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Abstract

Because the Chain Rule can confuse students as much as it helps them

solve real problems, we put ourselves in the shoes of the mathematicians

who derived it, so that students may understand the motivation for the

rule; its limitations; and why textbooks present it in its customary form.

We begin by finding the derivative of sin 2x without using the Chain

Rule. That exercise, having shown that even a comparatively simple

compound function can be bothersome to differentiate using the definition

of the derivative as a limit, provides the motivation for developing our

own formula for the derivative of the general compound function g [f (x)].

In the course of that development, we see why the function f must be

continuous at any value of x to which the formula is applied. We finish by

comparing our formula to that which is commonly given.
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1 Introduction

When we are learning a new technique in mathematics, we benefit from familiar-

izing ourselves with the type of problem that the method was developed to solve.

We also benefit from struggling with a few problems of that sort before being

shown the technique in its modern form. In that way, we are better prepared

to understand that version of that technique, as well as its derivation. We also

become better problem-solvers in general.

In this document, we will develop our own formula for the derivative of a

composite function, then compare it to a version of the Chain Rule that is found

in many standard calculus textbooks. As a motivational example (that is, to

help us see why some sort of Chain Rule would be desirable), we’ll begin by

finding
d sin 2x

dx
using the definition

du (x)

dx

∣∣∣∣
x=a

= lim
δ→0

u (a+ δ)− u (a)

δ
, (1.1)

followed by the Law of Universal Generalization.

2 Motivational Example: Derivative of sin 2x from

the Definition of the Derivative as a Limit

For the real number a, arbitrary, the definition in Eq. (1.1) gives

d sin 2x

dx

∣∣∣∣
x=a

= lim
δ→0

sin 2 (a+ δ)− sin 2a

δ
.



The trig identities that we need:

(1) sin 2θ = 2 sin θ cos θ

(2) sin (α+ β) =

sinα cosβ + cosα sinβ

(3) cos (α+ β) =

cosα cosβ − sinα sinβ.

The next several steps use trigonometric identities for sums and doubles of

angles to transform the right-hand side.

d sin 2x

dx

∣∣∣∣
x=a

= lim
δ→0

2 sin (a+ δ) cos (a+ δ)− sin 2a

δ

= lim
δ→0

2 [sin (a+ δ)] [cos (a+ δ)]− sin 2a

δ

= lim
δ→0

2 [sin a cos δ + cos a sin δ] [cos a cos δ − sin a sin δ]− sin 2a

δ

= lim
δ→0

2 sin a cos a
(
cos2 δ − sin2 δ − 1

)
+ 2

(
cos2 a− sin2 a

)
sin δ cos δ

δ

= lim
δ→0

2 sin a cos a
(
−2 sin2 δ

)
+ 2 cos 2a sin δ cos δ

δ
.

Next, we transform the right-hand side in a way that will enables to use theorems

about limits.

d sin 2x

dx

∣∣∣∣
x=a

= lim
δ→0

[
−4 sin a cos a

(
sin2 δ

)
δ

+
2 cos 2a sin δ cos δ

δ

]

Now, we’ll use those theorems about limits.

d sin 2x

dx

∣∣∣∣
x=a

= lim
δ→0

−4 sin a cos a
(
sin2 δ

)
δ

+ lim
δ→0

2 cos 2a sin δ cos δ

δ

= −4 sin a cos a lim
δ→0

[(
sin δ

δ

)
sin δ

]
+ 2 cos 2a lim

δ→0

[(
sin δ

δ

)
cos δ

]
= −4 sin a cos a

[
lim
δ→0

sin δ

δ

]
︸ ︷︷ ︸

=1

[
lim
δ→0

sin δ

]
︸ ︷︷ ︸

=0

+2 cos 2a

[
lim
δ→0

sin δ

δ

]
︸ ︷︷ ︸

=1

[
lim
δ→0

cos δ

]
︸ ︷︷ ︸

=1

= 2 cos 2a.

We conclude by saying that because a was an arbitrary real number, the

result is valid for all real numbers. Customarily, we communicate that conclusion

by writing

d sin 2x

dx
= 2 cos 2x.

WOW! That was a lot of work to find the derivative of such a simple function.

We might well dread trying to find the derivative of, say, sin
√

1 + log x by the

same route. That is, by starting from the definition in (Eq. (1.1)). Let’s see if

we can find a better idea.

3 Looking for an Easier Route

Anyone who has solved math problems “by hand” or with spreadsheets has

seen several benefits of treating functions like sin 2x as composites of the form
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v [u (x)]. (In the case of sin 2x, u (x) = 2x, and v is the sine function.) Therefore,

why not attempt to derive a formula for the derivative of the generic composite

function g [f (x)]? We want our formula to be applicable to as many types of

functions as possible, so we’ll accept restrictions upon g, f , and their domains

only when necessary. We’ll begin by writing, for x = a, arbitrary,

dg [f (x)]

dx

∣∣∣∣
x=a

= lim
δ→0

g [f (a+ δ)]− g [f (a)]

δ
. (3.1)

The expression on the right-hand side appears unhelpful, so we’ll look for

ideas that might suggest ways to transform it. We’re searching for notions, so

for now we won’t pay much attention to rigor—time for that later. If we bear in

mind that
dg [f (x)]

dx
is ‘the rate of change of g with respect to x”, we might jot

down (informally)

Rate of

change of g

with respect

to x

=


Rate of change

of f with re-

spect to x




Rate of change

of g with re-

spect to f

 .

Continuing to think informally, might rewrite that note as

dg

dx
=

df

dx

dg

df
. (3.2)

This idea has intuitive appeal. Let’s test it on our result for
d sin 2x

dx
. As

we noted above, our “f” in that case is 2x, so
df

dx
would be 2. Ou “g” is the sine

function. Viewing 2x as a single variable, the derivative of sin 2x with respect

to 2x would be cos 2x . Thus,
dg

df
in our case would be cos 2x. Putting these

ideas together,

d sin 2x

dx
=

df

dx

dg

df

= [2]
[
cos 2x

]
= 2 cos 2x,

which is the result that we we obtained in our motivational example.

Although we would appear to be on the right track, we can’t trust our idea

that
dg

dx
=

df

dx

dg

df
without deriving it rigorously—for example, from Ec. (3.1))—and

expressing it clearly. How might we do that? Recognizing that Ec. (3.1) refers
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specifically to the value of the derivative for x = a, we might write

Rate of

change of g

with respect

to x

=

{
df (x)

dx

∣∣∣∣
x=a

}
Rate of change

of g with re-

spect to f at

x = a

 , and therefore

dg [f (x)]

dx

∣∣∣∣
x=a

=

{
lim
δ→0

f (a+ δ)− (a)

δ

}
Rate of change

of g with re-

spect to f at

x = a

 . (3.3)

At this point, we might note that the quantity in the box on the right-hand

side is a limit of “something” as δ → 0:

dg [f (x)]

dx

∣∣∣∣
x=a

=

{
lim
δ→0

f (a+ δ)− (a)

δ

}{
lim
δ→0

[“Something”]

}
. (3.4)

But what is that “Something”? Comparing the right-hand sides of Ecs. (3.1)

and (3.4), and using the theorem that “the limit of a product of functions is the

product of the functions’ limits”, we reason as follows:

dg [f (x)]

dx

∣∣∣∣
x=a

=
dg [f (x)]

dx

∣∣∣∣
x=a{

lim
δ→0

f (a+ δ)− (a)

δ

}{
lim
δ→0

[“Something”]

}
= lim
δ→0

g [f (a+ δ)]− g [f (a)]

δ

lim
δ→0

{[
f (a+ δ)− (a)

δ

]
[“Something”]

}
= lim
δ→0

g [f (a+ δ)]− g [f (a)]

δ

∴ “Something” =
g [f (a+ δ)]− g [f (a)]

f (a+ δ)− f (a)
.

Now, we can return to Ec. (3.4) to write

dg [f (x)]

dx

∣∣∣∣
x=a

=

{
lim
δ→0

f (a+ δ)− (a)

δ

}{
lim
δ→0

g [f (a+ δ)]− g [f (a)]

f (a+ δ)− f (a)

}
=

{
df (x)

dx

∣∣∣∣
x=a

}{
lim
δ→0

g [f (a+ δ)]− g [f (a)]

f (a+ δ)− f (a)

}
. (3.5)

A restriction upon the formula

that we’re attempting to

develop: the derivative of f with

respect to x must exist at x = a.

Having written that result, we need to recall that it is true only if the derivative

of f with respect to x exists at a.

We’ve just placed our first restriction upon whatever result we may obtain

from our derivation.

Our question now is what to to with the remaining limit on the right-hand

side of Ec. (3.5):

lim
δ→0

g [f (a+ δ)]− g [f (a)]

f (a+ δ)− f (a)

That’s quite a “busy” expression, so let’s draw a graph to help us “get our minds

around it”. We’ll start with a graph of f (x) (Fig. 1).
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Figure 1: Our first step in constructing a graph that might help us to understand

the limit on the right-hand side of Eq. (3.5): the graph of f (x) .

Figure 2: To eliminate a possible confusion, we’ve graphed both f and g as

functions of the real variable z.

Next, we’ll want to add the graph of g [f (x)]. But how do we do that, on a

graph whose horizontal axis is x?

At this point, we might realize that we’ve been a little careless with our use

of symbols. We’re accustomed to using the single symbol “x” both to represent

the independent variable in a problem (as we have here with f (x)), and as a

coordinate along the real-number line (as in our graph). That dual meaning

seldom causes trouble for us, but now it has.

“Defined” means that for every

real number b, there exists a

unique real number f (b).

Similarly for g.

To find a way forward, let’s consider the case where both f and g are

defined for every real number z. (We’ll discuss more-complicated cases later.)

We’ll graph both functions in that way (Fig. 2). Now, along the horizontal axis,

we’ll locate the point for the number a at which we’re evaluating our derivative
dg [f (x)]

dx
. On the vertical axis, we’ll locate the point for the number f (a) (Fig.

3).
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Figure 3: Along the horizontal axis, we’ve located the point for the number a

at which we’re evaluating our derivative
dg [f (x)]

dx
. On the vertical axis, we’ve

located the point for the number f (a).

Figure 4: After locating the point on the horizontal axis for the number f (a).

The set-theoretic concept of a

function may be helpful here:

The function f is the set of

ordered pairs (b, c) such that no

two pairs have b as their first

element. We can call c “the

value of f at z = b”. When

making a graph of f , we

“highlight” those points whose

horizontal coordinate is the first

element of some pair, and whose

vertical coordinate is the second

element of that same pair.

Because the function g is defined for every real number, it’s defined for the

specific real number f (a). Therefore, our next step is to locate the point on the

horizontal axis for that number (Fig. 4). The value of g, evaluated at z = f (a),

is some specific real number that we’ll write as g [f (a)]. In Fig. 5, we locate the

point for that number along the vertical axis.

We seem to be progressing, but we’ve yet to incorporate δ. We should know

how to do that; we did it many times in our first classes on derivatives as limits.

Still, before adding to our graph the points that involve δ, we want to think a

bit about our goal: we want to understand what happens when δ approaches

zero. To that end, we first attempt to understand the situation that exists when

δ is some suitably small, non-zero number. Taking δ as positive for the time

being (Fig. 6), we locate the point for the number z = a+ δ on the horizontal
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Figure 5: After locating the point on the vertical axis for the number g [f (a)].

Figure 6: After locating the point for g [(a+ δ)].

axis, and that for the number f (a+ δ) on the vertical axis. Then, we locate

f (a+ δ) on the horizontal axis, and g [f (a+ δ)] on the vertical axis.

We’re ready, finally, to investigate limδ→0
g [f (a+ δ)]− g [f (a)]

f (a+ δ)− f (a)
. To avoid

distractions, we’ll eliminate the portions of our graph that don’t concern g (Fig.

7). We’ll also draw a straight line connecting the indicated points on the curve

for g (z).

We can let our early experiences with derivatives as limits guide us now.

As the interval between z = f (a) and z = f (a+ δ) shrinks, the straight line

that we drew becomes the line tangent to the graph of g at z = f (a) (Fig. 8).

The slope of that tangent line is
dg (z)

dz

∣∣∣∣
z=f(a)

. Therefore, if f (a+ δ) − f (a)

goes to zero as δ itself shrinks to zero, then

lim
δ→0

g [f (a+ δ)]− g [f (a)]

f (a+ δ)− f (a)
=

dg (z)

dz

∣∣∣∣
z=f(a)

. (3.6)
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Figure 7: Focusing on the curve for g. We’ve added the secant line as preparation

for considering what occurs when δ → 0.

Figure 8: The tangent that the secant line shown in Fig. 7 approaches if

f (a+ δ)→ f (a) as δ → 0. The slope of the tangent is
dg (z)

dz

∣∣∣∣
z=f(a)

.

But notice the “if”: as we know, not all functions behave as stated for every

real number.

Functions can also be piecewise

continuous; that is, continuous

on certain intervals. The same

arguments that we’re using here

work for that type of function as

well.

Where does that realization leave us? The bad news is that if we’re dealing

with a function f and a number a such that f (a+ δ) does not go to f (a) as

δ goes to zero, then we’re stuck: nothing can be done. The good news is that

many common functions do have the required behavior: they’re the type that

mathematicians call continuous. That is, the functions u (z) such that for every

real number c,

lim
z→c+

u (z) = lim
z→c−

u (z) = u (c) .

Polynomials and sinx are examples of continuous functions.

The need for f (z) to be continuous at a becomes apparent when f has the

behavior shown in Fig. 9. In such a case, the point on the horizontal axis for
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Figure 9: A function in which f (a+ δ) would be equal to ; (a) several times

as δ → 0, at each of which the denominator in Eq. (3.6) would be zero. Those

subtleties require treatment that is beyond the scope of this document.

f (a+ δ) will alternate between being to the left and the right of that for f (a).

Nevertheless, the length of the interval will shrink to zero as δ itself goes to

zero. Note that for some values of δ in Fig. 9, f (a+ δ) = f (a), making the

denominator zero in the limit in Eq. (3.6). Those subtleties require treatment

that is beyond the scope of this document.

However, those considerations should not distract us from what we’ve accom-

plished: accepting the restriction that f must be continuous at a is a small price

to pay for being able to reduce a monstrosity like limδ→0
g [f (a+ δ)]− g [f (a)]

f (a+ δ)− f (a)

to
dg (z)

dz

∣∣∣∣
z=f(a)

. Using that result, we can write that if f is continuous at a,

and if
dg (z)

dz
is continuous at f (a), then

dg [f (a)]

dx

∣∣∣∣
x=a

=

[
df (x)

dx

∣∣∣∣
x=a

][
dg (z)

dz

∣∣∣∣
z=f(a)

]
. (3.7)

The right-hand side of that equation is messy because of the (apparently) different

variables x and z. To clean it up, we can ask ourselves what those variables mean

in this context. We’ll start with
df (x)

dx

∣∣∣∣
x=a

: that expression means “the rate

of change of the dependent variable f with respect to its independent variable,

when the value of the latter is a”. In the context of our present problem, x and

z refer to the same variable. Therefore, we’ll use z, and rewrite Eq. (3.7) as

dg [f (a)]

dx

∣∣∣∣
x=a

=

[
df (z)

dz

∣∣∣∣
z=a

][
dg (z)

dz

∣∣∣∣
z=f(a)

]
. (3.8)

Let’s test that result on the function sin 2x, which we used in our motiva-

tional example. Our f (x) is 2x, and our g is the sine function. The procedure

is shown in Table 1 to find the derivative of sin 2x according to Eq. (3.8).
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Table 1: Implementation of Eq. (3.8)

Step

Implementation for

g [f (x)] = sin 2x

Identify f (z) and g (z) f (z) = 2z, g (z) = sin z

Identify formulas for
df (z)

dz
, and

dg (z)

dz

d2z

dz
= 2,

and
d sin z

dz
= cos z

Evaluate
df (z)

dz
at z = a,

and
dg (z)

dz
at z = f (a)

2|z=a = 2;

and cos z |z=2a = cos 2a

dg [f (a)]

dz

∣∣∣∣
x=a

=

[
df (z)

dz

∣∣∣∣
z=a

][
dg (z)

dz

∣∣∣∣
z=f(a)

] dg [sin 2x]

dz

∣∣∣∣
x=a

= [2] [cos 2a]

Because the procedure worked, we now invoke the Law of Universal Gen-

eralization to write that because (1) the function f = 2z is continuous for all

values of z, (2)
d2z

dz
exists at all z, and (3) cos z exists at all z,

d sin 2x

dx
= 2 cos 2x.

Now that we’re sure our method for finding the derivative of a compound

function is sound, we’ll want to compare our method to the standard formulation

of the Chain Rule.

4 Comparison with the Usual Form of the Chain

Rule

A typical presentation of the Chain Rule is

If a variable g depends on the variable f , which itself depends on the

variable x, so that f and g are therefore dependent variables, then g,

via the intermediate variable of f , depends on x as well. The chain

rule then states 1

dg

dx
=

dg

df

df

dx
. (4.1)

1Paraphrase of Wikipedia’s article “Chain rule”, accessed 22 Julio 2018.
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Eq. (4.1) is identical to our “intuitive” Eq. (3.2). In both, the derivative
df

dx

is the customary way of writing the generalization of our
df (z)

dz
|z=a (in Eq.

(3.8)) to the whole set of real numbers. (Or more accurately, to those at which
df

dz
exists.) But what about the factor

dg

df
in Eqs. (3.2) and (4.1)? It must

be equal to the factor
dg (z)

dz
|z=f(a) in our Eq. (3.8). Can we establish that

equality rigorously?

For any given f , g, and a for

which the limit

limδ→0
g [f (a+ δ)] − g [f (a)]

f (a+ δ) − f (a)
exists, that limit is a specific real

number.

Let’s review the analysis through which we established that

lim
δ→0

g [f (a+ δ)]− g [f (a)]

f (a+ δ)− f (a)
=

dg (z)

dz

∣∣∣∣
z=f(a)

,

with the restriction that f must be continuous at a. We accepted that restriction

because it ensured that [f (a+ δ)− f (a)] → 0 as δ → 0. Therefore, the

expressions

lim
δ→0

g [f (a+ δ)]− g [f (a)]

f (a+ δ)− f (a)

and

lim
[f(a+δ)−f(a)]→0

g [f (a+ δ)]− g [f (a)]

f (a+ δ)− f (a)

are the same number. The latter expression is the definition, given in the form

of a limit, of
dg

df
|f=f(a). We’d generalize that result by writing simply

dg

df
.

Thus,
dg

df
in Eqs. (3.2) and (4.1) is indeed the generalization of the factor

dg (z)

dz

∣∣∣∣
z=f(a)

that we identified in our own version of the Chain Rule.
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