
The generalized Seiberg-Witten equations

A.Balan

August 2, 2018

Abstract

We show a set of equations which generalizes the Seiberg-Witten equa-
tions

1 Recalls of differential geometry

The Spin−C-structures are reductions of a SO(n).S1- fiber bundle to the
group Spin(n)×{1,−1}S

1. For a four-manifold it exists always a Spin−C-
structure for the tangent fiber bundle [F].

The DIrac operator is define over the Spin − C-structure with help of
a connection A for the associated line bundle.

DA =
∑

i

ei.∇
A
ei

with ∇A the connection defined by the Levi-Civita connection and the
connection A.

The self-dual part of the curvature (which is a 2-form) of the connection
A is considered:

Ω+

A

A 2-form bound to a spinor ψ is also defined by [F]:

ω(ψ)(X,Y ) =< X.Y.ψ, ψ > + < X, Y > |ψ|2

2 The Seiberg-Witten equations

The Seiberg-Witten equations are the following ones [F] [M]:
1)

DA(ψ) = 0

2)
Ω+

A = −(1/4)ω(ψ)
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3 The generalization of the SW equations

We consider two spinors ψ, φ and we define [F] the coupled Seiberg-Witten
equations (A,A′, f, ψ, φ):
1)

DA(fψ) = 0

2)
DA′ ((1/f)φ) = 0

3)
Ω+

A = −(1/4)ω(ψ)

4)
Ω+

A′ = −(1/4)ω(φ)

5)
(f2)∗A = (1/f2)∗A′

A,A′ are connections f : M → S1. If f = e, then we have the Seiberg-
Witten equations.

The gauge group acts:

g.(A,A′, f, ψ, φ) = ((1/g2)∗A, (g2)∗A′, fg, gψ, (1/g)φ)

Moreover, the situation can be generalized to n solutions of the Seiberg-
Witten equations:
1)

DAi
(fiψi) = 0

2)
Ω+

Ai
= −(1/4)ω(ψi)

3)
(f2

i )∗Ai = B

4) ∏

i

fi = 1

4 The compacity of the generalized SW

moduli spaces

Theorem 1 Let (ψ,A) be a solutions of DAψ = 0,Ω+

A = −(1/4)ω(ψ)
over a compact Riemann manifold (M, g) with scalar curvature R. Then

at each point,

|ψ(x)|2 ≤ −Rmin

with Rmin = min{R(m),m ∈ M}

The proof is given in [F] p135.

Definition 1 We define:

ML = {(ψ, φ,A,A′, f) ∈ Γ(S+)2.C(P )2.Map(M,S1) : DAψ = DA′φ = 0,

Ω+

A = −(1/4)ω(ψ),Ω+

A′ = −(1/4)ω(φ), (f2)∗A = (1/f2)∗A′}/G
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Theorem 2 ML is compact.

Proof : Let

F (L) = {ω ∈ Λ(M) : dω = 0, [ω]DR = c1(L)}

Since the curvature form is gauge invariant, we obtain a mapping:

P : ML → F (P ), P [A,A′, ψ, φ, f ] = ΩA = ΩA′

4.1 First step

P (ML) → F (L) is a compact subset.

The proof is given in [F] P136-137.

4.2 Second step

Let be P1, P2 : ML → C(P )/G(P ),

P1(ψ, φ,A,A′, f) = A,

and
P2(ψ, φ,A,A′, f) = A′,

then P1, P2(ML) ⊂ C(P )/G(P ) are compact subsets. We use Weyl’s the-
orem. The mapping C(P ) → F (P ),A → ΩA is a fibration with compact
fibre Pic(M) = H1(M,R)/H1(M,Z). The following diagram commutes:

ML →P1 C(P )/G(P )
↓P ↓
F (L) = F (L)

P1, P2(M) ⊂ C(P )/G(P ) are compact subsets.

4.3 Third step

Let be F : ML → G(P ), F (ψ,φ,A,A′, f) = f , then F (ML) ⊂ G(P ) is a
compact subset.

Consider the map: K : ML → Λ1(M),

K(A,A′, ψ, φ, f) =
df

f

then K(ML) ⊂ Λ1(M) is compact. Indeed, 4 df

f
= A′ − A which is com-

pact. And the fiber is df

f
= df ′

f ′ , f/f ′ = cst ∈ S1

4.4 Fourth step: ML is compact

P−1

1 (A), P−1

2 (A′), F−1(α) consists of the solutions of

DAfψ = DA′ (1/f)φ = 0,max(|ψ(x)|, |φ(x)|) ≤ −Rmin

This is bounded ball in a finite-dimensional vector space.
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