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Dislocations and dislocation dynamics are the cores of material plasticity. In this work, 

we focus on and explore electric forces caused by external electric field upon 

dislocations and intrinsic electric forces between dislocations. Here we found that there 

exist a threshold electric field above which the electric field-induced force can enable 

dislocations glide and to one’s surprise, being subject to the identical electric field, 

some dislocations move in one direction but others move reversely, which are in 

agreement with experimental observations and may be the microscopic physical 

mechanism of electroplasticity. Besides the classical known mechanic force, an 

important intrinsic electric force exists between dislocations, which is uncovered here 

for the first time and has been neglected since discovery of dislocations. The electric 

forces are short-range and apparent when the distance between dislocations is only 

several nanometers. These findings maybe assist people in understanding correlated 

physical phenomena, for instance, eletroplasticity, understanding actual underlying 

physics of plastic deformations and designing next-generation nano-devices. 

 

 

 



1. Introduction 

Dislocations are a primary crystalline plastic mechanism and dominate plastic 

behaviors of crystalline materials. Electronic properties of dislocations are of interest 

and vital importance, because dislocations are found to move under external electric 

field [1], meaning that the electric field may affect the plastic behaviors of crystalline 

materials, e.g. electroplasticity. They usually detrimentally reduce function of 

semiconductor-based devices [2], indicating that understanding electronic properties of 

dislocations is a key for next-generation nano-devices.  

   To explore electronic properties of dislocations, several experimental methods have 

been developed and utilized, for example, electron-beam-induced current (EBIC) of 

dislocations [3, 4], electrical conductivity of nano-contact semiconductor wafer with 

dislocations [5], electrical conductivity of dislocation-stored thin films [6], electrical 

voltage during dislocation-based plastic deformation [7], motion of low-angle grain 

boundaries constructed by edge dislocations under external electric field [8] and so on. 

 In the theoretical respect, electronic properties of dislocation were intensively 

investigated in terms of various methods. In the vicinity of an edge dislocation, an 

electrostatic potential was believed to exist for keeping the electronic conduction band 

uniform, and was used to calculate increased resistance of cold-worked copper [9]. An 

individual edge dislocation was thought to cause electron charge redistribution and 

result in electric interaction between a dislocation and a solute atom in metals [10]. 

Electronic structure of a dislocation was studied by virtue of a one-dimensional 

quantum wire model, and may the origin of some interesting electronic phenomena 



such as two-dimensional electron gas on dislocation network [11].    

 However, electronic properties of dislocations, especially electric force between 

dislocations and external electric field-induced electric force acting on dislocations, 

which may be the key for people understanding eletroplasticity, performances of nano-

devices and real plastic deformations of crystalline materials, is still challenging due to 

lacking in knowledge on electric field surrounding dislocations.  

 In this work, we reveal an intrinsic electric field around a single dislocation, and give 

the electric force on dislocations induced by an external electric field as well as an 

intrinsic electric force between dislocations, which may help people re-understand 

dislocations. 

2. Electric force on dislocations 

Experimental observations on electroplasticity show that when mechanical plasticity 

happens for a material, flow stress is usually reduced noticeably by an applied electric 

field [12]. It is attributed to enhanced dislocation mobility, which arise from an electric 

field applying a driving force on dislocations [13, 14], however, its physical origin is 

unclear. In this part, the microscopic mechanism of electric field effect on dislocation 

motions is the concerns. 

2.1 Electric force for an edge dislocation  

Consider an individual edge dislocation in a simple cubic lattice. By means of the 

known stress field [15], strain field and Yuheng Zhang Equation [16], i.e. FqE E


, 

the electric field surrounding an edge dislocation is given by 
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, where EF is 

Fermi surface energy, namely, Fermi level, q is electron charge, ܧଵሬሬሬሬԦ is electric field 

around an edge dislocation, ξxx, ξyy, ξzz and ξxy are strains. Due to the symmetry of cubic 

lattice, 
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 , V, ν denotes unit 

volume and Poisson’s ration, respectively, ξ stands for shear strain, be is Burgers vector 

of the edge dislocation. If an external electric field ܧሬԦଶ was applied,

 2 0   E E cos x sin y  
  

 (E0 is magnitude of the external field and ψ is the angle 

between Burgers vector and electric field), the total electric energy W is 

1 2 12W W W W   , where W1 and W2 are electric energy of the dislocation and external 

field, W12 is the interconnection energy. 
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where ε0 is vacuum dielectric permittivity, ε is relative dielectric permittivity, L is the 

dislocation length, φ is the polar angle of dislocation. For many materials, magnitude 

of parameter m may be much larger than n. So, if the external field is parallel to the 

Burgers vector, i.e., ψ=0, the electric energy is 
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. It is easily seen 

that when m>0, this energy is the smallest at polar angles 3π/4 and 7π/4, meaning 



dislocations (1) (in red color) stay in the most stable state in the external electric field, 

as is shown in Figure 1(a). But at polar angles π/4 and 5π/4, W12 is the highest, 

indicating dislocations (2) (in blue color) may undergo an electric force pointing to 

dislocations (1) as shown in Figure 1(a). The electric force F per unit length may 

approximate 
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where r0 is distance of dislocation away from the center axis of crystalline grain. At 

some conditions, e.g. high temperatures and large external electric field, the electric 

force may exceed Peierls-Nabarro stress [15] and enables edge dislocations glide. So a 

threshold electric field Ec exists above which the edge dislocations can be driven to 

overcome motion barriers and glide,  
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where μ is shear modulus, a is crystalline lattice parameter. This threshold field strongly 

depends on the distance r0, relative dielectric permittivity ε and polar angle of this edge 

dislocation.  

If the Burgers vector is perpendicular to the electric field, i.e., ψ=π/2, the 

interconnection energy is
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. If parameter m is also positive, W12 

is the lowest at polar angles 0 and π, demonstrating that dislocations (1) are the most 

stable, but at polar angles π/2 and 3π/2 W12 is the largest, suggesting an electric force 

exerting on these dislocations, as is shown in Figure 1(b). Likely, its strength per unit 

length may be 
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Also, a corresponding threshold electric field Eth exists and it is 

                    
 

0

0

2 12

2
e

th

exp a / br
E

m sin sin

 
   

                      (6) 

 For many crystalline materials, the threshold fields at different conditions may be 

in the range 104~106 V/m, and it may decrease with increasing temperatures because of 

material softening. These points were verified by electric field-driving motion of small 

angle-tilt grain boundaries constructed by array of edge dislocations [8]. Furthermore, 

according to the expressions of electric forces in the above two cases, the force are 

positive in some polar angle zones but negative in other angle zones. Therefore, under 

electric field, some dislocations are expected to glide parallel to the electric field, but 

some other dislocations are anticipated to move reversely, which is indeed the 

experimental observations that majority of dislocations move against the field but a 

large proportion still move in the field direction in sodium chloride [17, 18].  

Edge dislocations can be driven to move by an electric field, but against numerous 

previous investigations on debated charges of edge dislocation [17, 19, 20, 21, 22], here 

it is found and argued that dislocations do not carry net charges actually, so that mobile 

edge dislocation themselves do not contribute to electrical conductivity.  

2.2 Electric force for a screw dislocation  

Let us move to the case of screw dislocation in simple cubic lattice. Also according 

to Yuheng Zhang Equation [16] and strain field of a screw dislocation [15], the induced 

electric field is obtained 
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Due to rotation symmetry of screw dislocation in simple cubic lattice, the 

interconnection energy under the external electric field  2 0   E E cos x sin y  
  
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In the case of positive parameter n, this energy is the smallest at angle π/4, meaning that 

dislocations (1) (in red color) stay in the most stable state in the external electric field. 

But at angle 5π/4, W12 is the largest, indicating dislocations (2) (in blue color) may 

undergo an electric force. The strength of electric force per unit length may be 
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and its direction is tangentially pointing to dislocations (1) shown by the arrows in 

Figure 2. This force sensitively relies on the angle and distance from grain center axis, 

and may drive some dislocations into zones of dislocations (1), thereby forming dense 

zones and sparse zones of screw dislocations. If the sign of parameter n or Burgers 

vector possess a negative value, the interconnection energy and the electric force may 

also be reversed. 

Interestingly, like edge dislocations, screw dislocations can be driven to move by an 

external electric field, but they do not carry net charges as well. So their motions also 

do not contribute to electrical conductivity of materials. 

 In the above quantitative analysis, only considered is the stain field of a dislocation, 

and its image dislocation and grain boundary relaxation effect on the strains and electric 

field in the grain is ignored. More accurately, their effects should be taken into account. 



3. Electric interactions between dislocations 

As far as is known, dislocation dynamics is the most concerned in the realm of 

material plasticity. For plastic deformations of materials, most researchers only 

consider mechanic interaction between dislocations but neglect another vital interaction, 

namely, intrinsic electric interaction between dislocations. In the following part, we 

will reveal this electric interaction. 

3.1 Electronic interaction between two parallel edge dislocations 

The electric field around an individual edge dislocation could be written as  
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. For most materials, the relation between parameters 

may hold m>> n, so the electric interaction energy between two parallel edge 

dislocations follows  
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where r is the distance between the two dislocations and L is dislocation length, be1 and 

be2 are Burgers vectors of the two edge dislocations, respectively. Thus the related 

electric force per unit length is                
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This force sensitively depends on parameter m and relative dielectric constant. 

According to Equation (11), when the two Burgers vector are parallel, the force is 

repulsive; and when they are antiparallel to each other, the force is attractive. The 



electric force may be a short-range force and could be ignored at large distance, because 

it decreases more quickly than elastic stress between edge dislocations. Of noted is that 

this electric force should be taken into account once the two dislocations are 

neighboring, e.g. at a distance smaller than 5 nm. So when dislocation density is very 

high, in other words, very small average distances among dislocations, both electric 

force and mechanic stresses between dislocations must be considered for dislocation 

motions and related plastic deformations.   

3.2 Electric interaction between two parallel screw dislocations 

Like the previous treatment, the electric force between two parallel screw 

dislocations may be derived in terms of electric interaction energy. Based on elastic 

strain field [15] and Yuheng zhang Equation [16], the electric interaction energy for 

dislocations may be given by  
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where bs1 and bs2 are Burgers vectors of the two screw dislocations. L is length of screw 

dislocations , r is distance between two dislocations. So the electric force between two 

parallel screw dislocations of unit length at a distance r is  
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Analogous to the situation of edge dislocations, electric force between screw 

dislocation decreases rapidly with distance and may be ignored for distances larger than 

100 nm at room temperature. However, if the distance is only several nanometers, the 

electric force may be evident, which can affect plastic deformations of materials. 



3.3 Corrections for image forces of dislocations 

The image force of a dislocation near a planar grain boundary may be regarded as 

the interaction between the dislocation and its image dislocation. The classical image 

force of dislocations only takes into account the mechanic force and neglect their 

electric force [15, 23]. So the image forces should be corrected and related corrections 

for an edge dislocation and a screw dislocation per unit length are 
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where l is the distance from planar grain boundary, be and bs are Burgers vectors of the 

edge dislocation and image dislocation, as is shown in Figure 3. The first term is the 

mechanic force [15, 23] and the second term is the electric force. The electric forces are 

also attractive and are in the same direction as the mechanic forces. As pointed out 

previously, for many crystalline materials, only when the distance 2l is several 

nanometers, may the corrected electric forces be of paramount importance.    

4. Conclusion 

In this work, we mainly study external electric field-induced electric forces upon 

dislocations and the intrinsic electric forces between dislocations. A threshold electric 

field exist, above which the electric field-induced force can enable dislocations glide, 

and interestingly, some dislocations move in one direction but others move reversely, 

as may be the underlying physical origin of electroplasticity and rules of designing next-

generation nano-devices. On the other hand, besides the classical known mechanic 



force, there exists an important intrinsic electric force between dislocations, which is 

uncovered here first and has been neglected for more than half a century. The electric 

forces are short-range forces and are evident when the distance between dislocations is 

only several nanometers. It is anticipated to play a key role and help people reexamine 

related plastic deformations of materials. 
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(a) ψ=0                              (b) ψ=π/2 

 

Figure 1 edge dislocations in a crystalline grain under an external electric field		ܧሬሬሬԦ 

which is parallel (a) to and perpendicular (b) to the Burgers vector. If the parameter 

 1 2FEV
m

q V

 


   is positive, (a) interconnection energy of edge dislocations (1) (in 

red color) whose polar angle is 3π/4 and 7π/4 in the electric field are the smallest so 

that they are the most stable, but the interconnection energy of dislocations (2) (in blue 

color) whose polar angle is π/4 and 5π/4 is the largest; (b) electric energy of edge 

dislocations (1) (in red color) whose polar angle is 0 and π in the electric field are the 

smallest, however, the electric energy of dislocations (2) (in blue color) whose polar 

angle is π/2 and 3π/2 is the largest. Therefore, the dislocations per unit length may 

experience an electric force
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for (a) and (b), respectively.  



 

Figure 2 screw dislocations in a crystalline grain in an external electric field and the 

Burgers vector upwards through the paper. If the parameter 
1 FE

n
q


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  is positive, 

interconnection energy of screw dislocations (1) (in red color) in the electric field are 

the smallest and they are stay in the most stable state, but the interconnection energy of 

dislocations (2) (in blue color) is the largest, meaning that they may experience an 

electric force pointing to dislocations (1). Interconnection energy of dislocations (3) (in 

black color) is intermediate and approaches zero, may also undergo an electric force 

pointing to dislocations (1).  

 

 

 

 



 

(a)                                (b) 

Figure 3 Dislocations near planar grain boundary and their image dislocations. (a) an 

edge dislocation (in red) and its image dislocation (in red) at a distance l away from 

grain boundary and their Burgers vectors at x axis; (b) a screw dislocation (in red) and 

its image dislocation (in red) at a distance l from grain boundary, and their Burgers 

vectors are directed perpendicularly out of the screen and into the screen, respectively. 


