-level physics engine, we are not
able to figuring out what the subgoals for the planner are. A well
description for a native physics engine is to call the device a subgoal
generator, because the model provides a rough constraint.

1.8 Hierarchical pathplanning

A standard pathplanner is able to parse a sequence of walking com-
mands. The robot can execute the following plan:

up, up, left, left
And the planner determines the position of the robot the last “left”

command. The difference between pathplanners like A*, RRT and
naive brute force is how they store the sequence of possible plans in a
graph. For example, a naive brute force solver doesn’t have any kind
of graph, he simply tries out a random walk until the robot is in the
goal.

The problem with all pathplanners (including the advanced RRT
algorithm) is, that they fail on bigger maps. If the maze in a game is
1000x1000 pixels huge, or bigger then the pathplanner will run into
trouble. The generated graph is to huge to calculate it in realtime.
The standard technique to speed up the pathplanning is a concept
called navmesh. The maze is separated into zones and in each zone
the path is planned separately.

To understand the concept of a hierarchical pathplanner better we
must look on the possible plans which can be parsed. A normal
non-hierarchical pathplanner accepts only a path like “up, up, left,
left”. The action model is, that the robot is in a maze can move in
four direction for only one field. A navmesh hierarchical pathplanner
will accept a multi-modal plan like this one:

up, zone2, down, down
That means, the robot can move one step in four direction but he

can also teleport between the zones. The hierarchical pathplanner
is able to understand one more command, the zone action. This
additional command helps to reduce the state space drastically.

Instead of talking about pathplanner it is time for figuring out
action models. A simple action model for a robot in a maze is to
move only in four direction by one step: left, right, up, down. A more
advanced action model is, that the robot can move larger distances.
Here the action model understands commands like “10left, 10right,
10up, 10down”. And the most advanced form of an action model
is, if the robot can addtional teleport himself between the zones and
bypass the normal laws of physics.

Implementing a reduced action model which contains of 4 possible
moves is easy. This is done by every pathplanner. The disadvantage is,
that such an action model will fail in larger maps. The more advanced
form is an action model which contains more possible actions on

6

Figure 7: graph grammar

different layers. This is equal to implement a heuristics. The rule of
thumb is given by the action model. Such a system can be solved by
a STRIPS like planner in a hierarchical fashion which saves a lot of
cpu ressources.

1.9 Knowledge based simulation for decision mak-
ing

A short look into the debate around Artificial Intelligence in the
year 1990 comes to the conclusion, that early AI researcher have
understood the importance of knowledge. The idea in that area was
to use Prolog and LISP to describe knowledge for a machine with the
aim to program intelligent software. Unclear was, how exactly Prolog
can be used for modeling heuristics in a machine. The answer is
simple and is called “knowledge based simulation”. That means, the
expert system has to be designed as a physics engine for predicting
future states. Knowledge means, that the simulator is able to calculate
what comes next. A simulator for a jumping robot is able to predict
the landing zone, that means in which x/y coordinates the robot will
jump onto. And a simulator for an autonomous car will predict what
will happen, if the car is driving on a road.

Formalizing knowledge without simulating the process isn’t possi-
ble. It is only the pre-step for such a system. For example, a textual
requirement can be a note, about rigid body physics. But that note
isn’t the executable software, the requirements has to be translated
into sourcecode. Knowledge engineering means to write a simulator
for a domain. That can be anything: a pick&place task, a car, a walk-
ing robot or a UAV. There is no difference between programming
a physics engine and programming a knowledge based simulation.
In most cases, LISP and Prolog are not the perfect choice in doing
so. In theory, it is possible to program a physics engine in LISP
but object-oriented langauges like C++ are better suited for that task.
They were developed for simulation purposes in mind and they can
be executed faster on standard hardware.

Usually, a physics engine is not recognized as an AI system. But it

is the most powerful example available. A physics engine contains
all the heuristics about rigid body dynamics. The only problem with
today’s physics engines is, that they were not programmed with AI
in mind. So there is a need for implementing better engines from
scratch. The major difference is, that AI capable engines are able
to predict larger horizons and that they are containing layers which
makes the search in the state-space easier. The overall principle is
the same. Like a physics engine in a game, it is able to send a plan to
the engine and simulate what will happen. The impressive advantage
over behavior trees and simply AI scripting techniques. is, that it is
possible to send a malfunction plan to a physics engine. A possible
plan for a car simulating engine could be, that that car should drive
even the signal on the road is red and the engine will predict what
will happen then.

Such feature allows the planner to generate a game tree out of the
physics engine. He can send random plans to the engine and create a
graph with the outcomes. Every node gets a score and this will give
back the best possible plan for every situation. The technology is
used in the domain of computer chess since years, but can be adapted
to robots as well.

From a mathematical standpoint, knowledge based simulation is a
very elegant method for realizing Artificial Intelligence. The basic
idea is to simulate a domain with a hierarchy of physics-engines and a
solver can try out different possibilities to find the best plan. Realizing
such an architecture is not a theoretical problem but depends on
software engineering. It is only a question of coding and then the
system will work.

Computer simulation is well known since many years, but it’s
capabilities are underestimated. Usually such systems are not rec-
ognized as Artificial Intelligence, but they are the key element. The
basic idea behind Computer simulation is, that the system contains
some variables, for example a position of the robot, and methods
will change these values by executing commands. A simple action
might be “walkright”, which changes the x-position of the system.
Realizing such simulating systems in software is easy: the C/C++
programming language with the object-oriented paradigm is the best
choice, but any other modern language like Python, Java and C# are
capable in doing so too. The most remarkable aspect is, that a com-
puter simulator has no intelligence in the classical sense. Because the
physics engine doesn’t tell the robot how to walk, it can only simulate
what will happen, if the leg is moved forward. The missing feature of
transforming a simulator into an AI is called “AI planning”. Here is
the idea to utilize a given physics simulator and figuring out random
plans. This can be done with well known search algorithm like RRT
and A*. The reason why this is successful has to do with the fact,
that a physics engine provides a reduced state-space as default. If the
engine only accepts two commands “walkleft” and “walkright” the
gametree isn’t very huge and a brute force solver is able to search for
a plan.

I’m not the first author who promotes knowledge based simulation
for realizing artificial intelligence. Since the 1980’s many attempts
were undergone for realizing such systems. In all cases without suc-
cess. All the major automation projects for improving manufacturing
or simplifying computeranimation for making movies ended in failed
projects. The reasons why are diverse:

• wrong programming languages (for example LISP)

• slow computer hardware. A typical workstation in the early
1990s was not able to do anything useful.

7

• lack of communication in the software engineering. Most
projects in that time didn’t know distributed version control
systems for producing software in teams.

• misunderstanding about computer simulation in general

• inflated project goals like automating a complete factory together
with limited resources

At the end, it is normal that all knowledge based simulation projects of
the past failed, and they will be wrecked in future. But the theoretical
concept is right and it is only a question of the details how to realize
it.

1.10 Everything about a Physics Engine for bounc-
ing balls

The gaming community is remarkable well informed about physics
engine. They are not only able to develop working code for bouncing
ball systems but the engines are often much more advanced and can
simulate rigid body physics. The problem with this enthusiasm is,
that the energy is invested in the wrong position because the question
is not how to program a more realistic physics engine, the question is
how to implement a different kind of engine. But let us start with a
simple example, so previously mentioned bouncing ball example.

The key facts are explained fast: a ball can move in a grid and
after colliding with the walls or an obstacle the movement direction
changes. Realizing such an easy physics engine can be done by
beginners. All what we need is a class ball, which contains a position,
a speed and a direction. The class needs further a method, called
“update()” which determines the next position of the ball. In the game-
loop we are calling the update method every frametick and visualize
the position graphically on the monitor. Thats all, our bouncing ball
simulator works.

If someone is interested in the concrete sourcecode, I’m sure that
stackoverflow and github can help. They have at least 100 repositories
with bouncing ball simulation and every month some new beginner
program their own variant. And now comes the difficult part. To
improve the simulation we must program a slightly different physics
engine. The new requirement is, that apart from the update() method
a more advanced method has to be implemented. To understand the
needed feature in detail we must go a step back and describe what
our physics engine from the introduction is able to provide.

The normal physics engine works in the single step mode. We call
the update() method, and the ball position is calculated for the next
frame. The aim is to use the new ball position for drawing the ball
onto the screen. IF the gameloop produces 25 frames per second, the
update() method in the physics engine is called 25 times per second.
Such a physics engine is tailored for the need of a graphics card.

In contrast, a qualitative physics engine has a different goal. Here
is the idea to provide what if scenarios with different time scales and
different init condition. A possible request to a qualitative physics
engine might be:

• what happens, if the ball is in the center and moves to the left?

• what if not one but 100 timesteps are executed?

• suppose the ball is on the left corner, has a small speed and
a direction with 45 degree. Will it hit the wall in the next 2
seconds?

Figure 8: Model for handover task

That are some example questions, a qualitative physics engine has to
answer. Like the normal physics engine, it should also answer the
request “what happens, if we are going only to the next frame and let
all parameters unchanged”. It is clear, that the advanced form of a
physics engine works more like a interpreter which is able to execute
a domain specific language. Instead of a single command “update()”
it provides much more methods. Implementing such a physics engine
is possible from a technical perspective, but it is seldom realized
because most developers don’t see the advantage. The reason number
one is, that a qualitative physics engine can work hand in hand with
a solver, and the solver is executed by a BDI agent framework. The
agent can send a request like this one: “what sequence of actions is
needed to bring the ball in the left corner?” Answering this question
can only be realized with a solver pipeline. That means, different
simulations have to be run after each other and a scoring method is
used to determine the best plan.

1.11 Modeling a handover task with two robot
hands

That models are important in robotics is widely known, but how
exactly can such a model be created? Do we need the QSIM software,
neural networks or the R programming language? No, in it’s easiest
form a so called model is a vector graphic created with Inkscape.
The file is exported into the PNG format to insert it into a document.
What we see on the picture is an object with annotations. It is like a
board game because the robot-hands can take a certain place relative
to the object. The places are numbered by 1 until 10. The

left hand is symbolized with 2 red fingers, while the right hand is
colored in green.

The functionality of the picture is limited. It’s not a robot controller
and it’s not possible to insert the picture into sourcecode. The idea
is only to modeling a prototype. That means, to get an idea how the
system would works, if it is implemented. What the model provides
is a notation. We can say for example, that the fingers of the left hand
are on position 1 and 8. And now the goal is to bring the right hand
to the position 3 and 6. Without the picture, such a description don’t
make any sense, but in the context of our newly created board game,
it is clear for everybody what the meaning is.

In my opinion, such drawn models are the key concept to develop
advanced robotics systems. It isn’t a new modeling language, it isn’t
a mathematical concept, it is only a vector drawing which explains a
board game to a wider audience.

The next step after creating the picture is twofold. At first, the
picture has to be converted into executable C++ code. This can’t be
done automatically, it is a manual process. The programmer takes
the image and creates a class for storing the positions and creates

8

another class to bring the values onto the screen. The second open
question is the animation of the handover task. We must define, in
which sequence a task should be done, and which potential failure
can happen. This is only possible, if we are extending our model
with constraints, for example to prevent that two fingers can be on
the same position. It is possible to convert the drawing into a pddl
description, which is a declarative description of the interaction with
the environment. A pddl file can handle textual commands, which
have to be send to the model.

Why a model? Perhaps we should go a step backward and discuss,
if an abstract model is useful in general. Without a model, the task of
handover an object is defined by the robot itself. The robot has overall
4 fingers, A, B, C, D and each of them can have a position. That is the
complete model. The task is to move the fingers to the right position
over the timescale and this results into an handover. From a hardware
perspective, this description is correct, because the robot has indeed
4 fingers which have coordinates. But it is naive to assume, that
we are able to handle the state space without an explicit “handover
model”. That means, it might be possible to control the fingers, but
we will never get a useful result. The number of potential movements
is endless and a model-free reinforcement learning algorithm is not
able to realize the handover task.

Implementing a model in C/C++ Until now, the question was left
open how to convert a graphical model into executable sourcecode.
A C/C++ program contains of classes, variables and methods, but
can’t be programmed graphically. In contrast, the output of a drawing
program doesn’t know a programming language but only the PNG
format. So what is the deal? How can we overcome the gap?

A graphical model is a game description. Such a game can be real-
ized as a boardgame, as a card game or as a computergame. The game
contains usually of a description in natural language and some draw-
ings. The transformation of formal game description into executable
computercode is not a problem. Nearly all kind of boardgames have
been realized as a computersoftware too, for example backgammon,
monopoly, chess or reversi. And if a new boardgame was invented it
is only a question of time until the computer version is available. So
i would guess, that not the transformation into computercode is the
problem, but the invention of the game itself.

The problems with formal models from robotics domain is, that
they are usually very complex. The above description with the han-
dover task contains 4 fingers, 10 possible positions and an object, but
it is only a prototype. Such a model has to be described in detail to
make any useful decision with it. The question is: how many pages
do we need to describe such games, 10 pages us-letter, or 100 pages
with lots of figures? That is unclear. A well working robot model is
similar to a complex board games, with hundred of rules and lots of
subgoals. Inventing such a game from scratch isn’t easy. A working
example, which is very complex is called Knowrob and was realized
in the ROS ecosystem. It can be compared with a highly developed
board game with endless rules and constraints.

To understand the difficulty it is a good idea to imagine a new
domain, which has to be modelled as a board game, for example
robot-soccer. Drawing the board, the players and describe the rules
can be called a large project. Even if no lines of code has to be
programmed, the board game itself has to be written down.

Model syntax A formal model is not connected to an ontology,
to the Simulink Simscape multibody software or to a deeplearning
architecture. The easiest form of a model contains of a concept
drawing, a UML chart and some textual description. The general idea
behind a model is not the model itself, but a development phase in
the software engineering pipeline. Modeling is the step in which a
requirement is transfered into prototypes. The constraint under which
modeling takes place is given by a time frame. Modeling can take 1
week effort, or one year of effort. It can be done by a single person
or 100 persons. In all cases, the result of the modeling phase is a
PDF document. It contains figures, natural descriptions, UML charts
and pseudocode. The model itself is the pdf file but not executable
sourcecode. This will created in a different step after the modeling
phase.

At the same time, a model can also be described as a mathematical
model, aka a game. A physics engine is a model of the reality, it is
used to simulate something. Bringing both concepts together is easy.
Modeling means, to create a prototype for a physics engine. That
a preliminary steps as preparation for the programming itself. We
can call this modeling a model, because the idea is to draw the UML
chart for a qualitative physics engine.

1.12 Central pattern generators for biped walking
A central pattern generator (CPG) is a small neural network which is
trained for biped walking. Usually the overall network has not more
then 30 neurons. It can be any type of neurons, but in most cases
recurrent neural networks are used, because they can express more
complicated input-output relations. But how exactly works a CPG?

According to [9] a neural network produces a state-space trajectory.
To express it more colloquial, the neural network is able to draw a
spline curve. Sometimes the term oscillator is used because it looks
similar to what a sinus-oscillator can do: it draws curves. A biped
motion can be seen as a walk through the statespace. A sequence
of joint-angles controls the servo motor and this produces a motion.
The problem in biped walking and any other robotics task is, that the
state-space is very huge. There are without exaggeration billions of
possible trajectories in the state space. And trying them all is not
possible because it would takes years.

How it is possible that some pattern generators are able to produce
a natural walking gait? What learning algorithm were used? The
answer is called model based optimization. A model is a heuris-
tics to reducing the state space. Perhaps an example would help to
understand the case better.

At first, a motion capture device is required to record two sequences
of angles:

sequence1: 10,20,10,30,20
sequence2: 20,10,20,30,21
Now we define, that this is our model. Our model contains two

possible motion sequences. The only choice the controller has from
now on is to switch between the sequences. He can chose to run
sequence 1 or sequence 2. That means, our state space is reduced to
a selection of a given trajectory. Now we can train a neural network
to follow the state space. It is an easy task because the number
of potential decisions is small. That is the basic principle behind
any central pattern generator. At first, a model is constructed (often
with the help of motion capture devices) and secondly this model is
controlled by a neural network. The overall workflow can be called
an adaptive model.

9

Let us go a step backward to understand the principle in detail. The
major problem in any neural networks is to find the parameters. With-
out the parameters, the neural network will produce only a chaotic
pattern. The parameter problem is difficult to solve, even for smaller
neural networks which contains not more then 30 neurons. And to
be honest: in the domain of central pattern generator no one has
solved the parameter problem really. If we are connecting 30 neurons
together and want to train this system for doing a practical task, it is
not possible, because there a billions of possibilities how the weights
of the neurons can be selected. Even on modern nvidia deeplearning
hardware and with modern back propagation learning algorithm it
would takes million of years.

To overcome the problem, the state space has to reduced drastically.
Only a subpart of all possibilities makes sense, and the question is
which part exactly. Reducing the state space is equal to create a model.
In the domain of biped walking the model has to do with a walking
character. That means, the legs can’t move in any direction, they can
only move in a certain way. And now comes the misconception: the
neural network or the CPG isn’t able to create the model. The model
has to be given before the network is trained. The model is taken
from a medical book or from animation course. This model gives
detailed information about how legs can move and which movement
is not allowed. A biped walking model is equal to a board game
which has rules.

This given model will be extended by a neural network. That
means, some open parameters in the model are adjusted, That means,
the neural network is controlling the model and decides minor parame-
ters. The learning process is easy, because the number of possibilities
is smaller. So the model can be trained to walk slow or to run fast.

At the end we investigate the worst case. We are taking the biped
model out of the loop and only use the 30 neurons network. Can we
solve the problem? No, from a technical perspective the CPG is able
to produce the needed pattern, but we are not able to find the correct
parameters. We can only use trial and error until the network will
find a walking gait. Like any beginner of the OpenAI gym framework
knows, this won’t work, because after some iterations the network
will not increase the increase the performance. The state space is
too huge, it will never find a path through it. What i want to say
is, that a central pattern generator without a model of a walking
robot is useless. The other way around makes more sense. We can
use only the walking model and ignore the central pattern generator,
and it is also possible to program a walking controller. Instead of
a neural network it is possible to use a normal sinus-function or a
PDDL Solver to find the right parameters in the models. Because the
keyfactor in reducing the state space is the model but not the CPG.

CPG Model What a cpg is, is very simple. It is a neural network
which can be implemented in tensorflow or any other neural network.
But, this cpg neural network will never work, and it won’t produce any
walking gait. The most papers are not about the cpg itself, but about
something which is called a “CPG Walking model”. The difference is,
that a cpg walking model contains much more then only 30 neurons
which are connected together. It is more a detailed description of
the walking process. For example, there are legs and arms, and the
walking process is divided into steps. Such a animation model has
nothing to do with a central pattern generator, it is the result of a
motion capture capture anlysis together with an understanding of
biped motion. The funny aspect is, that CPG and a walking model
is often combined together. The reader gets the impression that

the neural networks control the servo motors, but in reality it is the
walking model.

It is important to separate between them. A cpg aka neural network
is a spline drawing system. It can parse huge amount of data and can
adapt the paramters to emulate the spline. But, using CPGs or neural
network without an additional model will fail. Because there is no
learning algorithm known which convergates the neural network into
the desired state. In practial application this results into networks,
which can’t reduce their error rate. This is especially true for CPG
like networks.

For getting better results, it is important to give the neural network
a prestep. Instead of learning the raw data, it learns the paramters of
a model. For example, if the model contains action primitives like
“leftleg up”, “rightleg down”, “hip up” it is possible to use a neural
network to generate these commands. And it is also possible to give
these commands a simple parameter which can also be learned by
the network. The trick is, that the model itself has only a reduced
state space of less then 1000 possible sequences and that it is possible
to test them all which is equal that the neural networks learns its
parameters. Again, the idea is not, that the parameters of the neural
network are adapted to the raw data, but only to the parameters of an
existing walking model.

The capabilities are not determined by the neural network itself
but by the biped model. If the model is able to climp on stairs, then
the CPG can produce also these signal. And if the model is very
simply and only supports walking ahead, then the CPG is limited to
that feature.

sinusoidal pattern generator A more simple to understand pattern
generator is called sinusoidal. Instead of a neural network a sinus-
function is required. Some papers claiming, that with this method it is
possible to control a biped walking robot. So the sinus-function must
be a powerful Artificial Intelligence powerhouse, right? In reality, a
sinus-function isn’t able to drive a robot, because sinus means only
a mathematical term like this one: sin(x+2)+ sin(x). Such a term
has no artificial intelligence inside and it is not possible to control
a complicated system with it. The reason, why it is possible to use
a sinusoidal pattern generator has to do with the walking model.
This has nothing to do with the sinus-function but it is a semantic
description what walking means. For example, walking consists of
two legs, which are connected with the torso, and there is a certain
sequence of movement, called gait-pattern. Running this model will
result into a movement.

What in the papers about sinusoidal pattern generators was de-
scribed is a combination between a sinus-pattern generator and a
linguistic walking model. Both combined together is indeed capable
of controlling a robot. The model is even robust under certain con-
ditions and can adapt the walking style to new requirements with a
learning procedure.

What I want to express is, that it makes no sense to focus on a
sinus-generator, on neural networks or on central pattern generators.
All of these tools are very boring and in case of doubt it is possible to
not use it. The more interesting part is the semantic walking model.
That is everything apart from the pattern generator. The walking
model reduces the state space into a smaller one and this is the core
feature for robotics control.

10

time servo1 servo2 servo3
1
2
3
4

Figure 9: motion capture for walking gait

1.13 Reducing the state space for a walking robot
Programming a walking robot is advanced but possible. That means,
somebody has done so before. The main problem is the state space.
If the robot has two legs and each of them has three servos, then we
need 6 servos in total what is from the hardware perspective no real
problem, but from the software side will the question arise who to
control all these servos in realtime. A single servo motor can have
a position from 0 to 360 degree, and six of them will multiply the
number of possibilities. The number of states in a single step can be
handled it is only 3606but what is, if we want to plan a sequence of
10 steps and each of them can have all possibilities. And this is the
main problem in robotics, that this state space is way to huge.

Classical algorithms like neural networks backpropagation, genetic
algorithm and RRT planner are not able to search in this state-space
for a certain plan. The good news is, that the answer is there. It
is called heuristics and the idea is to reduce the state space with
a domain model. The walking process isn’t chaotic process it can
be described. Such description are used in computeranimation and
they are textual and visual. A possible description is a sequence of
possible movement steps, the biped robot can do. Let us investigate
the most simple walking model. We are recording the servo angles
with a motion capture device and creating a table. And now we are
saying that the recording angle are exact the correct angles in our
model, it is a fixed trajectory to simplify the situation.

From the perspective of state-space everything is better. Instead of
searching in an endless space of numbers, the number of possibilities
is small. To be honest, the model knows only 1 possibility (the
recorded motion trajectory). And the playback of the model is to use
the value of the table and set the servos to that parameter. That means,
the planner has nothing to do, no cpu time is wasted.

Sure, the model will make a lot of trouble because a simple play-
back isn’t able to deal with distortions. So we can think about how to
make the model a bit more flexible. One example is to use random
variation, that means we let the parameter fluctuate a bit, another
option is the use paremeters from servo a for servo b even this wasn’t
given by the recording. In all of these cases, the state space remains
small. Even with fluctuation the number of potential walking gait
will be smaller then 100.

What modern robotics is about, is figuring out how to develop
better models. Somebody come to the conclusion, that the gait model
has to be programmed from scratch, other are trying out to record
given trajectories and so forth. The shared goal is to reduce the state
space with some kind of model. The holy grail is a model which
contains not more then 1000 possibilities and after playing around
with the free parameters the robots walks straight ahead.

The interesting fact is, that it is not important which optimizer or
solver is in the loop. RRT, neural networks, genetic algorithm and so
on are working all great, if the state space is small. Even a brute force
solver who is testing out all parameters will result into a walking gait,
if the underlying model was well designed.

Every model works with the same principle. It maps input values to
output values.In the given example with recorded mocap trajectories,
the input value are the raw data of a trial, and the output data is
the newly created table. A good model is grounded semantically,
that means major terminology from the domain is used as action
primitives to control the output of the model. In the case of a biped
robot, that would be a command like “left leg up” which produces
a certain gait pattern. A general rule is, that complex models are
difficult to program, while simpler (fixed) model are easy to program
but they are not robust against different scenarios.

1.14 States and constraints

A domain model can have a state. For example, a car can be on the
start position. All planning systems are trying to bring the system into
a goal state. A state is something which is happening at a time step.
The transition between states can be specified with constraints. For
example, a goal state of the car is the parking loft. And the constraint
is, that the car shouldn’t collide with any obstacle. If the constraint is
different a transition from start to goal state can be altered.

A model has a process flow, this is called a simulation. The flow
has to do with running the game loop which increases the frame
counter. Visualizing this is possible on a time chart. x-axis is the
timescale (0 seconds, 1 seconds, 2 seconds) and y-axis is a value
from the system, for example the car position.

Model based exploration A domain model is created with a spe-
cial need. The main purpose is, to use the model as an exploration
device for searching future states. A simple domain model which can
the car only in four direction will a have different exploration behav-
ior than a complicated one. The term exploration means what the
model can do if it is run by a random generator. Suppose the model
has four possible actions: left, right, up, down. Exploration means, to
try out different plans with that actions. A potential sequence could
be: left, left, right, up. If we are testing out many thousands of these
sequence this produces a graph, which is equal to the game tree.

What every model has to offer is a way to explore much of his envi-
ronment. It is not only a problem which can be summarized as RRT,
but it is the question of the model itself. RRT assumes, that the model
is given. That means, that are only 4 directions possible. The better
approach is to extend the original model by new possible actions, for
example with “long left, longup, longright, longdown”. Sometimes
this is called multimodal planning, because now the planner has in
total 8 possible actions to execute. This allows him to explore much
more of the map.

Why is exploration important? Because this allows us to search for
a goal. If the goal is to bring the car into the left upper corner, then
the logical step is to explore this movement first in a simulation. If
the planner has found a valid sequence of movements, they can be
executed. Let us define a simple example to show in which cases the
model isn’t powerful enough.

Suppose our car-model has only 4 possible movements: left, right,
up, down. Each action moves the car for exact 5 pixels into the
direction. Now we define as a goal to bring the car 10000 pixels
away from the starting position. The problem is, that the exploration
capability of the model isn’t ready to fulfill the task. Even with
creating a RRT graph, we won’t find the path to the goal. Only with
unlimited cpu ressource we are able to plan a path to the goal.

11

But what is, if the car has two modes: at first the well known small
movements steps to adjust the positions and then a movement to beam
the car in one of the cells of the maps. This converts the planning
problem into a hierarchical one. At first, we are searching for a path
through the cells, and then we can investigate how to come to each
cell. Our model was extended with new features, which allows to
explore better the environment.

RRT action model A vanilla RRT algorithm has the aim, to extend
the graph in all directions. A new node is add to the graph with a
uniform random sampling method. But, RRT makes no assumption
about the action model, that means in which direction the robot can
explores his environment. Understand the multimodal extension is
not easy. Perhaps a small example from the pathplanning domain
will help.

Many game designers have recognized that the vanilla RRT and A*
algorithms are not very useful in planning on larger maps. They will
generate millions of nodes and this takes to long. What in games are
used today are nav-meshes. That are heuristics enrichted pathplanner.
The high-level layer works on cells, and only the lowlevel layer works
with a classical pathplanner. At first, the robot is trying in which cell
the goal is, and then he plans a way from the center of the cell to
the exact position. This helps to reduce planning costs and makes it
feasible to planning paths on huge maps. From a theoretical point of
view, a combination between highlevel and lowlevel planner is called
a multimodal planner. Because the system has two layers. The robot
can execute a command from the high-level layer (move to a cell) or
he can execute an action from the lowlevel layer (move left, right, up
and down). The terms multimodal and hierarchical layer planning
are talking about the same.

In very easy planning task like planning the path on a small map,
it makes no sense to implement a multimodal planner. A simpler
vanilla RRT algorithm will solve the problem much easier. But in
large maps and especially in complex robotics task a multimodal
planner is indispensable. Let’s describe a robotics task which only
can solved with this high end layer planner.

A robot should jump on a wall, move to the box, switch to the
other side of the box, and push the box downstairs. This task is
more complicated then simple reach a certain point on the map,
instead the robot has to do a sequence of actions. From a input
perspective the game is surprisingly easy, because the robot has only
4 possible movements: left, right and jump. The problem is, that
these simple commands generate a complicated state space, which
can’t be explored with a vanilla RRT algorithm.

Pushing a box Suppose a robot and a box are both in game avail-
able. An RRT algorithm is exploring the potential movements of the
robot. Because of the uniform sampling the algorithm will explore
every position the robot can have in the maze. But, what happens
if the robot pushes the box? This is a second state space, which
wasn’t explored by the RRT sampler. From a previous game play it
is known, that is possible to move the box in any corner of the maze.
But the RRT planner will not recognize it, because he only samples
the positions of the robot,.

1.15 Modeling is easier then expected
The term modeling is usually used as a synonym for deeplearning
models or for differential equations. In the Scilab software it is

possible to create with Xcos package so called models, which can
be used for simulate multi-body physics and inverted pendulum. But
what is the essence of a model? A model is equal to an object-oriented
model, because this is the language which can be implemented as
computercode. Even complex mathematical formulas and non-linear
systems can be expressed with the UML notation language. Let
us give a short example: a walking robot. The robot has two legs,
each leg is a C++ class. The class contains the angle values for the
servo motors. Additional we need some methods to manipulate the
leg-class e.g. setting up a value for the gait pattern 0, pattern 1 and
pattern 2, which means to store absolute values of the joint angle to
the class.

What can we do with this model? Surprisingly very much, at
first it is possible to draw the content on the screen. The result is a
nice looking visualization of the legs. And then we can execute a
gait-pattern, which results into an animation. That principle can be
transferred to any other domain outside of a walking robot. The basic
idea is to use an UML editor and create a model like developing a
software program. This principle is called object-oriented modeling
of physical systems. The idea is, to use the UML notation not only
for describing a business application or a standard computer program,
but for describing the working of non-linear physical systems.

The concept behind a model is to transform high level natural
language into low level numerical data. The user sends to the model a
command like “leftleg forward” and the model converts this term into
a value like {20,10}. A model is equal to an abstraction. It simplifies
the situation.

1.16 Model based Central pattern generator for
biped walking

The major problem in Artificial Intelligence is called state-space
explosion. It is a situation in which the game-tree of a domain
contains billions of nodes and solving the game means to find a
specific node. If somebody is able to master huge state-spaces the
Artificial intelligence will work. Let us take a look into literature
how so called Central pattern gait generators have answered the state
space problem.

The first impression might be, that the neural network is the part
of the system drives the walking robot. In a central pattern generator
the network contains of neurons which are connected together and
a learning algorithm is used to determine the parametern. Learning
means to reduce the state space, so the CPG is an answer to that
problem? Nope. Nearly all working biped robots are working slightly
different. The first step in implementing such a system is to create a
so called model. In the case of a walking robot a model is equal to the
angle trajectory. An angle trajectory is a chart which describes the
joint angle for each timestep. On the chart the keyframe points are
given, which a connected with a smooth spline. If we are modifying
the curve, the walking pattern is slightly different. If the robot walks
slow, the chart looks different from running.

The trajectory spline together with a parametric adjustment is the
major tool for reducing the state space of a walking robot. Only for
detail adjustments like determine the right parameters a so called
solver is needed. That is a software module which works with genetic
algorithms, brute force search or with neural networks. A central
pattern generator is equal to such a a solver. That means, a CPG
isn’t controlling the robot directly but it is only the solver for a
previously created model. Leaving out the CPG is possible, but not

12

implementing the model will fail the project.
The main problem with optimization techniques like neural net-

works, genetic algorithm or stochastic search is, that they only effi-
cient for small state space. Small means a number of possibilities
lower then 1000. None of todays robotics problems like walking,
grasping and autonomous driving has a small problem space. That
means, it is not possible to use any of these optimizer directly on the
problem. Neural networks are surprisingly bad in solving problems
with a huge state space. What the user will see is a learning rate who
stands still, that means, the neural network isn’t able to improve his
performance. The problem has to do with the number of possibilities
in the state space. There is no magical learning algorithm available
which is able to search in a huge amount of space.

1.17 Model-based game tree search

Artificial Intelligence can only be realized with game tree search. The
graph has to explored for potential solutions and the node with the
highest score is the goal. The question is how to search large game
trees in short amount of time. One possibility might be the RRT
algorithm which is exploring the state space in all directions. But,
RRT fails for larger problems and uniform sampling is not enough.
A potential alternative is to use a model for searching in the game
tree. Such a model is a equal to a heuristic. To explain the principle
let us take the example of hierarchical pathplanning. A standard
pathplanner can explore only nodes which are in the neighborhood
of the robot. If we extend the model with a new option to jump
somewhere to the map, larger parts of the game-tree can be searched
in a small amount of time. The options the robot has to move in the
maze is equal to his behavior model. Improving the behavior model
results in a better heuristic and this allows to search the game tree
more efficient.

In the literature the concept is called multi-modal planning and
hierarchical task networks. In both cases a model is used. Instead
of sampling lowlevel actions, synthetic macro-actions are sampled.
What most literature didn’t answer is how a model looks like for
solve a certain domain. Some authors are trying to generate a model
from the input data on the fly, but the more promising method is to
use classical software engineering techniques like concept drawings,
prototypes and object-oriented programming for realizing models.

Perhaps some example for behavior models from different domains.
A walking robot needs as a behavior model a prescripted gait ani-
mation which contains walk patterns. If that model is parametric it
become very easy to search a large state space with it. An autonomous
car isn’t able to profit from that kind of model, it needs a different
one. This time the model is equal to a symbolic traffic simulator
which is able to generate what-if-cases, for example: “what if the car
is driving and the light is red?”, “What if, the car wheel is left?” and
so on.

In most cases behavior models are equal to mini-games. They are
simulating aspects of reality. The question which has to answered by
the programmer is, how to generate mini-games in a short amount of
time. The previously called techniques (concept drawings, prototypes
and OOP) are one example for it. PDDL and ABL are another
example for a prototyping languages to create a mini game. Such a
mini-game has the purpose to speed up the game-tree search. It is a
formalized heuristic

.

Figure 10: layered architecture

Figure 11: robot in maze together with a box

Example box pushing Suppose a robot is in a maze and has the
task to push a box to a certain position. The first naive idea is to
describe the problem as a state space. The robot can move and every
action results into a node in the state-space. Pushing the box is equal
to wander around a path in the game tree.

We can call this approach not very practical because a simple
calculation will show, that the state space is too big to search it in
realtime. If the robot has to execute 20 moves, the number of potential
movements is endless. The answer to the problem is to think about
a behavior model for the robot. This is shown in the figure right
on the screen. The task is the same: push the box. But this time
we define, what the robot can do on a semantic level. At first he
is able to gain a absolute position on the map. .This is symbolized
with 9 circles. That means, the robot can decide to go to one of these
position. And secondly the box can be pushed in 4 possible directions,
this is symbolized with lines. The behavior model contains of two
possible actions:

• moveto #1 until #9

• boxpush north, south, east, west

A possible plan might be to go to position #3 and then push the box
to the right. A different plan might be to go to position #2, then to
position #3 and then push the box to south. With the newly invented
semantic behavior model it is easier to define possible exploration
of the state space. The number of possibilities is reduced, and the
actions are defined on a high-level-layer.

Task and motion planning In the literature many names are used
to describe model based gametree search. For example, multi-modal
planning, Hierarchical task networks or in newer literature often the
term “task and motion planning” is used. [3] for example, describes
a forklift who navigates in a maze and pick ups boxes. The system
contains a geometric lowlevel planner and a high-level symbolic
planner.

13

1.18 From action planning to video surveillance

Most problems in Artificial Intelligence are synthetic problems to
reduce the failure rate. Instead of modelling a humanoid robot the
idea is to program a pathplanner which finds a way through a maze.
Even the synthetic challenges are sometimes to complex to solve
them with today’s algorithm. On the first impression it makes no
sense to increase the difficulty but it is important to be aware of a
potential alternative, called video surveillance. Here is the idea not to
invent an artificial problem which can be solved by robots, but take a
look on real situations which are solved by humans.

The difference is, that usually humans are aware of how to play
soccer, drive cars or work in a factory. They are doing tasks all the
time. Unclear is only what the machine translation of these tasks is
and how to store them. Video surveillance on the naive approach
means only to record the video stream as a H.264 file. But what
AI is interested in is to convert the data into a semantic description
of the task. Let us go into the details and think about possible sim-
plifications. At first, video surveillance needs no real cameras, it is
possible to track also gaming interactions. The advantage is, that in a
computer game it is known as default what the player has pressed on
the keyboard and what his mouse movements are. The new reduced
question is: why has the player pressed a certain button?

Video surveillance means in most cases to construct a scoring
function around a game. What is happen on the computer monitor
are actions which are part of a larger system. Player 1 passes the ball
because he want’s to win. And the other player do not make random
moves, they want to win too. If it is possible to describe the game
on a formal level, video surveillance will become successful. So the
better description is: video surveillance of games.

Like in classical Artificial Intelligence an easy example is a path-
planner for a maze. This time, not a software-agent has to find the
goal but a human. The human is taking actions and the AI has to
monitor the progress. The new thing is, that the human will find
the solution in any case, because he is an expert for navigating in a
maze. The question is only, if the AI is able to track the actions, that
means to explain why the human is taking the longer way and not the
shorter.

From a technical point of view, video surveillance goes into the
direction of a head up display. The human player stays in the loop and
is the only one who takes action, but a computer is looking over his
shoulder and give advice which action would make sense. What the
computer is providing is a situation awareness as a decision support
system.

1.19 Formalizing task and motion planning

The idea behind Task and motion planning (TAMP) is divide a prob-
lem into a high-level layer which is solved by a symbolic planner
and a lowlevel layer which is solved by the motion planner. The
task layer consists the heuristics for a domain which will speed up
the search process. The problem is, that usually the task model isn’t
known. Only the motion layer is given in the name of the Box2D
game engine. A possible way to create a task model is “learning
from demonstration”. That means, a human operator is doing a task
and the actions are recorded. These recordings are used for a task
prediction engine.

Let us make the example very short. At first we have a Box2D
physics engine for implementing a game. The goal is to grasp an

Figure 12: Task model, modified from [8] page 94

object with a gripper. A human operator is doing this task. A very
simple form of a task model is to save a keyframe every 2 seconds.
This task model says, that the task has to be done in a certain order
without the possibility of variation. A different kind of task model
would be to store also alternative ways of executing the task, which
are collected by different demonstrations.

1.20 Discretization the state space with macro-
actions

Suppose we have a steering problem in which a robot has to drive to
a goal in a maze. What the robot can do in each step is to move the
steering wheel or move one step forward. Because the simulation is
very accurate, in one step the robot will move only 5 pixels forward.
The reason is, that the movement will gets very smooth. For a hu-
man, this results into a wonderful game, but what will happen if a
solver should navigate the robot? Right, he has the problem, that the
controller needs to calculate a sequence of 1000 movements to bring
the robot into the goal and such a sequence generates lots of possible
plans.

The most impressive way to minimize the effort for the CPU is to
use macro action. In a simplest form a macro action like “10forward”
moves the robot not only 1 step forward, but presses 10 times on the
simulated forward button. And this will allow the solver to calculate
a plan? It seems like magic, but it is true. With some simple macro-
actions the problem can be solved.

The next surprising information is, that the concept of macro-
actions can be extended. For example it is possible to create virtual
macros. That are action primitives which are not possible in the
real game. For example a macro with the name “beam(pos)” which
transfers the robotposition to the goal coordinates directly without
pressing any button. This tool is useful, if obstacles are in the way. It
is possible to calculate a path to the goal only with “beam” actions.
And now a second solver has to calculate who the robot can move to
the next waypoint.

Another option to improve the idea of macro-action is learning
from demonstration. Here is the idea to let the problem solve first by
a human and generates of his demonstration a list of macro-actions.
These macro-actions can be used to solve a different planning problem
faster. If we are combining all these techniques into one system, we
will get a powerful solver. It is mainly a brute-force solver which
brings a system into a goal state, but thanks to the macro-operators it
works very fast.

The most easy to understand implementation are manually de-
signed macro-actions. That means, no machine learning or learning
from demonstration is used, instead every macro action was pro-
grammed by hand in the source code. This helps to get the project
clean and makes it easier to understand by others. The job for the

14

knowledge engineer is to identify possible macro-actions which make
sense for a certain domain. In the steering car problem, possible
actions are:

• move 10 steps forward

• beam to a waypoint

• move in a circle

• move forward and then right in a long line

The idea behind macro actions is to bridge large amount in the state
space. In most cases, the programmer is not very motivated to imple-
ment macro actions. The idea is to implement only a small amount
of them, until the solver finds a solution in realtime. From the per-
spective of a programmer the best is to implement no macro actions.
The car will have only the three standard actions: left, right, forward.
But the solver will make trouble, if the should find a plan only with
these lowlevel actions. So at least 1 or 2 macro-actions are needed
until the solver will be able to handle the state space.

With macro actions, the search process looks familiar. The solver
will generate the game tree and searches for a node which fulfills
the conditions. He sends random actions to the robot, and if one of
the node is in or near the goal, then the solver has found the plan.
The new thing is, that the planner no longer sends lowlevel actions,
but macro-actions. Let us make an example to detect a potential
bottleneck.

Suppose, the solver has generated the following sequence to bring
the robot into the goal:

1. beam(10,20)

2. beam(20,30)

3. beam(30,30)

Each macro actions moves the robot a large amount of pixels, The
plan is short and is very high-level. Now the planner wants to execute
the plan. The first two beam-actions makes no problem, because no
obstacle is in-between. Only the last action “beam(30,30)” can’t be
executed because on the map there is no direct way. What’s next? At
the first impression, the macro action solver has failed and we must
search for another problem solving technique. But not so fast, not
the macro actions are wrong, only a minor detail problem is open.
The solver has only to generate a second plan with beam-actions, for
example this one:

1. beam(5,15)

2. beam(25,30)

3. beam(30,30)

And this time, all actions are possible on the map. What I want to ex-
press is, that Macro-actions and hierarchical planning are a powerful
search technique which can solve even complex domains. The only
bottleneck is, to implement such an algorithm in real software and fix
the detail problems.

Macro actions = prediction engine On a formal level a macro ac-
tion predicts the future. If we are sending a command like “100steps-
forward” to the physics engine, the physics engine will move forward
and answers the request with a new state. In contrast to a normal
lowlevel action, a macro action spans over more timesteps, usually
more then only one step. Suppose we have a library of macro actions.
Each of them predicts the future of the current system. If we run
macro1 the result will be different from action2.

A normal physics engine isn’t able to predict more then one step.
A physics engine is updated step by step. That means, the graphics
are drawn to the monitor and then the game-loop moves the physics
forward by only one frame. Macro actions are about longer horizons.
A macroaction can take 10 steps or 100 steps. It is possible to run
the macro against the original game, or it is possible to store the
outcome in a hash table. In any case the response to a macro action
is a information about future game states. These information are
aggregated by the solver to a plan. If we know, then after executing
an action the robot will lost the game, it is easy to prevent such an
action.

The basic idea of macro action is similar to a normal pathplanner.
That means, from the current state some random actions are executed.
The new thing is, that these actions are more powerful.

1.21 Symbolic planning
The term symbolic planning isn’t clearly defined in the literature. The
STRIPS system can be called a symbolic planner, but also Hierar-
chical task networks are part of the idea. A pathplanning algorithm
is usually not called a symbolic planner because it operates on the
lowlevel euclidean space. The idea behind a symbolic planner is to
formalize heuristics. The best example is the PDDL language, which
operates as default on a symbolic level. But what is the difference
between gametree search and symbolic planning? Let us make a
simple example.

The robot want’s to move from A to B. A gametree search would
take the possible directions of the robot (north, east, west and south)
and create a graph. Then the planner searches through the graph until
the goal is reached. It is obvious that this technique ignores possible
heuristics, instead the raw gametree is searched which takes a huge
amount of cpu-time. A symbolic planner implemented in PDDL
would first define some actions:

• walk-10-steps-north

• beam to point A, B, C

• walk in a half circle

Then the planner would try to use these motion primitive to construct a
path to the goal. The important difference is, that the symbolic planner
can execute moves which are usually not available for example “beam
to point A”. Such actions are called symbolic because they operate on
a higher abstraction level. They are equal to a description by a human.
He would also argue, that the robot should go first to a waypoint,
move then in a circle and will then finds the goal. Symbolic planning
is sometimes called task planning because it describes the domain
from a higher perspective.

The confusing aspect of task planning is, that the plans can’t exe-
cuted directly on the robot. If we are sending the command “walk in
a half circle” to the robot he doesn’t understand the action. The robot
will only understand lowlevel actions like “north, south, east and

15

west”. Additional to the task planner itself, some kind of translater
from task level descriptions to lowlevel descriptions has to be imple-
mented. The same is true for pddl like planners. Usually a motion
primitives prints out only the result of an action. A command like
“beamt to point A” would result into the state “robot is on place A”.
But it is unclear how the robot has moved to this place. The output
of a task planner is equal to subgoals. These subgoals devide the
statespace into smaller subspaces.

AI planning languages The first planning language was STRIPS.
It evolves into today’s PDDL, but the difference between both lan-
guage is small. The idea of a planning language is very different
from normal programming. In a language like C++ the program
flow is determined by the sourcecode. The order of the execution is
fixed. A program contains of steps like input, evaluation and output.
In contrast, AI planning languages are describing the domain in a
declarative fashion. That means, only actions are provided but the
order how to execute them. It is up to the planner to find a sequence.
Planning languages have at their major problem, that the state space
has to be searched. For example, it is possible to formulate a chess
problem in PDDL, but if the planner should find the plan to the goal
state he will search a huge state space of potential alternatives and
this results into a high-cpu usage.

In the gaming community, AI planning is called GOAP planning
(goal action planning). Instead of defining a behavior tree, the se-
quence of actions is determined at runtime and can change on each
situation. In the area of machine learning the idea is not only to
fluctuate the action-sequence but the actions itself. That means, after
starting the robot he has no PDDL description and must search first
in the state space of potential actions.

All planning languages are working like a qualitative physics en-
gine. That means, they are simulating a situation. A simulator can
be called a metaprogram because the system itself has no preference
instead the idea is to execute movements which are given by the
user. For example, a grasping simulator waits for commands like
“opengripper”, “closegripper” and “movearm” and can execute these
actions. It is equal to an interpreter which is used for execute a
domain specific language.

PDDL can be understand as an extended form of a bison grammar.
It defines a language and the task of the user is to write a program
in that language. The program is called a plan and specifies the
sequence of the actions. Programming in PDDL is equal to what is
called in computer science a compiler generator. That is the idea not
to program in one of the given languages like C or Python, but to
invent and new language from scratch and define the grammar and
the compiler to translate this language into machine code.

To formalize AI planning it makes sense to see it as sentence
generation.[6] PDDL means usually high-level task planning, and
natural language is per default well suited for describing high-level
actions. What the planner has to do is to output natural language,
which fulfills certain constraints.

Natural language generation It is interesting to observe how nat-
ural language is stored in a computerprogram. The answer is, that
natural language has no meaning, instead it is stored as strings. A
typical example in C++ might be:

s t d : : s t r i n g s = " Th i s i s a s e n t e n c e " ;

Why is this important? Because the string s can’t be executed, it
is nothing which has an influence to the program flow. It is only a
sentence but not an executable command. But, it is possible to use
a string for language games. That means, we can sort strings, add
new strings to a blackboard and search for strings. And as result it is
possible to derive from the strings actions. Here is an example:

i f (s ==" go ") r o b o t . go () ;

This time a string is connected to the normal program flow.

1.22 Formalizing task and motion planning
In the literature many keywords are used to describe the same con-
cept: PDDL, symbolic planning, task and motion planning. What is
missing right now, is a readable description about the general idea.
[7] has given a definition based on the option idea. At first, Markov
decision process is defined which contains

“the low-level sensor and actuator space of the agent”

on top of this markov process it is possible to run an option. This
bypass the actuator space. The details are given by the option policy
which defines a state-transition and is written in the PDDL language
with it’s precondition/result syntax. A plan is defined as a sequence
of options.

I like this definition because it needs only the option definition. An
option is equal to a action in the pddl syntax to move the agent to
any state. It is like beaming in Startrek which can bypass the normal
markov statespace. Perhaps an example would be helpful. According
to a Markov decision process the robot in a maze can move left,
right, up and down. An option would be, that the agent gets a new
command “gotoxy()” which moves the agent to any position in the
map without any effort. It is some kind of cheating.

Even the option idea is hard to understand, because in a game
usually rules exist which prevents the agent to move anywhere. So
what is the meaning, if we are first defining rules only to bypass them
with options? Perhaps another explanation makes more sense. In the
domain of computeranimation there is a concept called keyframe. A
keyframe defines a situation in the animation process. A keyframe
follows no rules, it can be anything. An option is equal to a keyframe.

The question which wasn’t answered yet is how the options have
to look for a certain domain. The answer has to do with inventing
games. Defining the options is equal to invent a new board game.
That means, there are no rules to follow, instead the idea is to invent
the rules. Let us investigate the process of board game inventions
further. Usually the author has an empty sheet of paper and some
pieces. Then he is drawing lines of the paper, and moves the pieces
according to rules. These rules have to be modified to improve the
gameflow.

1.23 High-level taskplanning with simulation
A high-level planner is based on domain specific knowledge. In
the literature some topics are discussed to store the knowledge in a
machine readable format, notable ontologies, semantic web and RDF-
triples. The problem is, that until now the next step is unclear, which
request can an ontology answer, and where exactly is the knowledge
stored? A better approach to describe knowledge is a simulator. The
question, how the knowledge is stored isn’t important instead the
question is: what happens in a certain situation.

16

From a programming perspective a knowledge based system is a
task simulator. That means it is a physics engine which takes a natural
language input and prints out the following state. Such an engine is
similar to what is called in the gaming community a textadventure.
A textadventure can be programmed with ontologies and RDF-triple
but it can also be programmed in any other programming language.
The question is not, how the knowledge is stored in the engine, the
question is if the task-simulator is realistic and comes to the same
conclusion like the reality.

Let us make a simple example of a simulated water-in-cup-example.
The first thing what the textadventure is telling to the human player
is the current situation:

bottle is empty and the room has a water point.
Then the human is entering a textual command: “fill bottle with

water”. The textadventures parses the command and prints out the
new status:

bottle is filled with water.
Now the human player can enter the next command “drink”, and

the textadventure is answering with:
bottle is empty and the room has a water point.
And so on. The open question is only how to program such a tex-

tadventure with current programming technique. It may be possible to
build such a textadventure with an existing adeventure-game-engine,
or it might be possible to program the textinterface from scratch. IT is
possible to use a XML description language developed for chatbots to
describe the interactions, or it is also possible to use object-oriented
programming. In any case the result has to look like a task-simulator.
That means, the physics engine can parse commands, and changes its
state through interaction with the environment.

The advantage of the concept is, that the engine can be verified. It
is possible to say how many words the textinterpreter understands and
how realistic he reacts. From a programming perspective, the domain
has to be converted into a textadventure, thats all. A textadventure
has no graphics, instead it knows only natural language. But the most
interesting feature is, that a given textadventure can be solved with
a planner. If the system is in a start-state it is possible to find a path
to the goal state by randomized actions and storing the outcome in
a gametree. Brute forcing a textadventure is not very complicated,
because the state-space is small. Usually in each state a small number
of actions can be entered and testing all of them is possible with
a standard computer. The more demanding task is to construct the
textadventure. That means to invent the game, the vocabulary and
the outcomes of actions. From working textadventure of the past for
example Zork, it is known, that many man hours were invested until
the engine works reasonable stable.

In most cases, a textadventure for a robotics domain will be orga-
nized like a maze game. That means, the robot is somewhere, can go
in some directions and finds on the way objects which can be picked
up. Planning the complete game is equal to execute high-level actions,
for example at first the robot goes to the kitchen, takes an object there,
then the robot goes to another room and puts the objects there and
so on. Reaching the goal of the game is similar to do a sequence of
high-level actions which are part of the game. The question which
has to be answered by the task-simulator is, what will happen if the
robot executes a certain plan. Will the result be positive, or negative,
or will the game-engine prevents a certain move, because it is not
possible to pick up an object if it’s not in the room. From a birds
view perspective a textadventure is reducing the potential interaction
with the world. The robot can only execute actions which are given

Figure 13: UML state-chart for box moving task

by the game-engine parser. And in most cases, the parser rejects
non-sense actions very early. Solving the game means, to search in
the remaining state-space for a plan and executes it in reality.

1.24 State transition with petrinets

The pddl language contains a feature, called precondition. With
that feature, the sequence of actions is defined. It is not possible to
execute actions in any order but only if certain conditions are true.
The graphical visualization of preconditions are petrinets, which are
part of the UML specification. They are called state-diagram and
certain symbols are available to modeling event-driven systems. An
example is given in the figure. In contrast to a class diagram, the state
chart represents an activity. There are possible ways in the graph. The
most important aspect is, that it is possible to convert such a diagram
into a pddl syntax. The preconditions are equal to the connections
between the states.

Let us go into the details. The chart contains situations, e.g. “box
on the floor” or “adjust upwards”. It is not possible to call these tran-
sitions in any order, but only in a sequence given by the connection
lines. To move the box hard upwards, we must first adjust the box
in vertical position. It is comparable to a maze map, in which some
roads are blocked by obstacles. The difference is, that a state-charts
expresses a model on an abstract level.

UML statecharts are usually used outside of the pddl domain, for
modeling software systems. For example, it is possible to define
shortcuts in an application. That means, a certain key combination
will start an action but only in menu 1 but not in menu 2. A similar
diagram in the UML notation is called “activity diagram”. This looks
similar to a flowchart used for modelling the programflow. Like in a
state chart, only certain transitions are possible.

Behavior trees Statecharts have the problem, that they become
messy if the diagram is growing. In the gaming community an alter-
native approach, called behavior tree, was developed. A behavior tree
can be seen as a hierarchical petri net. It simplifies the preconditions
because subactions can only form a sequence within the same task.
In the xample, the action “hard upwards” can not be executed in the
state “in air”.

Let us compare the difference in detail. In a plain petrinet or PDDL
file the actions are seen as isolated entities. It is possible to take
one of the actions and it has all the definitions to understand the

17

Figure 14: task graph as behavior tree

context. In contrast, the actions in a behavior tree are depended from
its surrounding. They are grouped hierarchical and this gives implicit
the preconditions.

Motion graph In the domain of computeranimation so called mo-
tion graph are describing the transition between keyframes. They are
used as a template to generate transitions between states. It is also
possible to use “task graphs”, which have also a state-action syntax
but describing high-level tasks.[14] A more recent concept is a “neu-
ral task graph” [13] which stores a task graph into a neural network
and learns the graph through interaction with the environment.

According to the literature motion graphs are often used in practical
application. Their advantage over petrinets and behavior tree is their
simplicity. They only contains node which can have transitions. No
actions and no hierarchies are given, instead the motion graph is
forming a maze like structure which can be generated automatically
with mocap recordings and can be traversed by a planner. A motion
graph is walk in the keyframe space.

Let us give a short example in the domain of biped walking. A
biped walk character contains of gaits. That are 6 keyframes with
different poses. The walking animation is produced by playback
the keyframes in a linear order from frame 1 to frame 6. The steps
between the keyframes gets interpolated to become a smooth transi-
tion. The order of the 6 keyframes is described as a motion graph.
It defines, that after frame 2 the frame 3 can follow but no other
keyframe. Playback the animation means to walk through the motion
graph: frame 1,2,3,4,5,6,1,2,3,4 and so on.

If the character should become more realistic he needs apart from
walking pattern also a jumping pattern. The jumping sequence can’t
start everywhere but only at keyframe 3. That means on frame 3 it is
possible to move to the known keyframe 4 which is about walking or
to new keyframe 3a which is called jump.

1.25 Task planning with motion graph and tracking
control

All major problems in Robotics have to do with tracking control.
Tracking control isn’t an algorithm but a challenge. The human
demonstrator is doing a task, and the robot should repeat the move-
ments. Usually, the robot fails and this bug helps to understand the
limits of a robot control system. Let us make an example: an object is
on the table, the human operator controls the robotarm with a joystick
to pick the object and place it on the goal position. This part isn’t
very difficult because no artificial Intelligence but the human operator
has produced the control signal. But now the robot should repeat this

action alone. And this time, he needs some kind of planning to solve
the task. In most cases, such a planner isn’t available that means, the
challenge is very difficult.

Tracking control makes visible that in the software a task model is
missing. To plan motions, some kind of constraints and a model must
be given first. If a model is there, the solver will find a sequence of
actions to reproduce the motion. The question is: how can we convert
a domain into a model?

Let us first explain which part of a solver is easy. Lowlevel planning
between two keyframes makes no trouble. If keyframe 1 shows the
robotarm, and keyframe 2 shows the same robotarm with a slightly
different position it is possible to determine the movement between
both keyframes. The algorithm is based on searching: a random
generated gametree is used for searching a node which is near the
goal keyframe. In the literature this concept is called motion planning,
because it is on the lowest level.

And now comes the part which isn’t fully understood and which
makes trouble in robotics, the task planner. Planning of longer se-
quences is made with a keyframe generator. That is a module, which
generates a list of keyframes which describes how to bring the initial
system into a goal state. Usually a task planner works on a higher
abstraction level. In the literature the following ideas are discussed:

• Hierarchical task networks (HTN) which are described by a
PDDL file

• natural language command language

• qualitative physics

• Motion graph, Task graph

• object oriented modeling with UML notation

The shared goal is to model a domain in machine readable description.
So that a planer can search a path through the gametree. The problem
is, that every domain is a different kind of game. A robotarm works
with inverse kinematics, while an autonomous car works with traffic
rules. What a solver has to provide is an outlook into future. He
must predict a state if the user enters a command. This works on
Hierarchical task networks, but also with motion graphs.

Let us compare HTN-planning with motion graphs first. A HTN-
planning domain is described in the PDDL syntax. The system
contains of actions like grasp, open, close, ungrasp. The user can
enter one of these commands, and the system answer the request with
a new system state like in a textadventure. The innerworking of the
parser is given by the PDDL preconditions and effects. From the
outside view a PDDL textadventure works with the following syntax:
action(name)→ newsystemstate

All possible actions in all possible sequences are generating a
gametree which can be searched for a node. This node is the goal and
the planner can show the path to that node. Now we can compare
a HTN planner with a motion graph. A motion graph contains of
keyframes which are connected by edges. For example keyframe
#1 is connected with keyframe #3. This idea was introduced for
describing motion pattern, for example a walking gait. Like in a
HTN-planner the user can enter an action, and the parser reacts with
the follow up state: action(edgetransition)→ newsystemstate

The difference to a PDDL description is, that a motion graph
contains less information. For keyframe #1 the user has the choice
to switch to keyframe #3 or #5 next. That means, he can enter as
command “action(switchto#5)”.

18

Figure 15: qualitative physics consists of many implementation tech-
niques

Let us summarize the ideas behind motion graphs and Hierarchical
task planning. The user interactions with a physics engine which
accepts commands. The commands bring the system into a future
state.

Qualitative Physics A “qualitative physics engine” is a general
term to describe a prediction system, which accepts an input com-
mand and reacts with a new system state. In the figure some exam-
ples are given how a qualitative physics engine can be implemented:
PDDL, motion graph, task graphs and so on. All these techniques can
be used to model a dialog based userinteraction for predicting future
game states. From its implementation in the Python language, a quali-
tative physics engine is a class which takes the userinput and then the
class is calculating what happens. In the case of a motion graph, the
calculation contains of a transition matrix. Here is qualitative physics
engine contains a variable called “state” and a command brings the
system to new state. This is very similar to a petrinet. From the user
perspective the user can enter transitions, that means he enters the
number of the next keyframe and if the transition is allowed then the
Python class will change the state-variable.

If the aim is to implement a PDDL like system but not a motion
graph, then the internal situation of the Python class looks a bit
different. A pddl domain model has more variables and the commands
are more complicated then only the number of the next keyframe.
But what we can say is, that any of the task planning techniques has
to be implemented as a qualitative physics engine. That means, there
will be a python class which accepts commands and calculates the
future state of the system.

Literature An early attempt for formalize a qualitative physics
engine was made in a paper of the year 1994, [1]. They are describing
a task manipulation problem. It is correct, that the robot needs a
manipulation graph to generate the keyframes. The problem with that
paper is, that it describes only the problem on a mathematical level.
This is done with geometric constraints which has to be fulfilled. But
how does the planner will look like, how can the system predicts
future states? That is not given by the paper. At page 6 of the paper
is a nice looking figure given, which shows the keyframes for the
manipulation problem. What we see is, that the robot is doing some

actions in the map and brings the system into a goal state. A human
operator can produce these keyframes easily, by playing the game.
Like in the famous sokoban game, he moves around with the robot
and pushes boxes. But it is very hard to program a solver which can
do the same task autonomously.

1.26 Task model grounding

Between a task model and the user generated input is a difference.
That means, the user can drive the robot freely in the game, while the
task model only knows certain game state. If it is a simple motion
graph, the task model contains only keyframes which are stored in
the database. If the taskmodel is more elaborated, it is only aware if
the robot is in his raster. In all these cases, the task model is under
defined.

The first important step to overcome this problem is to be aware
of it. If the taskmodel contains only of 3 keyframes, there will be a
problem, if the real robot is outside of these keyframes. That means,
the game and the taskmodel doesn’t fit together. How can we solve
the mismatch? The first idea would to improve the task model. But
this is very complicated, because task models are usually created by
hand. The other option is to match the real game to the task model.
In the literature this is called grounding because it has to do with a
gap between two models.

Let us give a short example: suppose we have modeled in Box2d a
sokoban game. Thanks to the physics simulator the game is highly
realistic. As a task model we have programmed a simplified sokoban
game which isn’t very realistic but works with a chessboard. That
means, for the task model the objects can’t rotate, and there is no
gravity. If we a overlay the taskmodel over the box2d game we will
notice a gap between both models. That means, our task model isn’t
accurate.

The answer to the problem is easy. At first we suppose that our
task model is static and we can’t improve it. So the box2d game
must change it’s behavior. At first, we are searching for a state in
the taskmodel which looks similar to the box2d state, and then we
adjust the box2d game to match with the taskmodel. If the grounding
algorithm works, the box2d simulation will looks like a discrete
taskmodel. Everytime we rotate the boxes a bit, the system will try to
adjust the rotation.

Learning from demonstration A simplified approach to deter-
mine the keyframes of a task is learning from demonstration. The
idea is, that the human demonstrator controls the robotarm, and each
second a keyframe snapshot is created. In the reproduction phase,
the keyframe sequence (trajectory) is used as a template for the mo-
tion planner to calculate the inbetween steps. The flexibility can
be increaded while recording many demonstrations and give them
different names:

• demonstration1 = walk to left

• demonstration2 = walk to right

The reason why learning from demonstration is attractive is because
any task can be demonstrated. The human operator controls the robot,
this generates the keyframe trajectory and the trajectory can then
be reproduced by the robot autonomously. The disadvantage is that
learning from demonstration is something different from a planner.

19

It is not possible to generate the keyframes from scratch for a new
situation.

The recorded keyframes in learning from demonstration are equal
to a task model. They are a path through the state-space. The open
question is how does look this path for a new situation not seen
before? The answer to the problem is unclear. Perhaps it is necessary
to store the keyframes in some kind of task model? That means, no
only record them but also annotate and create aggregate models from
it.

A general description might be to transform a learning from demon-
stration trajectory into a qualitative physics engine. A qualitative
physics engine is per default more advanced the a simple database. It
contains a so called prediction model which gives the next state for
any situation. In contrast, a recorded demonstration is linear, after
keyframe #1 follows keyframe 2.

A simple example could be to use Learning from demonstration to-
gether with a motion graph. Learning from demonstration means that
a human operator is controlling the robot, while in the background
the transition between the keyframes are stored in a matrix. Such a
motion graph is not advanced like a pddl model with complicated
precondition, but it is more powerful then a simple linear keyframe
recording. The advantage of a motion graph is, that it can store many
demonstrations at once. And the solver can traverse through the
network for finding a goal node.

Motion graph as prediction engine A motion graph contains
keyframe nodes which are recorded in a Learning from demonstration
session. – This explanation is right from a technical perspective but
it doesn’t explain why motion graphs are created. Their purpose is
task modeling, that means to create a prediction engine which gives
future states back to the user. Let us make an example. The robot
stays on the start position in a maze. Now he goes up, up, left, up.
What is his new position? The task model will answer the question.
It searches in the motion graph for previous logfiles, finds a similar
path and answers the request. The robot will be on position (42,40) if
he executes the movements.

A motion graph is one but not the only technology to construct
a qualitative physics engine. All the connected nodes of a motion
graph can be seen like a PDDL model, which is also able to predict
“What-if-scenarios”. The idea is, that the prediction engine can parse
a sequence of actions (up, up, left, up) and then prints out the future
state. It is some kind of simulator. PDDL files are usually created for
symbolic simulation which have to do with natural language, while
motion graph are geometrical simulators to predict future states of a
gait-pattern in computer animation.

1.27 Task model as a Finite state machine
A Task model is a tool for planning longer horizons on a symbolic
level. A task model isn’t an AI script which tells the robot what
to do next, instead it is a simulator which can run different plans
in trial mode. Let us make a simple example: in a Box2D physics
engine a grasping task is given. The robot gripper should take an
object and bring it to the goal. A task model isn’t about the lowlevel
actions and the details of Box2D, instead it simulates a high-level
plan. An example action in the task model could be “move object
up”. After executing this action, the object will have a position 50
pixels upwards from it’s current position. According to the box2d
engine, this task isn’t possible, because in Box2d objects can’t move

freely through space, there are laws of physics which prevents such a
behavior. But the task model ignores the detail problems. It delegates
the realization of an action to lower levels.

For the task model there is no box2d engine, instead the game
contains of objects which can move freely. The task model can
change the position freely without any constraints. Only the task
model itself restricts the movements. In reality, the task model has
more in common with a goal planner. It defines high-level objectives.

Let us go back to the example. The task model has four possible
actions: objectup, objectleft, objectright and objectdown. A possible
plan could be:

objectright, objectright, objectup
Like I mentioned above, it is not possible to execute this plan in

Box2D. Because Box2d hasn’t an action called objectright. Box2d
only knows forces which can applies to objects. The task model
works on a different layer which has nothing to do with a physics
engine. The task model creates it’s own physics engine.

1.28 Sampling the state space with a animation lan-
guage

From the perspective of the rapidly random exploring tree algorithm
(RRT) the planning works is easy: all what the solver has to do
is creating a uniform sampling of the entire state space, because
this maximize the chance that one of the nodes is equal to the goal
node. The uniform sampling is reached with a concept in which a
random point in the map is selected first and the nearest existing
RRT neighbor is selected then. The problem is, that the vanilla
RRT algorithm contains no action model. Instead the simplified
assumption is, that the robot can move up, down, left and right.

Now it is time to introduce a task planner. A task planner is a
high-level action generator. Sometimes a task planner is mistaken
by a strategy to find a path to the goal, but in reality is task planner
allows a uniform sampling of the state space. On the first hand a task
model is extending the actions of the robot. It adds to the existing up,
down, left and right new possible actions for example, pushobject,
gotoxy, releaseobject and so on. With each action the state-space gets
sampled better. And this time a huge state-space will help to solve a
problem. Let us explain it on an example.

Every planner starts at a current situation. The robot is in the
middle of the maze and the RRT planner is generating a graph of
possible movements. In the vanilla version the graph grows around
the robot, because he can move only a small number of steps. Now
we add some high-level tasks to the RRT planner. He can now grow
the graph into much more directions. It the RRT literature this is
called extended RRT because the graph can grow on two positions at
the same time. A task model can define much more possible actions,
if it is elaborated the graph extends on many places at the same time
with different actions.

The most important feature of RRT is not a huge number of nodes
in a graph, but that every node is different. The aim of extending
the graph is to explore unknown paths. That means, every node is
different from the others. In a vanilla RRT graph, the nodes are
created by the same actions: node1 is the result of a sequence like
left, left, up. node2 by a sequence like up, right, left, left and so
forth. If we have 100 nodes, everyone contains the same 4 possible
actions. But what will happen if we extend the number of possible
actions? node1 can have the sequence “opengripper, left, left, up”.
node2 is “up, up, gotoxy” and node3 contains of “gotoxy, longup,

20

left, left”.The result is, that the statespace will be sampled different
than in the previous example.

On the first look, the huge state space makes no sense, because we
don’t want to have a graph with thousands of trajectories, we only
need one which is the goal trajectory. The problem is, that normal
sampling of the state space results into a huge game tree but this
game tree doesn’t contains the goal node. Instead all the nodes are
equal. The idea behind RRT is to improve the random-quality of the
sampling process. That means to grow the graph more intelligently.

The goal finding procedure for robots works a bit different from
what humans can do. The advantage of an algorithm is, that it can
investigate many hundreds of trajectory in a second, and that it can run
the solver again and again. In contrast, the robot isn’t very intelligent.
A well working AI can do both.

Multimodal planning A multimodal planner is based on a ani-
mation language. The aim is to combine symbolic and geometric
planning for a uniform sampling of the state space. But first we must
define what a mode is? A mode is something which isn’t reachable
from the current state. A robot which is inside a maze can only move
up, left, right and down. But he can not beam himself directly to a
position and he can’t also move an object. Such high-level actions
are only the result of up, left, right and down actions. Such high-level
behaviors can be called a mode.

What most researchers in the past have done is to ignoring modes.
The idea was that only planning with the lowlevel actions make sense.
A multi-mode planner is overcoming this ideology and is utilizing
symbolic modes too. The main reason in doing so has to do with
subgoals. A complicated task contains subgoals and waypoints. The
robot can’t move straight to the exit of a maze, first he must go to
waypoint A, B and C. But what are the right waypoints? That is
unclear, and to figure out which subgoals / waypoints are needed a
high-level task planner is the right choice.

Let us investigate how a multi-modal planner works in reality. The
system is able to try out a subgoal for example “movetowaypointA”,
and the planner can also try out lowlevel actions like “up, down, left
and right”. The solver is based on the “What if” principle. That means
it creates a graph for everything. One graph is managing potential
subgoals, and a second graph is about lowlevel actions after a subgoal
was reached.

Because the topic is a bit complicated a pathplanning example may
be right. Suppose the robot is on leftbottom of the maze and his goal
is to go the goal which is on topright. The multimodal planner is
finding a plan which is the sequence “waypointA, waypointD, goal”.
It is a very short plan because it contains only 3 actions. Every action
in the plan is a mode-action, that means the action can not be executed
on the robot. The planner has generated a fictional plan. But that
isn’t a problem, because we can run the solver again, and this time
he figures out the details. He finds a plan to go from waypointA to
waypointD, the plan “up, up, left, up”. These lowlevel actions are
realistic and can be executed on the robot.

Multimodal planning is the same like Hierarchical task networks, it
contains high-level and lowlevel actions at the same time. Simulating
lowlevel actions is easy, we can execute the action against the game
engine. That means, we give the “up” action to the engine and the
engine will move the robot by 100 pixels up. A bit more complicated
is to simulate the execution of modes. For example, what is the result
of executing the “movetowaypointA” action? Answering this ques-
tion is called “Motion language”. A motion language is a vocabulary

Figure 16: Multimodal push planning
left: without any modes, only lowlevel actions are planned. The box
doesn’t find a path to the goal
right: with a mode “boxonbottom”. The planner is able to push the
box to the goal.

which defines what a action can do. Traditional it is written in the
PDDL syntax.

A multimodal planner contains two subsystems: a lowlevel motion
simulator and a high-level task simulator. The planner is using the
actions on each layer for a uniform sampling of the state space. If the
statespace is sampled the planner can pick a node from the graph and
knows the plan to reach that node.

Example A push task is given in the figure. The round robot should
push the box to the right side of the maze. The game uses the Box2d
physics engine to simulate the actions realistic. To solve the task a
planner is used. But a normal planner would never find the correct
trajectory for the robot. Because there are endless ways to interact
with the object. So let us observe how the multi-modal planner works.

It can handle lowlevel and high-level actions at the same time. A
low level action, that the robot can change his position in small steps,
he can move up, left, right and down. A high-level mode is, that the
boxposition is changed directly to the bottom of the maze and then
the robot can push from the left side. The result is, that the box will
move to the goal.

But isn’t it cheating if we move the move to a new position without
pushing them first? No it is not, it is a normal mode in the planner.
It helps to explore the state space. We divided the complex problem
into a smaller one.

Let us describe what the programmer has to do for implement such
a planner. The lowlevel actions are the same and they are given by the
box2D simulation. What the programmer can adjust is the task model.
In the example, i have created a new mode, called “boxonbottom”.
This mode set the absolute box position. But it would be possible
to define other modes, for example “boxonright” or something like
“robotbelowbox”. If the modes are carefully defined it will help a lot
to sampling the state space. The planner can try out these high-level
actions and prints the result to the screen.

Let us investigate what will happen if the modes are implemented
in the bad way. The result is, that none of the random actions will
bring the box to the goal. That means, the planner is testing out
thousands of possibilities but in all cases, the box remains in the left
area and isn’t able to go smoothly through the gap.

Modes Because modes are powerful we must describe them in
detail. A mode is equal to a pddl statement, but it is also possible to
use any other programming language. It overrides the physics engine
and changes is value directly. An example mode could be:

21

boxonbottom() {
pos = {100,200};
angle = 0;

}

In the common PDDL syntax also preconditions are possible but
this is only optional. The idea behind a mode is, to start a new game
instance in a sandbox and create a scenario. Modes have nothing to
do with the normal game-play or the rules from the game. The best
way to explain modes is a situation in which no modes were defined.
In the figure with the boxpushing task is such a situation given on
the left side. The state-space sampling is only done with lowlevel
actions which are possible in the given situation. That means, the
robot can push against the box, it will react and the outcomes are
drawn to the screen. What we see is, that all the boxes stay on the left
side. None of them is going at random to the goal. That means only
a small subspace was sampled and the goal is outside this subspace.
So the question is how to increase the state space. One possibilities
might by to increase the number of trials. Instead of testing out 15
random actions we can testing out 150 or more. The problem is, that
the resulting nodes will stay also on the left but the CPU consumption
is much higher. And here comes the idea of modes into the game.
A mode improves the state-space sampling without increasing the
number of trials. A mode starts with new situation and explores
random actions there.

1.29 The RRT Connect algorithm

RRT connect is discussed in the literature as a pathplanning algorithm.
The idea is, that two trees are growing at the same time. The first tree
grows around the starting point of the robot, while the second one
starts in the near of the goal backwards. After a while it is possible
to connect both separate trees into one huge graph and the way from
start to goal is found.

For a domain like pathplanning, RRT connect doesn’t improve the
speed very much. Because pathplanning is in general an easy task
and a normal RRT planner will find the way too. But for complicated
manipulation tasks, RRT is some kind of goldstandard. As an im-
provement not only 2 trees are growing in parallel but 20 and more.
Is it possible to use RRT connect together with a task model which
contains of symbolic actions? Sure, this works remarkable good. The
idea is to plan on different positions and on different layers at the
same time. The graph not only occupies the surrounding of the robot,
but the complete game is explored with nodes. A fully rrt connect
graph is equal to a motion graph, except that it is created every time
from scratch.

Suppose the graph is huge, what next? At first we must determine
which of the nodes is near to the goal, and then we need to search
for a path from start to that node. It is possible that the graph isn’t
fully explored. That means there are gaps between the subgraph, so
additional search steps are needed to close the bridge. But then can
the robot to the goal.

One question remains open: how to program such an RRT connect
algorithm which is able to grow in many layers? That is indeed a
problem, a simple 10 line algorithm won’t work, what we need is
some kind of class only for the purpose to create and monitor the
graph. From it’s technical perspective the situation is easy: even the
fully explored graph has not more then 100 nodes. That means creat-
ing the graph needs only a little of cpu time. The more complicated

aspect is to monitor the graph, the subgraph and the different actions
in the graph.

But let us investige a small example. Suppose we want to
pick&place an object. The last node is simply: we open the gripper
and release the object. This fulfills the goal. That is the first node
we add to the graph. The problem is, that from the current situation
to that goal node there is no connection. So we need some nodes
between them. What we can try is to create new nodes on different
positions with different layers.

1.30 Random-MMP

Kris Hauser has published a paper about the Random-MMP algorithm.
He uses modes for planning complex motions. But what is a “mode”?.
A mode is a heuristics which guides the search process. It is defined
as a motion primitive. “graspobject” is an example for a mode,
another example is “opengripper”. The idea behind konowledge
guided planning is, that robot movements are not only lowlevel servo
parameters, but have a semantic meaning on a high-level. What a
multi-modal planner like Random-MMP is doing is to sample the set
of motion primitives to find a path. Sometimes the problem is called
grounding because high-level pddl domain description is connected
to lowlevel geometrical planning.

The open question right know is how a mode-switch is defined.
A mode switch is used by Random-MMP to extend the existing
graph. The interesting aspect is, that a mode-switch isn’t defined on a
geometrical level. Unlike a lowlevel action, a modeswitch is always
a high-level action which can’t be executed directly on the graph. We
can define a modeswitch as some kind of sandbox game. That means,
the normal physics rules are no longer valid, instead the new position
of the robot can be anywere.

According to the normal physics, a robot can move left, right, up
and down for only 5 pixels. That is given by the game, because the
robot contains of wheels and there speed has a maximum. A mode
switch is some kind of super-natural action, which moves the robot
without delay 100 pixels away from it’s original position. Another
mode-switch would be, that the robot becomes the object in his
gripper even the object was not in the environment. Mode-switches
are like cheating, they produce a situation which is not possible.

Why are modes so important for planning? Because it helps to
plan on high-abstraction. Let us take an example for normal travel
planning done by humans. Suppose somebody wants to travel from
New York to Boston. From the physical condition, the person has no
superpowers, that means, the person can only walk with his legs. If
he prefers to plan on a lowlevel layer, he would think about to leave
his house, walk along the street, and moves around in his city. It is
well known, that he will never reach Boston, because his planning is
broken. The better approach is to assume first, that the person has
superpower, that means he owns a plane, has access to a bus and so
on. And now we can plan under super-power conditions. The result
is a plan, which includes modern public transport system and only
the last step is to plan how to walk physical with legs to the next
bus-station, for driving to the airport.

That is – in short – the idea behind multimodal planning. That the
superpower of the robot is defined by the motion primitives and they
were used to plan in an abstract space and only at the end, this graph
is matched with the real capabilities of the robot, to move 5 pixels
forward.

22

modes vs. lowlevel actions To understand modes in detail we
must compare them with lowlevel actions. A lowlevel action is
everything what a robot can do in reality. For example, he can move
his servo to 45 degree. The lowlevel actions are defined by the
physical constraints. That means, the high-speed of a car is given by
the battery. The robot can not drive faster then 5 pixels per second.

In contrast, a mode is everything which is supernatural. A mode
is some kind magic spell which is able to teleport the robot to any
place he wish, a mode can put a object into the robots gripper or
it can clean up the room with a single command. From a technical
perspective a mode is realized by direct manipulation of the physics
engine. To teleport a robot, we change it’s x/y position to a new value.
For putting an object into his gripper we change the object-position
and so on. That means, at first we create a highly realistic box2d
simulator and then we override the simulation with modes.

2 Neural networks

2.1 Converting a domain into a task model

The real bottleneck in robotics is called knowledge transfer. The
problem is that the human operator knows, how to manipulate objects
and how to control a robot arm, but this knowledge isn’t available
in machine readable format. So it is not possible to use any kind of
planners on this missing knowledge.

At first we must define, what the machine need. The machine
needs a task model which is encoded as a physics / game engine.
This is a class in written in C++ which takes an input and produces
a simulation step. Examples for ready to run task models are the
famous Box2D physics engine, a chess simulator or the sokoban
game. All of these engine are dialog oriented, that means, the player
enters a move, and the game engine is executing the action.

Somebody may ask if the sokoban game is available, why do we
need a second game engine on top of the first one? The problem is,
that a game can be described on different levels. Available games like
Sokoban are only implementing the game rules itself. The result is a
huge state space. A task model also creates a space of movements,
but the number of possibilities is lower. So we need a game engine
with a very small state space.

After describing why the machine needs a task model, we can
discuss potential realizations of that need. The question is how to
program a high-level task simulator for a certain domain, for example
for sokoban, a robot grasp task or for Starcraft. According to the given
literature of the last 20 years, this problem is unsolved, that means
there is no best practice method in doing so. What we have seen in
many projects are concepts like natural language description, learning
from demonstration and hierarchical task networks for converting a
domain into a task model.

But let us go a step backward. If a human operator plays a game,
everything is fine. He controls with the keyboard all the actions and is
able to fix the problems in the game. If the robot gripper is a bit out of
place, the human operator inserts a corrective move. Remove control
systems are well understood and all of them are working great. The
problems begin if we want to convert the human action model into
a machine readable task model. This is indeed complicated. What
humans are doing in games is to follow a walkthrough tutorial. Either,
they bring this tutorial in because they know it from the past, or they
can read the manual of game and follow a tutorial given by other.

In a walk through tutorial is explained, how to play a game. It is a
description in which situation which action has to be executed. All
tutorials are written in natural language. So it is a common practive,
that also a machine readable task model understands words in English.
In most cases this is not enough, additional a hierarchical description
and a plan library is used inside a task model. Combining these things
together is complicated. Some examples are given by the literature,
but a general approach is not available.

From a technical point of view, a task model is equal to a what-if
system which is based on natural language and a hierarchical plan
library. But this description isn’t helpful if we want to implement
such a system in reality. A potential solution to the problem is, to
define a constraints. Instead of programming a task model with C++
we restrict our self to neural networks. The idea is to implement a task
model without writing any lines of code. On the first hand this makes
no sense, because C++ programming is more powerful compared to
neural networks. But neural networks have the advantage that they
can be easier understood by beginners. A neural networks is based on
standard software, for example on pybrain plus a so called training
data which is a excel spreadsheet. Usually a neural network doesn’t
mean, that we need to write new Python or C++ code, instead we
must think about the training data.

I’m convinced that it is possible to implement a task model with-
out using neural networks, for example with writing the qualitative
physics engine in C++. But programming new code is difficult. The
more beginner friendly approach are neural networks. They are not
so powerful like real coding but they can be easily described in papers
and on the internet, especially for an audience which isn’t familiar
with Artificial Intelligence.

Now we can go into the details how to realize a task model with
neural networks. Neural networks are some kind of machine learning,
that means we have data stored in a CSV-file and these data are
converted into a neural network which contains weights. The open
question is: how does the CSV-file look like? The good news is, that
is impossible to store C++ or Python code in the datafile, instead it
contains only pure non-executable data. The bad news is, that data
can be anything: numbers, words in natural language, positions in
2D spaces, or force values.

The source for the data are always gamelogs. That means, the
human operator is playing the game and this results into our dataset.
The problem is, that the raw data have too little information, so we
must annotate the data first with natural language descriptions. If we
convert this into a neural network, we have build a first task model,
without programming any line of code.

Let us make a simple example how annotation works. Suppose
the human operator is playing a real time strategy game. The raw
data which are produced by the game are mouse movements. The
CSV-datafile contains of a timecode, a mouse position and if the
button was clicked. To enrich this data we must retrieve also the
action the user has activated in the game. An RTS game contains
usually on the right screen symbols for building a house, or building
a unit. These information are important and should be transfered into
the CSV-file.

Surveillance annotations A practical example of how the creation
of a task model works can be explained on video surveillance. The
idea is not only create a task model but not using any kind of pro-
gramming language for it. At first, the GUI software is started which
is a video playback software. It is possible to enter new categories

23

Figure 17: task model acquisition

(activities, persons) and each category contains labels. Now the play-
back of the video is started. The user can stop the video, and select
one of the predefined label to annotate a time-sequence. The result is
a csv-file which can be used for training neural networks.

The basic idea is a combination of non-programming and data-
driven approach. That means, the annotation consists of a CSV-file
and in the file are labels and timecode informations stored. Sure,
annotation alone isn’t equal to a task model, but the result can be
used in a more complex pipeline.

Motion graph annotations A similar approach can be used for
annotating computer animations. The user sees on the screen a
sportsgame and can annotate the movements with a self-created
vocabulary.[2] The result is not executable sourcecode but the re-
sult is an XML file with the timecode, actionname syntax. This is
used for training a SVM neural network But let us go into the details.
A computeranimation consists usually of raw data which are pixel
information. It is a sequence of positions in 3d space. For the player
of the game, this looks like a walking gait, but for the machine that
are only numbers. Annotation with natural language verbs is tool for
transforming lowlevel replays into grounded replays. The vocabulary
itself is not given at the beginning. It is up to the user to define labels
like “jump, walk, run” and match them to the timeline.

The result can’t be called a real task model, because it contains no
C++ sourcecode. If we want to compile this CSV-file the C++ will
print out an error. But that is an advantage, because every step which
can be done without programming is a cheap step. It can be done in
short amount of time by non-programmers. And the csv-file opens
a new interesting question: what can we do with the data? How can
we use them to predict unseen actions and how can we use them to
recognize goals of human players?

2.2 Complex hierarchical annotations

The standard way of annotate a motion sequence is to use a shallow
vocabulary. The user starts the annotation GUI, defines some actions
words like “walk, jump, standstill” and then he annotates the timeline.
This approach is a good starting point because it connects actions
with language, but what we need is an elaborated taskmodel. This
contains of hierarchical actions and of situation descriptions.

Let us make an example. On the screen is a robot visible which
is controlled by human operator. The robot opens the door, goes to
the kitchen and takes the apple from the table. The task can’t be
described by a simple sequence of action words, instead the work-

flow is grouped into subtasks. The overall timeline can be called
“grasptheappleinthekitchen”. This annotation is correct for all the
frames. Subtasks like gointokitchen, and takeobject are the next en-
tity, and they can divided further in subsubactions. At the same time,
the robot has some properties like an energylevel. This can also be
annotated.

On the first look it is hard task to annotate manually all these infor-
mation. But as a result we get a textfile which contains a blueprint for
a task model. It contains of a hierarchical task network and a concrete
example. Annotation of a replay is not algorithm, but a best-practice
method for creating the task model of a new domain. Their main
advantage is, that no programming skills are needed, instead a GUI
is used together with a texteditor to create action groups.

Sure, the resulting textfile can’t be used direct for controlling the
robot autonomously, but it contains a draft taskmodel which can be
used in a next step. This next step asks no longer how to convert
a new domain into a task model, but it asks how to convert a rich
annotated replay which is already there into a robot motion controller.

From plan traces to a prediction engine Suppose the user has
generated a annotated replay which contains action names in natu-
ral language. The next step is to convert this plain text file into a
qualitative physics engine. The first idea might be to program such a
engine manually with C++ or Python, but it is also possible to restrict
the potential step to a neural network only solution which means not
to write any lines of code. So we need a neural network which can
predicts future states of a physical system, right?

The input for the network is the current state and a action, and as
output the networks gives the future state back. Like i mentioned in
the introduction such architecture isn’t the only option for realizing
a qualitative physics engine, but it is an option which prevents real
programming but is datadriven. We have to answer two question:
what is the correct dataset for training such a network and which kind
of neural network (perceptron, LSTM, CNN) we want to use. As
input data we can utilize the annotated korpus of game-replays. After
some smoothing they are the perfect input for training a prediction
engine. As a result the network is able to predict future states of the
physical system and it is very likely that some errors are happening.
But this isn’t a problem, because now we can think about potential
improvements.

[4] gives a survey of previous literature about the subject of physics
prediction with neural networks. All these concepts have in common
that they are datadriven, that means the physics engine isn’t pro-
grammed but generated from the dataset which is feed to the network.
From a technical perspective this approach isn’t very efficient. But
from the point of view of beginners and non-programmers it is a
here-to-stay method because they can testing out different models
without writing a single line of code in C++. All what they have to do
is compile some training data as a CSV file, train their neural network
and see what the error rate will be.

How exactly the input data and the structure of the neural network
have to look like is unclear, but it is very easy to experiment with
different kind of possibilities to find it out and write a paper about it.

2.3 Task model building with motion capture anno-
tations

Before a motion planner can determine the lowlevel control move-
ments for a robot a so called task model has to be created. This is

24

a qualitative physics engine to predict future states. A prediction
engine can answer the question what happens if the robot opens the
gripper while the object is in the gripper. The bottleneck right now is
how to build such a task model?

A possible answer to that problem are annotated mocap recording.
A motion capture recording is used for translating visual information
in absolute positions in 3D space which results into a wireframe
animation. It can show the hands, the legs and complete traffic
situations in realtime. But a wireframe visualization is different
from a high-level task model. For grounding the mocap data natural
language is the right choice. For connecting motion with language
a manual annotation is the best practice method. The principle is
remarkable easy in reality. At first the user defines a vocabulary, for
example opengripper, closegripper, pick, place and so on. Then he
goes in the mocap recording to a certain timecode and inserts the
actionverb in the timeline. The result is a video which has additional
verbal descriptions of the meanings.

The next steps are also simple. Af first the user want’s to automate
the process, because he is not interested in annotating by hands
hundreds of mocap videos. So he writes a small parser which searches
in the videostream for an action. And the second thing what the user
want’s to do is to convert the annovated video into a taskmodel which
can be searched by a solver. How this step can be done? A recurrent
neural network can predict future mocap data:

quote: “Our goal is to predict the mocap vector in the next
frame, given a mocap sequence so far” [5]

2.4 Motion Synthesis with neural networks

To animate a virtual human or to control a biped robot the idea of
walking is transfered from humans to robot. Instead of reinventing
the wheel a gait-animation is usually copied from examples of the
reality. In classical animation a gait-pattern consists of 7 steps which
shows individual keyframes of a walking character. In modern style
computeranimation these 7 poses are extracted by motion capture
device.

The idea behind motion synthesis with neural networks is, not only
store 7 keyframes but thousands of them. At first, the character is
recorded under any condition: walking slow, walking fast, jumping,
avoiding obstacles, grasping objects. These motion capture informa-
tion are stored in a database which is the learning dataset for a neural
network. Instead of neural networks it is also possible to request the
database with other machine learning technique to make the transition
smoother. The principal is the same like in unit-selection for speech-
synthesis. From a given corpus existing examples are extracted and
rearranged by a planner.

The idea itself isn’t new. In computeranimation with 7 keyframes
the animator is doing the same. He has 7 manually recorded
keyframes and plays back this poses in a linear sequence. The result is
realistic walking animation. The new idea behind neural networks is
to increase the numbers of examples and to improve the retrieval pro-
cess. This technique is called data-driven machine learning because
it is based on a corpus of recorded animations.

Is it possible to animate with this technique a virtual human or a
biped robot? Yes, it works great and can be called the gold standard.
The result isn’t only a walking robot, the result is a human-like
walking robot.

Grammar based animation The first step is to record a task with
a motion capture device. The visual information are converted into
positions of a skeleton. The next step is to annotate the movements.
The segments gets name like walk, run and jump. Now the mocap
data are connected to semantic meanings. What is missing right now
is a higher abstraction to generate complex behavior. This can be done
with a grammar. A motion grammar is a hierarchical task network
which is layered. For example to move to a room, the character must
standup, walk, open the door and then he enters the room. That
means, the “movetoroom” action contains of subactions and each of
them are connected to a motion capture recording.

From the perspective of mocap annotation a grammar is created
through forming a semantic network from the annotations. The
vocabulary is grouped in a hierarchy. Now a planner can provide the
motion pattern for a certain request. That means, the actions in the
mocap recording become a meaning, they are part of larger tasks.

The “KIT Motion-Language Dataset” is an example for a language
model. It contains many natural languages descriptions which are
arranged in a hierarchy.

3 Example

3.1 Creating a task model from scratch

The main problem in hierarchical planning is the question how the
task model can be formalized as machine readable sourcecode. At
first we need a computergame which is shown in the figure on top
left. The player can control a rectangle with the cursor keys and the
green box in the middle is fixed. The rectangle obeys the physics
law box2d and if it’s pushed against the fixed box, it will stop. The
normal interaction with the game is manually, that means, the human
player presses cursor keys and the game engine will display the result
on the screen.

The question is now: how can we formalized the interaction with
the game, so that symbolic planning is possible? The usual answer
would be that we simply take the PDDL or OWL file and then plan
a path to the goal. The only problem is, that we didn’t have a pddl
file. We must create such a description from scratch. The best to
do is a combination between natural language plus keyframes. A
first possible action could be to move the rectangle to the top of the
world. Then a next action can move the rectangle below the fixed
box and so on. The idea is, to describe the movements not for a
machine but for human, and the best way in doing so is a sequence
of annotated keyframes. It is equal to a comic strip which describes
possible actions.

So what’s next? At first, the task model is formalized for a human.
He can read the figure and make the same movements. The second
step is to use this description as a blueprint for a machine readable
model. Our model in PDDL or any other planning language contains
of the six actions, given by the chart plus the translated keyframes. A
description like “move box to the top” has to converted to absolute
position informations.

And now comes the magic, we want to try out our newly created
model. We bring the system into a random state, and the goal is that
the AI planner finds a sequence of actions to bring the system into the
goal state. That means, the rectangle should stand in vertical position
in the middle of the screen. Is our task model powerful enough to
realize this wish, or needs the model some minor improvements?

25

Figure 18: Keyframes with textual annotations

Let us investigate first, which elements an action can have. At first,
the keyframe itself. That is the absolute position of the rectangle plus
his orientation, then ofcourse the action name, and also a precondition.
That means, the action primitives are the same like in the PDDL
syntax. But apart from PDDL everything is notated as keyframes in
a visual representation. The reason is, that we only want to model
spatio-temporal relationships, which is equal to a image flow. We are
using the pictures to tell a non-linear story, and what the planner is
trying to do, is tell the story again.

Before the AI planner can be active, we need to formalize the story.
That means, we need a corpus of keyframes in a certain order which
express possible plot-directions. That means, we are reducing the
state-space to a small number of useful actions.

Planning can happen on two levels. At frist between the keyframes
(motion planning). We have keyframe A and need a transition to
keyframe B. The planner has to figure out how exactly this can be
done. The second need is a planning capability from a start situation
to a goal situation (task planning), that means over many keyframes
along. If the difference between two keyframes is too big, or the
preconditions are not fulfilled, the transition won’t work, and the
planner must find a path around this issue.

Motion planning Let us take a look again at figure 18. The subpic-
ture “hard upwards” shows how the human operator is turning the
rectangle into a vertical position. He jumps against the fixed green
box, and pressing the cursor keys to maintain the balance. After the
maneuver the rectangle stands still in the vertical position. The most
interesting aspect on this movement is, that it is not possible to script
it, because the timing is each time a bit different. It has to do with
the box2D simulation who reacts each time a bit different and it is
not possible to guess at which millisecond the human-operator has
to press the “up” key to maintain the balance. But that isn’t a real
problem, because the overall maneuver takes only 2 seconds, and this
short timeperiod can be planned by a brute force solver. We have the

initial keyframe and the goal keyframe and the planner has to find
out the keyboard actions to reach this goal. Such a short period of 2
seconds generates only a small gametree, that means the number of
possibilities is limited. I would guess it is smaller then 100 and this
can be calculated in realtime without stressing the CPU.

To make the point clear, a brute force planner is a powerful tool
if the timeperiod between two keyframes is low. If we want to use
the same technique for long sequence planning it will fail. Each
seconds between the keyframes increases the number of possibilities
exponential.

Planning between two keyframes with a small distance is called
motion planning. Planning on the larger scale is called task planning.
Task planning means to ignore the transition between two keyframes
and figuring out larger sequence of actions, for example to decide
which sequence is better: keyframe 2,5,7 or keyframes 1,2,7. In a task
and motion planner both techniques are used together. The system
finds an answer how to move from keyframe A to keyframe B, and
also finds a sequence which keyframes are needed to reach a long
term goal. This is called a hierarchical planner.

But let us focus on the detail problem of the keyframes at the
lowlevel. The motion planner gets an starting keyframe, which con-
tains the position of the rectangle and its orientation (angle). And the
planner also gets the target keyframe which contains also a position
and an angle. The question can be called a classical question: “how
to come from start to the goal?”. The most promising hint is, that
this time no extra knowledge or taskmodels are needed, instead the
planning task can be solved like normal planning in computing, for
example, if want to find the shortest route in a graph. At first there are
different possibilities, and the planner is calculating the costs, then
he is searching for the plan with the lowest cost and this answers the
question.

Solver In the figure 19 an example is given how a solver works.
What is shown in the image is the well known rectangle with the

26

Figure 19: sampling in Box2D

position under the obstacle. This time, not the human operator is
pressing a button, but the solver is testing out 50 random plans and
paints all of them to the screen. We see, that some of the boxes are
moving to left, while other are changing their direction. What the
solver has created is called a game tree. For all the simulated boxed
he knows the sequence of actions to reach this position.

The sampling technique works well, because the given timeframe
is low. We see, that none of the boxes is far away from the starting
keyframe. According to the solver setting, only a period of 3 seconds
was calculated. That means the game tree has a very short horizon.
But for the purpose of figuring out the inbetween keyframe actions
this is enough. We don’t want to solve the complete game, but only
need the action to get to the next keyframe.

In the second example, the rectangle has a different starting posi-
tion. This time it is ontop of the green fixed box. The solver generates
again random plans and displays them to the screen. The result is a
different state-space. And like in the first example, we can decide for
one of the plans. All what was drawn to the screen is in the reachable
area.

3.2 Multimodal solver with unspecified starting
point

The assumption of a conventional planner is to start with the current
situation and plan from this position a trajectory to the goal. But what
happens, if we are ignoring the current situation and planning from
any starting position available? The result is visualized in the figure.
The real starting position is on top left of the maze, but the planner
takes addtional starting points everywhere in the map. The idea is
described in the literature as extended RRT because the graph has
many starting points. The aim is to sampling not only a path for the
robot, but for the map in general.

The advantage is, that the newly created graph can answer “what
if” questions. For example “what if the robot is on top right of the
map and walks left?”. The graph can answer this question. A what
if scenario means, that the robot didn’t have to be on top right, it is
only a hypothetical scenario.

Figure 20: many starting points at the same time

But let us watch the figure carefully, what will we recognize? At
first, that the box is nearly everywhere. Now matter if the goal is
to push the box to the left, to right or somewhere else, some of the
RRT-nodes is near to the goal position. That means, the solver has
created a partial order plan and by default he finds a way to the goal.
The only problem right now is, that some of the partial order plans
are starting with a wrong assumption. But that isn’t a real problem,
because we can calculate the needed steps from the current robot
position to the fictional position. This will close the partial order
plan.

References
[1] Rachid Alami, Jean-Paul Laumond, and Thierry Siméon. Two

manipulation planning algorithms. In WAFR Proceedings of
the workshop on Algorithmic foundations of robotics, pages
109–125. AK Peters, Ltd. Natick, MA, USA, 1994.

[2] Okan Arikan, David A Forsyth, and James F O’Brien. Motion
synthesis from annotations. In ACM Transactions on Graphics
(TOG), volume 22, pages 402–408. ACM, 2003.

[3] Julien Bidot, Lars Karlsson, Fabien Lagriffoul, and Alessandro
Saffiotti. Geometric backtracking for combined task and motion
planning in robotic systems. Artificial Intelligence, 247:229–
265, 2017.

[4] Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Ji-
tendra Malik. Learning visual predictive models of physics for
playing billiards. arXiv preprint arXiv:1511.07404, 2015.

[5] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jiten-
dra Malik. Recurrent network models for human dynamics. In
Proceedings of the IEEE International Conference on Computer
Vision, pages 4346–4354, 2015.

[6] Alexander Koller and Matthew Stone. Sentence generation as a
planning problem. In Proceedings of the 45th Annual Meeting
of the Association of Computational Linguistics, pages 336–343,
2007.

[7] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-
Perez. Constructing symbolic representations for high-level
planning. In AAAI, pages 1932–1938, 2014.

27

[8] Klas Jonas Alfred Kronander. Control and learning of compliant
manipulation skills. Technical report, EPFL, 2015.

[9] Barak A Pearlmutter. Learning state space trajectories in re-
current neural networks. Neural Computation, 1(2):263–269,
1989.

[10] D Pentecost, Charlotte Sennersten, R Ollington, C Lindley, and
B Kang. Using a physics engine in act-r to aid decision making.
International Journal on Advances in Intelligent Systems, 9(3-
4):298–309, 2016.

[11] D Pentecost, Charlotte Sennersten, R Ollington, Craig A Lind-
ley, and B Kang. Predictive act-r (pact-r): Using a physics
engine and simulation for physical prediction in a cognitive
architecture. In Eighth International Conference on Advanced
Cognitive Technologies and Applications, pages 22–32, 2016.

[12] Jonathan Scholz. Physics-based reinforcement learning for
autonomous manipulation. PhD thesis, Georgia Institute of
Technology, 2015.

[13] Sungryull Sohn, Junhyuk Oh, and Honglak Lee. Neural task
graph execution. 2018.

[14] Ioan Alexandru Sucan. Task and motion planning for mobile
manipulators. PhD thesis, Rice University, 2012.

28

	Planning
	Symbolic model checking for PDDL planning
	The advantages of a symbolic planner
	Emulating IPL-V
	Symbolic planner for regrasping task
	Qualitative physics engine explained
	Intuitive Physics engine for a walking robot
	The benefit of a qualitative physics engine
	Hierarchical pathplanning
	Knowledge based simulation for decision making
	Everything about a Physics Engine for bouncing balls
	Modeling a handover task with two robot hands
	Central pattern generators for biped walking
	Reducing the state space for a walking robot
	States and constraints
	Modeling is easier then expected
	Model based Central pattern generator for biped walking
	Model-based game tree search
	From action planning to video surveillance
	Formalizing task and motion planning
	Discretization the state space with macro-actions
	Symbolic planning
	Formalizing task and motion planning
	High-level taskplanning with simulation
	State transition with petrinets
	Task planning with motion graph and tracking control
	Task model grounding
	Task model as a Finite state machine
	Sampling the state space with a animation language
	The RRT Connect algorithm
	Random-MMP

	Neural networks
	Converting a domain into a task model
	Complex hierarchical annotations
	Task model building with motion capture annotations
	Motion Synthesis with neural networks

	Example
	Creating a task model from scratch
	Multimodal solver with unspecified starting point

	References

