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1. INTRODUCTION

In present paper, I derive the identity below
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2. PRELIMINARY

Lemma 2.1. Let u
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provided none of the denominators in (2.1) are zero.

Proof. See [1, p. 4, (2.2)]. ¡

3. THEMAIN THEOREM

3.1. The Finite sum for (a)
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.
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Lemma 3.1. If a,b�� and n�$
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provided none of the denominators in (3.1) are zero.

Proof. Consider the function de�ned by
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I know [2, p. 1, (4)] that
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On the other hand, replace u
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by a+ r and v
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by b+ r in Lemma 2.1
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(3.5)

From (3.4) and (3.5), it follows that
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Now, from (3.2) and (3.6), I conclude that
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which is the desired result. ¡

3.2. The Decomposition of (a)
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Theorem 3.2. If a,b��, n�$
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provided none of the denominators in (3.7) are zero.

Proof. Suppose the de�nition below
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by virtue of the Lemma 3.1.

Replace n by n+1 in the right hand side of (3.8)
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On the other hand, by de�nition above, I have
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From (3.9) and (3.10), it follows that
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With a bit of manipulation (3.11) becomes
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Replace a by a+1, b by b+1 and n by n+1 in (3.16)
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which is the desired result. ¡

Corollary 3.3. If a��, n�$
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provided none of the denominators in (3.23) are zero.

Proof. Separate the variables a and b from the Theorem 3.2 and compare the both mem-

bers. ¡
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4. APPENDIX

I present below a new proof for an old identity of �nite sum:
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From (4.4),(4.5),(4.6) and (4.7), it follows that
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which is the desired result. ¡
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