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Abstract

We show a set of equations which generalizes the Seiberg-Witten equa-
tions

1 Recalls of differential geometry

The Spin — C-structures are reductions of a SO(n).S*- fiber bundle to the
group Spin(n) X (1,1} S1. For a four-manifold it exists always a Spin—C-
structure for the tangent fiber bundle [F].

The DIrac operator is define over the Spin — C-structure with help of
a connection A for the associated line bundle.

Da=>» e.Vi,

i

with V4 the connection defined by the Levi-Civita connection and the
connection A.

The self-dual part of the curvature (which is a 2-form) of the connection
A is considered:

%

A 2-form bound to a spinor 1 is also defined by [F]:

W) (X,Y) =< XY, ) > + < X, Y > |[¢?

2 The Seiberg-Witten equations

The Seiberg-Witten equations are the following ones [F] [M]:

1)

2)



3 The generalization of the SW equations

We consider two spinors 1, ¢ and we define [F] the coupled Seiberg-Witten
equations (A, A’ f,1, ¢):

1)
Da(fh) =0

2)

Dar((1/f)d) =0
3)

Q= —(1/w(v)
4)

Q= —(1/4)w(9)
5)

(f)ya=q/r)a
A, A’ are connections f : M — S'. If f = e, then we have the Seiberg-
Witten equations.
The gauge group acts:

g-(A A f0,0) = (1/9°)" A, (6°) A, fg. 9, (1/9)9)
Moreover, the situation can be generalized to n solutions of the Seiberg-
Witten equations:

1)
Da,(figyi) =0
2)
Q4 = —(1/4)w (i)
3)
(ff) A =B
4)

ITs-

4 The compacity of the generalized SW
moduli spaces

Theorem 1 Let (1, A) be a solutions of Dayp = 0,Q% = —(1/4)w(2)
over a compact Riemann manifold (M, g) with scalar curvature R. Then
at each point,

with Rmin = min{R(m),m € M}

The proof is given in [F] p135.

Definition 1 We define:

My ={(¢,¢,A, A", f) € T(ST)*.C(P)>.Map(M,S") : Dav) = Dar¢p = 0,

Qf = —(1/Aw), Qh = —(1/4)w(@), () A = (1/f) 4} /G



Theorem 2 My, is compact.
Proof : Let
F(L)y={weAM) :dw=0,[wlpr =c1(L)}
Since the curvature form is gauge invariant, we obtain a mapping:

P: Mg — F(P),P[A,A" ¢, ¢, f] = Qa = Qu

4.1 First step
P(Mp) — F(L) is a compact subset.

The proof is given in [F] P136-137.

4.2 Second step
Let be P1, P> : M — C(P)/G(P),
Pl(w7¢7A7A,7f) = A7

and

P2(¢7 ¢7 A7 Al? f) = Al?
then Py, P»(Mp) C C(P)/G(P) are compact subsets. We use Weyl’s the-
orem. The mapping C(P) — F(P),A — Q4 is a fibration with compact
fibre Pic(M) = H'(M,R)/H"(M,Z). The following diagram commutes:

M, =T C(P)/G(P)
1 1
FiL) = F(L)

P, P,(M) C C(P)/G(P) are compact subsets.

4.3 Third step

Let be F': My, — G(P), F(¢,¢, A, A’, f) = f, then F(Mr) C G(P) is a
compact subset.

Consider the map: K : Mz — A'(M),

K(A, A 4,6, f) =§

then K(Mz) C A*(M) is compact. Indeed, 4% = A’ — A which is com-

pact. And the fiber is % = %/, f/f =cste St

4.4 Fourth step: M, is compact
P7Y(A), Py (AY), F~Y () consists of the solutions of
Daft=Da(1/f)¢ = 0,maz(|¢(2)],|p(2)]) < —Rmin

This is bounded ball in a finite-dimensional vector space.



References

[B] N.Berline, E.Getzler, M.Vergne, "Heat kernels and Dirac operators”,
Springer-Verlag, 1992.

[F] T.Friedrich, ”"Dirac operators in Riemannian Geometry”, Graduate
Studies in Mathematics vol 25, AMS, 2000.

[K] M.Karoubi, ” Algebres de Clifford et K-théorie”,
Ann.Scient.Ec.Norm.Sup. 4 ser. 1 (1968), 161-270.

[M] J.Morgan, "The Seiberg-Witten equations and applications to the
topology of smooth four-manifolds”, Mathematical Notes, Princeton
University Press, 1996.

[W] E.Witten, "Monopoles and four-manifolds”, Math.Res.Lett. 1(1994),
769-796.



