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Abstract

The main objective of this short note is prove that some statements
concerning the represenation of positive integers by the sum of prime
numbers are equivalent to some true trivial cases. This implies that
these statements are also true. The analysis is based on a new prime
formula and some trigonometric expressions.
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1 Introduction

To be completed.

2 Preliminary results

Let (pm),nen denotes the sequence of odd primes. Let 2 € R, then [z] denotes
the floor function, i.e., the largest integer not greater than z. We have

lz]=jej<z<j+l



and for all j € N, we have

[z +j] = [z]+J (1)
Let » > 4 be any positive integer and define
—m?
a = Z DT (2)
m=1

Equality (2) was proposed in [1] as a series defined by primes. We have
proved the following result:

Lemma 1 The series (2) defining o, is convergent.
Proof. We have p,, < r™ because by induction: p,, = 2 < 4 < r! = r.
Assume that p,, < r™, then by the Bertrand’s Postulate, we have p,, ;1 <

2X P < 2xX 7™ < xr™ ="t So the series defining «,. is convergent
since via the Cauchy root test we have:

mpm<m/rm_ 1 < 1 <1<1
TmQ framQ _rm—l — 4gm-1 — 4 '

d
0g = mer’m2,d =12, ..
m=1

Let

be the partial sum of the convergent series defining «,.. Then we have

Lemma 2 The following inequalities

(

0 < rd Z pr ™ < 1

m=1+d

n—1
0 < rd Z pmr_m2 <1
\ m=1+d

holds true for all indices d > 1 and n verifying n > d + 2.



Proof. To prove the first statement of (3), let m = d + 1 + [, then

o0 o0 o0
0 < ,,,d2 Z pmr’mz < Z rd2+mfm2:zr—(l+d+21d+l2)
m=1+d m=1+d =0
= (I+d+21d) 2
< ZT —d (r24+1 1) <1 (4)
1=0

because p, < r™and &> +m —m? = — (I +d+2ld+1?) < — (I +d+ 2ld)

and 7¢ (7’2d+1 — 1) G (TdH (Td - 1) - 1) > 0, so, rd(:225+—1) <L

The second statement of (3) follows from the first one since

n—1 00
2 2 2 2
0<r? merm<rd merm<1

m=1+d m=1+d
n—1
The condition n > d + 2 on the indices d and n implies that the sum Z
m=1+d

is well defined and not zero since it contain at least one term.
From (4) we conclud that

{rdzozTJ =r®5;,d=1,2, ...

5d:5d71+%7 :1,2,...
Indeed, the first equation of (5) is verified since by (1) we get

{rdza,ﬂJ = {sz mersz = rd25d+ {T‘F Z pmerJ = rdzéd
m=1

m=1+d

o0
since 784 € N and 0 < ¥ Z Pt ™ < 1by (4). =
m=1+d
Define the sequence (Hg),s, by:

Hy= |1 (0 = 801) | (6)

Lemma 3 For all indice d > 2, we have

Hy = paq



Proof. We have H; € N because it is the integer part of the positive real
number 7%’ (v, — 04-1) since for all d > 2 we have a, > 04_1. It is clear that
H; = p, becuase

H; = LTCFOWJ — rd25d_1 = rd25d — Td25d—1
2 Pda 2
= rd <5d—1 + T?) — 1841 = py

[

Thus, the sequence (6) is a prime number but written in another equiv-
alent and appropriate form. The new prime formula (6) will be used in the
proof of Theorem 7 below.

Lemma 4 For all d > 2, the real number rd (p — 0q-1) is not an integer.

Proof. We have

+o00 d—1
d2 d2 7m2 *’ITL2
" (ap —04-1) = 7 E PmT —E PmT
m=1 m=1
+o0
2
= D
m=d
—+00
d? d 2
= " par T+ D par "
m=1+d
+oo
d m?
= DPd +7r § PmT
m=1+d

o0
is not an intgere since 0 < r®’ Z pmr ™ <1 by Lemma 2. =
m=1+d

Lemma 5 For all non-integer x we have
1 arctan (cot 7z)

pjz—§+x+ (7)

™

Proof. The cotangent function has period 7, then the cotangent of 7z has

period 1. By definition, the arc tangent function is defined from R to] =55 [
Hence, for all = not an integer we have:
arctan (cot )  arctan (tan (3 —7z)) 1

— = — —zxmod]l
s ™ 2

4



But, we have

1 1
_§+§+x—xm0d1=$—{$}:LxJ
| ]

Lemma 6 For all real x and y we have
(

arctan (f_ti/) ,ifry <1
or
T + arctan (f_”;%) s ife >0,y >0,2y > 1
or
arctanz + arctany = —7 + arctan <1$_J;yy> ,ifr <0,y <0,2y>1 (8)

or

5 ifr>0,ry=1
or

\ =5 ifr <0,zy =1

Proof. Let —§ <~ = arctanu < 7, =5 < a = arctanz < 7, -5 < =
arctany < 7, then we have tany = tan (a + 3) = f_tcyy =u Ifay > 1, ie,x
and y have the same sign, then we have the two cases:

(a)x >0,y>0—->u<0—-v<0—a+=~vy+m,ie., arctanz +

arctany = arctan (f_”;%) +

b)z<0,y<0—-u>0—->v>0—a+=~v—m,ie., arctanz +
T4y

arctany = arctan ey ) T

For the last two formulas: If x > 0, then 0 < arctanz < 7, and if
t = arctanz, then cott = tailt = %, so that arctan% =5 —t Ifz >0,
then arctanx + arctani = 7. As arctan is an odd function, if z < 0, then
arctan r + arctan% =—3. n

Let us consider the following conjecture:

Conjecture 7 For all positive integer k > 3, there exist two primes py, >
3,pu, = 3 such that
p/\k +p#k = Qk (9)

By formula (6), we have

P = {r*i (a, — 5>\k—1)J

Dy, = {r“i (ozT — 5%_1)J
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Define

oo
A2 _ A2 —m? _
Ik—T’“(Oér—&\kq)—p,\k—i‘T’“ E Pt ™" =D, + 2k
m=14+M\g

(11)

o0
2 2 .2
Yo =115 (0 = Opp1) = P + 75 Y ™ =P+t
\ m=1+4py,

We have proved the following result:

Theorem 8 The Conjecture 7 is equivalent to the true trivial case: For all
k > 3, there exist two positive integers A\ > 2, . > 2 such that

0<tr+z, <z orz+t,=s
or

Zk—l-tk:% 07’%<tk—|—zk<2

1 3
07"§<Zk+tk<§

Proof. The fact that x; and y; are not integers by Lemma 4 and from (7)
and (9) we get

p)\k—i_p//'k = 2k
& o) + luk) =2k
1 arctan (cot Tmx 1 arctan (cot m
o g w1 (ot _y,

< arctan (cot mxy) + arctan (cot yg) = 7 (2k — xp — Yy + 1)

Here x;, and y, depends on the positive integers indices A\, > 2, u, > 2.
Hence, the Conjecture 7 is equivalent to the case: For all £ > 3, there exist
two positive integers A\, > 2, 11, > 2 such that

arctan (cot mxy) + arctan (cot myy) = 7 (2k — xp — yp + 1) (12)



By definition, the arc tangent function is defined from R to ] e [ We have

( arctan (%) , ifugo, < 1
or
T + arctan (%) , if up, >0 and v, > 0 and upv, > 1
or
arctan up+arctan Uy =4 _ o 4 4rctan (%) , if up, <0 and v, < 0 and upvy > 1
or
o ifuk>0andvk:i
or
\ =5 ifuk<0andvk:i

Let ug = cot may, v, = cot wyg, then we get

.

arctan <M> =12k —xp —yp+ 1), if upvp <1

1—upur,
or
7r+arctan<%) =7m(2k -z —ypr+ 1), if u, >0 and v, > 0 and ugvy > 1
or
_ﬂ+arctan<%) =72k —xp —yp+ 1), if up <0 and vy < 0 and ugv, > 1
or
T=m2k—xp —yr +1), ifuk>0andvk:i
or
| ’T’T:W(2k—xk—yk+1),ifuk<0andvk:i
that is,
¢ arctan (%) =12k —xpr —yp+ 1), if upvp <1
or
arctan <%> =7 (2k — xx — yx), if up > 0 and vy > 0 and upv, > 1
or
arctan(%) =72k —xp —yp +2), if up <0 and vy < 0 and ugvg > 1
or
4k — 2xp — 2y, +1 =0, ifuk>0andvk:uik
or
\ 4k — 2z, — 2y, + 3 =0, ifuk<0andvk:uik




We have

Up + Vg (cot mxy) + (cot myy)
arctan [ —— = arctan
1 — upvg 1 — (cot wxy) (cot wyg)
= arctan (tan (—mxy — TYR)) = —TTK — TYK + JKT

for some integer ji. Thus, (13) becomes

(

—mry — Ty + e =7 (2k —xp —yp + 1) € (—g, g) and upv, < 1
or
—TxE — TYE + kT =7 (2k — T — yg) € (—g, g) and
up > 0 and v, > 0 and upv, > 1
or
—Tx — TYp + Jkm =7 (2k —xp —yp + 2) € (—E %) and
up < 0 and v, < 0 and ugv, > 1

or
4k — 2x, — 2y +1 =0, ifuk>0andvk:uik

or
L 4k — 2xp, — 2y + 3 =0, ifuk<0andvk:ul—k

(14)
So, finding an integer jj, in the first three equations of (14) implies that they
are verified. The fact that arctan (z) € | 5%, Z| implies that in the first three
cases of (14) we must assume that the corresponding quantitty is located in
the interval ]’7”, o) [ :

(jr=2k+1land 72k — ) —yr + 1) € (—%,g) and uivy < 1
or
Jr =2k and 7 (2k — xp — yy) € (—%,%) and
u > 0 and v, > 0 and uiv > 1
or
jr=2k+2and 7 (2k —z, —yr +2) € (—3,%) and (15)
up < 0 and v, < 0 and ugv, > 1
or
4k — 2x, — 2y, + 1 =0, ifuk>0andvk:i
or
L 4k—2xk—2yk—|—3:0, ifuk<0andvk:$

We have
uy = cot mxy = cot w (py, + 2x) = cot Tz,

v = cot Ty, = cot (puk + tk) = cot 7ty

8



since the cotangent function has period w. Thus, (15) becomes

((jr=2k+1land w(2k — 2y —y, + 1) € (—3,%) and (cot wz;) (cot mty,) < 1
or
Jr =2k and 7w (2k — z, — yg) € (—%,%) and cotmz, > 0 and
cot mtr > 0 and (cot wz) (cot mty) > 1
or
) jr=2k+2and w(2k — 2y —yp +2) € (-%,2) and
cotmz < 0 and cot i, < 0 and (cot wzy) (cot mty) > 1
or
2 (2k —Dx, — p“k) — 2t — 22, +1=0, if cotmzp > 0 and cot 7wty = Cotlﬂ%
or
L 2 (Zk — D, — puk) — 2t — 22, +3 =0, if cotmzp < 0 and cot 7ty = Cotlmk
(16)

We have cot (mz;) cot (mty,) = 1 if cos (2, + tx) = 0, that is, 2z, +t;, = 3 or

Zr +t = % because 0 < z;, < 1 and 0 < ¢, < 1. Hence, (16) is equivalent to

(( —Z <m(2k—x,—ye+1) < % and (cot wzy) (cotty,) < 1
or
—5 <m(2k —x) —yx) < 5 and cot 7wz, > 0 and
cot ity > 0 and (cot mz) (cot mty) > 1
or
-5 <m(2k -2, -y +2) < 7§ and cotmz, <0 and (17)
cot mty, < 0 and (cot mz) (cot mty) > 1
or
2+t = %, if cotmz, > 0 and 2z, + 1, = %
or
\ zk—i—tk:%, ifcothk<0andzk+tk:g

We have
cos (mzy,) cos (mty) o1

t t(wt,) > 1<
cot (m2,) cot (ty,) sin (124) sin ()

The inequality sin (7t) > 0 is verified for all 0 < ¢t < 1. Then

cot (mzg) cot (mty) > 1 < cos (mz) cos (mty)—sin (w2 ) sin (7ty) = cosm (2 + tx) > 0

that is,
1 3



Also,

cos (mzy) cos (mty)

<1
sin (7z) sin (7ty)

cot (mzg) cot (mty) < 1<

1 3
& cosw(zk+tk)<0<:>§<zk+tk<§

Also, cot (mt) > 0,if 0 < ¢ < 3 and cot (7t) < 0, if 1 < ¢ < 1. Thus, (17)
becomes

( —%<2k—p)\k—puk—tk—zk+1<%and%<zk—l—tk<g
or
—%<2k—pAk—pﬂk—tk—zk<%and cotmz, > 0 and cotwt, > 0 and
0<zk+tk<%or%<zk+tk<2
or
—%<2k5—p>\k—puk—tk—zk—l—2<%and cotmz, < 0 and cot wt, < 0 and
O<zk+tk<%or%<zk+tk<2

or
2+ tr = 5 and cotwzy, > 0 and zj, + b = 3
or
. zk+tk:%and cotﬂzk<0andzk—|—tk:%

By using (9) we get

( T<zmttp<land f<z+t, <3
or
O<tk+zk<%and0<zk<%and()<tk<%and
0<zk+tk<%or%<zk+tk<2
or
S<tyt+azm<land i<z, <landi <t <1and
0<zp+tp<sord<z+i,<2

or
Zk—i-tk:%and0<zk<%andzk+tk:%

or
L Zk-l-tk:%and%<zk<1andzk+tk:%

10



Le.,

(0<tr+z<itand0<z,<iand0 <t <1
or
zk+tk:%and0<zk<%
or
%<2k+tk<% (18)
or
zk—l—tk:%and%<zk<1
or
L %<tk—i—zk<2and%<zk<1and%<tk<1

The assumption 0 < t, + 2 < = implies that 0 < z, < 1 and 0 < t;, < %
The assumption zp + t, = 3 1mphes that 0 < 2z, < % and 0 <t < %
The assumption zp + t, = 5 1mphes that <z, <1 and < t, < 1. The

assumption % <t + 2z < 2 implies tha,t < zp < 1 and < t, < 1 since
we have 0 < t, < land 0 < z;, < 1. Otherwise all these implications are not
true. Thus, (18) can be reduced to:

O<tk+zk<%or2k+tk:%or%<zk+tk<g
or (19)
Zk+tk:%OT%<tk+2k<2

The last statement (19) is true for all £ > 3 since 0 < t; < 1 and 0 < z <
1 and it is a trivial case as it presents all the locations of the real number
2r+ 1. m
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