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Abstract

Dempster-Shafer evidence theory can express and deal with uncertain and imprecise in-

formation well, which satisfies the weaker condition than the Bayes probability theory.

The traditional single basic probability assignment only considers the degree of the ev-

idence support the subsets of the frame of discernment. In order to simulate human

decision-making processes and any activities requiring human expertise and knowledge,

intuitionstic evidence sets (IES) is proposed in this paper. It takes into account not only

the degree of the support, but also the degree of non-support. The combination rule of

intuitionstic basic probability assignments (IBPAs) also be investigated. Feasibility and

effectiveness of the proposed method are illustrated using an application of multi-criteria

group decision making.

Keywords: Dempster-Shafer evidence theory, Intuitionstic evidence sets, Combination

rule, Group decision making, Intuitionstic fuzzy sets.

1. Introduction

Dempster-Shafer evidence theory is the generalization of Bayes probability theory,

which is mainly carried out by using Bayes conditional probability in probability theo-

ry [1–3]. The D-S evidence theory does not need to know the priori probability and can
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express ”uncertainty” well. It is widely used to deal with uncertain information. Such as

information fusion [4–9], decision making [10–12], risk assignment [13, 14], performance

assessment [15–20], target recognition and tracking [21], fault diagnosis [22–24] and pat-

tern classification [25–27]. Nevertheless, the initial D-S evidence theory is not perfect

enough. For example, the counterintuitive results may be obtained when the fused evi-

dence are highly conflict each other [28].

There are many methods are proposed to improve the D-S evidence theory. Some

methods improve the Dempster combination rule, such as the new combination rule pro-

posed by Yager [29], the rule of combination proposed by Smets [30], the combination

operator proposed by Dubois and Prade [31] and as so on [32–35]. Some methods to

correct the source of evidence, such as the discounting coefficients method [36, 37], Mur-

phy’s average approach [38], Deng et al.’s modified average approach [39] etc. [40–43].

Other methods is to improve the way of the D-S evidence theory modeling uncertain

information, such as the generalized evidence theory [44, 45], interval-valued evidence

theory [46–51] and D numbers [52–59].

The traditional single basic probability assignment only considers the degree of the

evidence support the subsets of the frame of discernment. But in practice, the informa-

tion of non-support is equally important. For example, in the problem of sensor informa-

tion fusion, some the collected data show the degree of support for the target, other data

may show the degree of non-support. In this case, the single basic probability assignment

is not sufficient to handle this information. In fuzzy logic, intuitionstic fuzzy sets (IFS)

is the extension of traditional fuzzy sets [60], which considers three aspects of the degree

of membership, the degree of non-membership and hesitancy [61]. Therefore, it is more

flexible and practical than the traditional fuzzy set in dealing with uncertain information.

Based on the concept of IFS, the intuitionstic evidence sets (IES) is presented in this paper,

which considers the degree of the evidence support the subset of the frame of discern-

ment and the degree of the evidence non-support the subset. The sums of all the degrees
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of support is one and the sum of all the degrees of non-support is one. Except the frame

of discernment, for each subset, the support degree and the non-support degree can not

be one at the same time. Because it’s impossible to be completely positive and completely

negative simultaneously. When the support degree and non-support degree of the frame

of discernment is one at the same time, this case is completely uncertain.

The Dempster combination rule plays an important role in D-S evidence theory [1, 62–

64]. The combination rule of IES also be discussed in this paper. A intuitionstic basic

probability assignment (IBPA) can be regarded as two traditional BPAs. One of them

indicates the BPA of support and another indicates the BPA of non-support. Then com-

bining two classes BPAs of all IBPA, respectively, using Dempster combination rule.

This paper is organized as follows. The definitions and properties of Dempster-Shafer

evidence theory and intuitionstic fuzzy sets are briefly introduced in Section 2. The defi-

nition and properties of IES and its combination rule are proposed in Section 3. In Section

4, the method of multi-criteria group decision making is discussed. A numerical example

is given in Section 5. Finally, this paper is concluded in Section 6.

2. Background

In this section, the background material of Dempster-Shafer evidence theory [1, 2] and

intuitionstic fuzzy set [61] will be briefly introduced.

2.1. Dempster-Shafer evidence theory

Dempster-Shafer theory was defined on a finite set of mutually exclusive elements.

This finite set is called the frame of discernment denotes as Θ, it’s power set denotes as

2Θ. Evidence theory allows belief to be assigned to not only the single subsets of the frame

of discernment, but also the multiple subsets. The evidence theory will be degenerated

as the probability theory when the belief only to be assigned to the single subsets [1, 2].
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Definition 1. Let the frame of discernment is Θ = {h1, h2, · · · , hn}. The power set of Θ

is 2Θ, 2Θ = {∅, {h1}, · · · , {hn}, {h1, h2}, · · · , {h1, h2, · · · , hi}, · · · , Θ}. A basic probability

assignment (BPA) function m is a mapping of 2Θ to a interval [0, 1], defined as [1, 2]:

m : 2Θ → [0, 1] (1)

which satisfies the two following conditions:

m(∅) = 0 ∑
A∈2Θ

m(A) = 1 (2)

where ∅ is an empty set, and A is any element of 2Θ. The mass m(A) shows the degree

of the evidence support A.

Definition 2. For a BPA m on Θ, each element of 2Θ such as m(A) > 0 is called a focal

element of m [1, 2].

Definition 3. For a BPA m on Θ, the belief function Bel and the plausibility function pl

are defined, respectively, as [1, 2]

Bel(A) = ∑
B⊆A

m(B) (3)

Pl(A) = ∑
A∩B 6=∅

m(B) = 1 − ∑
A∩B=∅

m(B) (4)

The belief function be also called lower function, which can be interpreted as the belief

of ”A is true”. The plausibility function be also called upper function, which can be

interpreted as the belief of ”A is not false”. So the possibility of a subset A lies the interval,

Poss(A) ∈ [Bel(A), Pl(A)]. It is obviously that Bel(∅) = Pl(∅) = 0, Pl(Θ) = Pl(Θ) = 1

and If A ⊆ B ⊆ Θ then Pl(A) ≤ Pl(B) and Bel(A) ≤ Bel(B).

Definition 4. The pignistic measure of a BPA m on Θ is defined as [30, 65]

BetP(A) = ∑
B∈2Θ

|A ∩ B|

|B|

m(B)

1 − m(∅)
, ∀A ∈ 2Θ (5)
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where |A| is the cardinality of A. The pignistic measure is a probability distribution on

Θ with

pk = BelP(hk) = ∑
hk∈B

m(B)

|B|
(6)

Definition 5. Assume m is a BPA on Θ, the cost of a focal element A, A ⊆ Θ, is defined

as

Cost(A) =
n − |A|

n − 1
(7)

where |A| is the cardinality of A.

The cost is a decreasing function of the cardinality, the smaller the cardinality the most

the cost. We can know Cost(Θ) = n−n
n−1 = 0, it is the least costly. Cost(hk) =

n−1
n−1 = 1, it is

the most costly.

Definition 6. Assume m is a BPA on Θ, the cost of m is defined as

Cost(m) = ∑
A⊆Θ

Cost(A)m(A) (8)

When m is a pure probability distribution, m is the most costly to use with Cost(m) =

1. When m with one focal element m(Θ) = 1, m is the least costly with Cost(m) = 0. It can

be seen that more imprecise the BPA the less costly, the more precise the focal elements

the more costly.

Definition 7. Assume m is a BPA on Θ, the specificity of m is defined as

Sp(m) = ∑
A⊆Θ,A 6=∅

m(A)

|A|
(9)

where |A| is the cardinality of A.

When m with one focal element m(Θ) = 1, the specificity of m has minimal value Sp(m) =

m(Θ)
|Θ|

= 1
n . When m is a pure probability distribution, the specificity of m has maximal

value Sp(m) = ∑
n
i=1 m({hi}) = 1.
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Definition 8. Given two BPA m1 and m2 on Θ, the Dempster combination rule is used to

fuse BPAs. The result BPA is denoted as m1 ⊗ m2, is given by [1]:











m1 ⊗ m2(∅) = 0

m1 ⊗ m2(A) =
∑

B
⋂

C=A
m1(B)m2(C)

1−K

(10)

where K = ∑
B
⋂

C=∅

m1(B)m2(C).

The counterintuitive results may be obtained by Dempster combination rule when

the fused evidence are highly conflict each other. In order to address this problem, an

average method is proposed by Murphy [38]. This method average the masses and then

calculate the combined masses by combining the average masses multiple times using

classical Dempster combination rule. However, the importance of evidence may not be

equal. The weighted average method is proposed by Deng et al. based on Murphy’s

average method [39].

Definition 9. Given two BPA m1 and m2 on Θ, the importance weights of two BPAs is

w1, w2. The weighted average combination method is defined as

m1 ⊗ m2(A) = AVE(m1 ⊗ m2)⊗ AVE(m1 ⊗ m2), ∀A ∈ 2Θ (11)

where

AVE(m1 ⊗ m2)(A) = m1(A)× w1 + m2(A)× w2, ∀A ∈ 2Θ (12)

2.2. Intuitionstic fuzzy sets

Intuitionistic fuzzy sets (IFS) introduced by Atanassov [61] is the extension of tradi-

tional fuzzy set, which considers three aspects of the degree of membership, the degree

of non-membership and hesitancy. Therefore, it is more flexible and practical than the

traditional fuzzy sets in dealing with uncertain information. IFS have been applied in

many fields, such as decision making [66, 67], pattern recognition [67, 68], medical diag-

nosis [69] and as so on [70].
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Definition 10. Let X = {x1, x2, · · · , xn} be a universe set, then an intuitionstic fuzzy set

(IFS) in X is defined as [61]:

A = {〈x, µA(x), υA(x)〉|x ∈ X} (13)

where µA(x) : X → [0, 1] and υA(x) : X → [0, 1] are the degree of membership and the

degree of non-membership, respectively, such that

0 ≤ µA(x) + υA(x) ≤ 1 (14)

The third parameter of IFS is the degree of hesitancy, πA(x):

πA(x) = 1 − (µA(x) + υA(x)) (15)

It is obviously that 0 ≤ πA(x) ≤ 1, ∀x ∈ X. When πA(x) = 0, the IFS degenerates into

the classical fuzzy set. The classical fuzzy set has the form {〈x, µA(x), 1− µA(x)〉|x ∈ X}.

3. Intuitionstic evidence sets

The intuitionstic basic probability assignment (IBPA), like BPA, is defined on a finite

set of mutually exclusion elements, known as the frame of discernment.

Definition 11. Assume a frame of discernment Θ = {h1, h2, · · · , h3}, its power set is

2Θ = {∅, {h1}, · · · , {hn}, {h1, h2}, · · · , {h1, h2, · · · , hi}, · · · , Θ}. An intuitionstic basic

probability assignment on 2Θ is defined as

m(A) = 〈m+(A), m−(A)〉 (16)

where m+(A) : 2Θ → [0, 1] and m− : 2Θ → [0, 1] are support degree and non-support

degree, respectively. A is any element of 2Θ. They must satisfy the following conditions:

(1) m+(∅) = 0 and m−(∅) = 0;

(2) ∑A∈2Θ m+(A) = 1 and ∑A∈2Θ m−(A) = 1;

(3) If m+(A) = 1 then m−(A) 6= 1, if m−(A) = 1, then m+(A) 6= 1, ∀A ⊂ Θ.
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Definition 12. For an IBPA m on Θ, each subset A of θ such as m+(A) > 0 or m−(A) > 0

is called a focal element of m.

Definition 13. Let m be an IBPA on Θ with intuitionstic probability masses m(A) =

〈m+(A), m−(A)〉, and A ∈ 2Θ. The belief function and plausibility function of A also

have two components, defined respectively as:

Bel(A) = 〈Bel+(A), Bel−(A)〉 (17)

Pl(A) = 〈Pl+(A), Pl−(A)〉 (18)

where

Bel+(A) = ∑
B⊆A

m+(B) (19)

Bel−(A) = ∑
B⊆A

m−(B) (20)

Pl+(A) = ∑
B∩A 6=∅

m+(B) (21)

Pl−(A) = ∑
B∩A 6=∅

m−(B) (22)

The possibility of a subset A also has two components Poss(A) = 〈Poss+(A), Poss−(A)〉,

Poss+(A) ∈ [Bel+(A), Pl+(A)] and Poss−(A) ∈ [Bel−(A), Pl−(A)].

Definition 14. Given an IBPA m on Θ with intuitionstic probability masses m(A) =

〈m+(A), m−(A)〉, and A ∈ 2Θ. The pignistic probability function of m is defined by:

BetP(A) = 〈BelP+(A), BelP−(A)〉, ∀A ∈ 2Θ (23)

where

BetP+(A) = ∑
B∈2Θ

|A ∩ B|

|B|

m+(B)

1 − m+(∅)
(24)

BetP−(A) = ∑
B∈2Θ

|A ∩ B|

|B|

m−(B)

1 − m−(∅)
(25)
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Definition 15. Assume m1 and m2 are two IBPAs on Θ such that for each subset A they

have Bel+2 (A) ≤ Bel+1 (A), Bel−2 (A) ≤ Bel−1 (A), Pl+2 (A) ≥ Pl+1 (A) and Pl−2 (A) ≥

Pl−1 (A), [Bel+1 (A), Pl+1 (A)] ⊆ [Bel+2 (A), Pl+2 (A)] and [Bel−1 (A), Pl−1 (A)] ⊆ [Bel−2 (A), Pl−2 (A)],

we say that m1 entail m2, denoted m1 ⊂ m2.

If m is an IBPA on Θ, so for each subset A, Poss+(A) ∈ [Bel+(A), Pl+(A)] and

Poss−(A) ∈ [Bel−(A), Pl−(A)]. Assume Bel+(A) = a+, Bel−(A) = a−, Pl+(A) = b+

and Pl−(A) = b−, Poss+(A) ∈ [a+, b+] and Poss−(A) ∈ [a−, b−]. If c+ ≤ a+, c− ≤ a−,

d+ ≥ b+ and d− ≥ b−, then Poss+(A) ∈ [c+, d+] and Poss−(A) ∈ [c−, d−].

Theotem 1. Let m be an IBPA on Θ with intuitionstic probability masses m(A) = 〈m+(A), m−(A)〉,

and A ∈ 2Θ. The pignistic probability function of singleton of m is an IBPA on Θ.

Proof. m′ denotes the pignistic probability transform of singleton of m, so m′(A) = BetP(A) =

〈BelP+(A),

BelP−(A)〉, ∀A ∈ Θ.

From the definition of IBPA, we can see

∑
A∈2Θ

m+(A) = 1, ∑
A∈2Θ

m−(A) = 1

so,

0 ≤ BetP+(A) = ∑
B∈2Θ

|A ∩ B|

|B|
m+(B) ≤ 1, 0 ≤ BetP−(A) = ∑

B∈2Θ

|A ∩ B|

|B|
m−(B) ≤ 1

∑
A∈Θ

BetP+(A) = ∑
A∈Θ

∑
B∈2Θ

|A ∩ B|

|B|
m+(B) = ∑

B∈2Θ

m+(B) = 1

Similarly,

∑
A∈Θ

BetP−(A) = 1

When BetP+(A) = 1,

BetP+(A) = ∑
B∈2Θ

|A ∩ B|

|B|
m+(B) = 1
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so the BPA m must satisfy |A∩ B| = |B|, ∀B ∈ 2Θ and m(B) 6= 0, so m+(A) = 1. Similarly,

when BetP−(A) = 1, m−(A) = 1. Because m+(A) and m−(A) can not be one at the same

time, BetP+(A) and BetP−(A) will not be one at the same time.

Therefore, m′ satisfies the three conditions in Definition 11, m′ is an IBPA.

Definition 16. let an intuitionstic probability mass of A, 〈m+(A), m−(A)〉, in an IBPA m

on Θ. The pure support degree is defined as

PS(A) = BetP+(A)− BetP−(A) (26)

For the problem of target recognition, the bigger the pure support degree, the more

likely the target is A. For the problem of decision making, the higher the pure support

degree, the alternative A is more in line with requirements.

Definition 17. Assume m is an IBPA on Θ, the cost of a focal element A, A ⊆ Θ, is defined

as

Cost(A) =
n − |A|

n − 1
(27)

where |A| is the cardinality of A.

It can be seen that Cost(A) ∈ [0, 1].

Definition 18. Assume m is a IBPA on Θ, the cost of m is defined as

Cost(m) = ∑
A⊆Θ

Cost(A)m+(A) + ∑
A⊆Θ

Cost(A)m−(A) (28)

When all focal elements of m are singleton, the cost of m is the most cost, Cost(m) = 2.

When m with one focal element m(Θ) = 〈1, 1〉, the cost of m is the least cost, Cost(m) = 0.

Definition 19. Assume m is an IBPA on Θ, the specificity of m is defined as

Sp(m) = ∑
A⊆Θ,A 6=∅

m+(A) + m−(A)

|A|
(29)

where |A| is the cardinality of A.
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If all focal elements of m is singleton, the specificity of m is maximal Sp(m) = 2. If m only

has one element m(Θ) = 〈1, 1〉, the specificity of m is minimal Sp(m) = 2
n .

An IBPA can transform into a traditional BPA, but a traditional BPA can not transform

into an IBPA, because IBPA contains more information than BPA.

Definition 20. Assume an IBPA m on Θ with intuitionstic probability masses m(A) =

〈m+(A), m−(A)〉, and A ∈ 2Θ. m′ is a BPA transformed by m, m can be calculate by

m(A) =
m+(A)− m−(A)

∑B⊆Θ(m
+(B)− m−(B))

(30)

It is obviously that ∑A⊆Θ m(A) = 1.

An IBPA can be understood as consisting of two BPAs, one representing the support

of the evidence and the other expressing the non-support of the evidence. This thinking

be adopted in the combination of IBPA. The two BPAs of IBPAs are combined by the

classical Dempster-Shafer combination rule.

Definition 21. Given two IBPA m1 and m2 on Θ, the combination result IBPA is denoted

as m1 ⊗ m2, is given by:

m1 ⊗ m2(A) = 〈m+(A), m−(A)〉 (31)

where














m+(∅) = 0

m+(A) =
∑

B
⋂

C=A
m+

1 (B)m+
2 (C)

1− ∑
B
⋂

C=∅

m+
1 (B)m+

2 (C)

(32)















m−(∅) = 0

m−(A) =
∑

B
⋂

C=A
m−

1 (B)m−
2 (C)

1− ∑
B
⋂

C=∅

m−
1 (B)m−

2 (C)

(33)

Obviously, the problem of evidence conflict also exists in combination of IBPA, the

weighted average combination method also can be used in IBPA.
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Definition 22. Given two IBPA m1 and m2 on Θ, the weighted average combination re-

sult IBPA, m1 ⊗ m2(A) = 〈m+(A), m−(A)〉, is given by:

m1 ⊗ m2(A) = AVE(m1 ⊗ m2(A))⊗ AVE(m1 ⊗ m2(A))

= 〈AVE(m+
1 ⊗ m+

2 )⊗ AVE(m+
1 ⊗ m+

2 ), AVE(m−
1 ⊗ m−

2 )⊗ AVE(m−
1 ⊗ m−

2 〉 ∀A ∈ 2Θ

(34)

4. Application in multi-criteria group decision making

Consider the problem of air-condition brands selection. Suppose there are five air-

condition brands A1, A2, A3, A4 and A5, the alternative set is A = {A1, A2, A3, A4}. In

order to evaluate alternative air-condition brands, a decision group consists of three de-

cision makers has been formed. The set of decision maker is D = {D1, D2, D3}. Suppose

three criteria C1(quality), C2(price), C3(degree of satisfaction), C4(function) are consid-

ered in the selection problem. The criteria set is C = {C1, C2, C3, C4}. Procedure for the

selection problem is shown in Fig. 1 and contains the following steps:

Step 1. Determine the weights of criteria.

Evaluations of each criteria by decision makers are shown in Table 1.

The fused result mc of decision makers’ opinions can be calculate by Eq. (31-33)

mc({C1}) = 〈0.3810, 0.1250〉,

mc({C2}) = 〈0.3175, 0.1250〉,

mc({C3}) = 〈0.1586, 0.2500〉,

mc({C4}) = 〈0.1429, 0.5000〉

so, the weights of criteria Wc = [wc,1, wc,2, wc,3, wc,4] can be calculated by:

wc,j = 〈w+
c,j, w−

c,j〉 = 〈BetP+(Cj), BetP−(Cj)〉, j = 1, · · · , 4

12



 Determine the weights of criteria.

Calculate the initial fused results IBPAs 

based on the weights of criteria.

Determine the weights of decision 

makers.

Calculate the final fused results IBPA.

Rank the alternative.

Dete in th ight of riteri

The views of decision 

makers about the 

importance of criteria.

The IBPA matrix assigned 

to each criteria by 

decision makers.

The IBPA about the 

importance of decision 

makers.

Figure 1: The procedure of proposed method.
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D1 D2 D3

{C1} 〈0.3, 0.1〉 {C1} 〈0.2, 0.2〉 {C1} 〈0.3, 0.1〉

{C2} 〈0.2, 0.2〉 {C2} 〈0.2, 0.2〉 {C2} 〈0.3, 0.1〉

{C3} 〈0.2, 0.3〉 {C3} 〈0.2, 0.2〉 {C3} 〈0.1, 0.2〉

{C4} 〈0.2, 0.3〉 {C4} 〈0.1, 0.3〉 {C4} 〈0.1, 0.2〉

{C1, C4} 〈0.1, 0.1〉 {C1, C2, C3} 〈0.1, 0.1〉 {C1, C4} 〈0.1, 0.2〉

{C2, C3, C4} 〈0.2, 0〉 {C2, C3} 〈0.1, 0〉

{C2, C3, C4} 〈0, 0.2〉

Table 1: Opinions of each criteria by decision makers.

So,

Wc = [〈0.3810, 0.1250〉, 〈0.3175, 0.1250〉, 〈0.1586, 0.2500〉, 〈0.1429, 0.5000〉]

Step 2. Calculate the initial fused results IBPAs based on the weights of criteria.

The IBPA decision matrix M is

M =



















m11 m12 m13

m21 m22 m23

m31 m32 m33

m41 m42 m43



















where mjk is an IBPA assigned to criteria Cj by decision maker Dk.

The IBPAs of decision matrix are shown in Tab. 2.

According Eq. (34) the initial fused results Min = [min
1 , min

2 , min
3 ] can be calculated by

AVE(min
k ) =

4

∑
j=1

mj,k × wcj, k = 1, 2, 3

min
k = AVE(min

k )⊗ AVE(min
k )⊗ AVE(min

k )⊗ AVE(min
k ), k = 1, 2, 3
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Criteria Subset of brands Decision maker

D1 D2 D3

C1

{A1} 〈0.22, 0.15〉 〈0.22, 0.12〉 〈0.21, 0.17〉

{A2} 〈0.18, 0.23〉 〈0.19, 0.22〉 〈0.15, 0.33〉

{A3} 〈0.27, 0.08〉 〈0.23, 0.11〉 〈0.25, 0.08〉

{A4} 〈0.18, 0.23〉 〈0.19, 0.22〉 〈0.21, 0.17〉

{A1, A2} 〈0, 0.31〉 〈0, 0.33〉 〈0, 0.25〉

{A1, A3} 〈0.15, 0〉 〈0.17, 0〉 〈0.18, 0〉

C2

{A1} 〈0.21, 0.18〉 〈0.23, 0.13〉 〈0.19, 0.23〉

{A2} 〈0.18, 0.23〉 〈0.20, 0.20〉 〈0.22, 0.15〉

{A3} 〈0.29, 0.06〉 〈0.23, 0.13〉 〈0.25, 0.08〉

{A4} 〈0.18, 0.24〉 〈0.17, 0.27〉 〈0.19, 0.23〉

{A1, A2} 〈0, 0.29〉 〈0, 0.27〉 〈0, 0.31〉

{A1, A3} 〈0.14, 0〉 〈0.17, 0〉 〈0.15, 0〉

C3

{A1} 〈0.21, 0.14〉 〈0.20, 0.20〉 〈0.24, 0.09〉

{A2} 〈0.18, 0.19〉 〈0.17, 0.30〉 〈0.18, 0.27〉

{A3} 〈0.22, 0.14〉 〈0.23, 0.10〉 〈0.20, 0.18〉

{A4} 〈0.21, 0.14〉 〈0.20, 0.20〉 〈0.20, 0.18〉

{A1, A2} 〈0, 0.29〉 〈0, 0.20〉 〈0, 0.28〉

{A1, A3} 〈0.18, 0〉 〈0.20, 0〉 〈0.18, 0〉

C1

{A1} 〈0.22, 0.17〉 〈0.22, 0.15〉 〈0.23, 0.13〉

{A2} 〈0.18, 0.25〉 〈0.15, 0.31〉 〈0.19, 0.20〉

{A3} 〈0.24, 0.08〉 〈0.25, 0.08〉 〈0.23, 0.20〉

{A4} 〈0.21, 0.17〉 〈0.19, 0.23〉 〈0.19, 0.20〉

{A1, A2} 〈0, 0.33〉 〈0, 0.23〉 〈0, 0.27〉

{A1, A3} 〈0.15, 0〉 〈0.19, 0〉 〈0.16, 0〉

Table 2: Opinions of each criteria by decision makers.
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So,

min
1 :min

1 ({A1}) = 〈0.3534, 0.2805〉,

min
1 ({A2}) = 〈0.0211, 0.6466〉,

min
1 ({A3}) = 〈0.5893, 0.0003〉,

min
1 ({A4}) = 〈0.0256, 0.0070〉,

min
1 ({A1, A2}) = 〈0, 0.0655〉,

min
1 ({A1, A3}) = 〈0.0100, 0〉,

min
2 :min

2 ({A1}) = 〈0.4385, 0.2167〉,

min
2 ({A2}) = 〈0.0211, 0.7222〉,

min
2 ({A3}) = 〈0.5007, 0.0008〉,

min
2 ({A4}) = 〈0.0215, 0.0266〉,

min
2 ({A1, A2}) = 〈0, 0.0337〉,

min
2 ({A1, A3}) = 〈0.0182, 0〉,

min
3 :min

4 ({A1}) = 〈0.3973, 0.2605〉,

min
3 ({A2}) = 〈0.0223, 0.6508〉,

min
3 ({A3}) = 〈0.5330, 0.0084〉,

min
3 ({A4}) = 〈0.0316, 0.0162〉,

min
3 ({A1, A2}) = 〈0, 0.0641〉,

min
3 ({A1, A3}) = 〈0.0158, 0〉,

Step 3. Determine the weights of decision makers.
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The IBPA of importance of decision makers md is

md :md({D1}) = 〈0.4, 0.2〉

md({D2}) = 〈0.2, 0.35〉

md({D3}) = 〈0.3, 0.25〉

md({D1, D3}) = 〈0.1, 0.1〉

md({D2, D3}) = 〈0, 0.1〉

So the set of weights of decision makers, Wd = [wd1, wd2, wd3] can be calculated by

wdk = 〈w+
dk, w−

dk〉 = 〈BetP+(Dk), BetP−(Dk)〉, k = 1, 2, 3

So,

Wd = [〈0.45, 0.25〉, 〈0.2, 0.4〉, 〈0.35, 0.35〉].

Step 4. Calculate the final fused results IBPA.

The final fused results IBPA m f i is calculated by

AVE(m f i) =
3

∑
k=1

mkin × wdk

m f i = AVE(m f i)⊗ AVE(m f i)⊗ AVE(m f i)

So,

m f i :m f i({A1}) = 〈0.2606, 0.0646〉,

m f i({A2}) = 〈0, 0.9350〉,

m f i({A3}) = 〈0.7393, 0〉,

m f i({A4}) = 〈0.0001, 0〉,

m f i({A1, A2}) = 〈0, 0.0003〉,

Step 5. Rank the alternative.

The pure support degree of each alternative in m f i can be calculate by Eq. (23)-(26).

Then rank the alternative according to the pure support degree, and the larger the pure

support degree, the more forward the alternative is.
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PS(A1) = BetP+(A1)− BetP−(A1) = 0.2606− 0.06475 = 0.19585,

PS(A2) = BetP+(A2)− BetP−(A2) = 0 − 0.93515 = −0.93515,

PS(A3) = BetP+(A3)− BetP−(A3) = 0.7393− 0 = 0.7393,

PS(A3) = BetP+(A3)− BetP−(A3) = 0.0001− 0 = 0.0001.

The pure support degrees of alternatives were determined, and then four alternatives

were ranked according to descending order of PS. The alternative were ranked as A3 >

A1 > A4 > A2. So A3 should be selected among the four air-condition brands.

5. Conclusion

Dempster-Shafer evidence can deal with uncertain information well, but it only con-

siders the degree of the evidence support the subsets of the frame of discernment. Ac-

cording the concept of IFS, intuitionstic evidence sets (IES) is presented, it takes into

account not only the degree of support, but also the degree of non-support. It can handel

more information compared with Dempster-Shfer evidence theory. Therefore, in future,

intuitionstic evidence theory can be used in other areas such as target recognition, pattern

classification and fault diagnosis.

Acknowledgment

The work is partially supported by National Natural Science Foundation of China

(Grant Nos. 61573290, 61503237).

Reference

[1] A. P. Dempster, Upper and lower probabilities induced by a multivalued mapping, The annals of

mathematical statistics (1967) 325–339.

[2] G. Shafer, et al., A mathematical theory of evidence, Vol. 1, Princeton university press Princeton, 1976.

18



[3] W. Feller, An introduction to probability theory and its applications, Vol. 2, John Wiley & Sons, 2008.

[4] S. Le Hegarat-Mascle, I. Bloch, D. Vidal-Madjar, Application of dempster-shafer evidence theory to

unsupervised classification in multisource remote sensing, IEEE transactions on geoscience and re-

mote sensing 35 (4) (1997) 1018–1031.

[5] R. Sun, H.-Z. Huang, Q. Miao, Improved information fusion approach based on ds evidence theory,

Journal of mechanical science and technology 22 (12) (2008) 2417–2425.

[6] J. Zhang, Y. Deng, A method to determine basic probability assignment in the open world and its

application in data fusion and classification, Applied Intelligence 46 (4) (2017) 934–951.

[7] Y. Li, Y. Deng, Generalized ordered propositions fusion based on belief entropy, International Journal

of Computers Communications & Control 13 (5) (2018) 771–786.

[8] F. Ye, J. Chen, Y. Li, J. Kang, Decision-Making Algorithm for Multisensor Fusion Based on Grey Rela-

tion and DS Evidence Theory, Journal of Sensorsdoi:10.1155/2016/3954573.

[9] P. Dutta, An uncertainty measure and fusion rule for conflict evidences of big data via

dempstercshafer theory, International Journal of Image and Data Fusion 9 (2) (2018) 152–169.

doi:10.1080/19479832.2017.1391336.

[10] J. Wang, Y. Hu, F. Xiao, X. Deng, Y. Deng, A novel method to use fuzzy soft sets in decision making

based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical

diagnosis, Artificial intelligence in medicine 69 (2016) 1–11.

[11] B. Kang, Y. Hu, Y. Deng, D. Zhou, A New Methodology of Multicriteria Decision-Making in Supplier

Selection Based on Z-Numbers, Mathematical Problems in Engineeringdoi:10.1155/2016/8475987.

[12] V. Huynh, Y. Nakamori, T. Ho, T. Murai, Multiple-attribute decision making under uncertainty: The

evidential reasoning approach revisited, IEEE Transaction on Systems Man and Cybernetics Part A-

Systems and Humans 36 (4) (2006) 804–822.

[13] Y. Duan, Y. Cai, Z. Wang, X. Deng, A novel network security risk assessment approach by combin-

ing subjective and objective weights under uncertainty, Applied Sciences 8 (3) (2018) Article ID 428.

doi:10.3390/app8030428.

[14] K. Chatterjee, E. K. Zavadskas, J. Tamo?aitien?, K. Adhikary, S. Kar, A hybrid mcdm technique for risk

management in construction projects, Symmetry 10 (2) (2018) 46. doi:10.3390/sym10020046.

URL http://www.mdpi.com/2073-8994/10/2/46

[15] X. Zheng, Y. Deng, Dependence assessment in human reliability analysis based on evidence credibility

decay model and iowa operator, Annals of Nuclear Energy 112 (2018) 673–684.

[16] H. Zheng, Y. Deng, Evaluation method based on fuzzy relations between dempster–shafer belief struc-

19



ture, International Journal of Intelligent Systems 33 (7) (2018) 1343–1363.

[17] X. Guo, Y. Zhou, J. Qian, Y. Deng, Using evidence credibility decay model for dependence assessment

in human reliability analysis, Annals of Nuclear Energy 100 (2017) 107–118.

[18] L. Chen, X. Deng, A modified method for evaluating sustainable transport solutions based

on ahp and dempstercshafer evidence theory, Applied Sciences 8 (4) (2018) Article ID 563.

doi:10.3390/app8040563.

[19] X. Zhang, S. Mahadevan, Aircraft re-routing optimization and performance assessment under uncer-

tainty, Decision Support Systems 96 (2017) 67–82.

[20] X. Xu, P. Liu, Y. Sun, C. Wen, Fault Diagnosis Based on the Updating Strategy of Interval-Valued Belief

Structures, Chinese Journal of Electronics 23 (4) (2014) 753–760.

[21] Y. Li, J. Chen, F. Ye, D. Liu, The Improvement of DS Evidence Theory and Its Application in IR/MMW

Target Recognition, Journal of Sensors 2016 (1903792).

[22] O. Basir, X. Yuan, Engine fault diagnosis based on multi-sensor information fusion using dempster–

shafer evidence theory, Information Fusion 8 (4) (2007) 379–386.

[23] F. Xiao, A novel evidence theory and fuzzy preference approach-based multi-sensor data fusion tech-

nique for fault diagnosis, Sensors 17 (11) (2017) 2504.

[24] Y. Gong, X. Su, H. Qian, N. Yang, Research on fault diagnosis methods for the reactor coolant sys-

tem of nuclear power plant based on D-S evidence theory, Annals of Nuclear Energy (2017) DOI:

10.1016/j.anucene.2017.10.026.

[25] X. Deng, Q. Liu, Y. Deng, S. Mahadevan, An improved method to construct basic probability as-

signment based on the confusion matrix for classification problem, Information Sciences 340 (2016)

250–261. doi:10.1016/j.ins.2016.01.033.

[26] Z. Liu, Q. Pan, J. Dezert, A. Martin, Combination of classifiers with optimal weight

based on evidential reasoning, IEEE Transactions on Fuzzy Systems PP (99) (2017) 1–15.

doi:10.1109/TFUZZ.2017.2718483.

[27] Z. Liu, Q. Pan, J. Dezert, J.-W. Han, Y. He, Classifier fusion with contextual reliability evaluation, IEEE

Transactions on Cybernetics PP (99) (2017) 1–14. doi:10.1109/TCYB.2017.2710205.

[28] L. A. Zadeh, A simple view of the dempster-shafer theory of evidence and its implication for the rule

of combination, Ai Magazine 7 (2) (1986) 85–90.

[29] R. R. Yager, On the dempster-shafer framework and new combination rules, Information sciences

41 (2) (1987) 93–137.

[30] P. Smets, The combination of evidence in the transferable belief model, IEEE Transactions on pattern

20



analysis and machine intelligence 12 (5) (1990) 447–458.

[31] D. Dubois, H. Prade, Representation and combination of uncertainty with belief functions and possi-

bility measures, Computational intelligence 4 (3) (1988) 244–264.

[32] J. Qian, X. Guo, Y. Deng, A novel method for combining conflicting evidences based on information

entropy, Applied Intelligence 46 (4) (2017) 876–888.

[33] J. Wang, F. Xiao, X. Deng, L. Fei, Y. Deng, Weighted Evidence Combination Based on Distance

of Evidence and Entropy Function, International Journal of Distributed Sensor Networks 12 (7).

doi:10.1177/155014773218784.

[34] F. Xiao, An improved method for combining conflicting evidences based on the similarity measure

and belief function entropy, International Journal of Fuzzy Systems (2017) DOI: 10.1007/s40815–017–

0436–5.

[35] K.-S. Chin, C. Fu, Weighted cautious conjunctive rule for belief functions combination, Information

Sciences 325 (2015) 70–86.

[36] Z.-g. Liu, J. Dezert, Q. Pan, G. Mercier, Combination of sources of evidence with different discounting

factors based on a new dissimilarity measure, Decision Support Systems 52 (1) (2011) 133–141.
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