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Abstract

We derive a class of inequality relations, using both the sum uncertainty relations of su(2) algebra oper-
ators and the Schrodinger-Robertson uncertainty relation of partially transposed su(1, 1) algebra operators,
to detect the three-mode entanglement of non-Gaussian states of electromagnetic field. These operators
are quadratic in mode creation and annihilation operators. The inseparability condition obtained using
su(2) algebra operators is shown to guarantee the violation of stronger separability condition provided by
Schrodinger-Robertson uncertainty relation of partially transposed su(1, 1) algebra operators. The obtained
inseparability condition is also shown to be a necessary condition for W type entangled states and it is used
to derive the general form for a family of such inseparability conditions. An experimental scheme is proposed
to test the violation of separability condition. The results derived for three-mode systems are generalized to
multimode systems.

Introduction
Quantum entanglement, a nonlocal trait of composite quantum systems, is of fundamental interest in quan-
tum information theory. Both the discrete and continuous variable entanglements play vital role in quantum
information processing. However, continuous variable (CV) quantum information processing protocols can
readily be implemented on optical systems. Quantum teleportation [1, 2], super dense coding [3, 4], quantum
cryptography [5, 6] and quantum error corrections [7, 8] were demonstrated using Gaussian entangled states.
Advanced quantum information processing protocols, such as universal quantum computation, were proposed
using non-Gaussian entangled states [9, 10]. For complete review see [11, 12]. CV entanglement were even
shown to improve the resolution in quantum metrology [13, 14, 15]. Recently the cat code has been devel-
oped with CV states [16, 17, 18]. Despite many applications of quantum entanglement, the basic problem of
detection and quantification of entanglement remains largely unexplored in the multipartite scenario [19] and
references therein. For discrete variable quantum systems, entanglement measures were introduced to quantify
the entanglement of bipartite and multipartite systems [20, 21, 22, 23, 24].

Uncertainty relations have been used to derive separability conditions for bipartite CV systems. Two different
approaches were used: The idea behind the first approach is that the sum of variances of two or more non-
commuting observables admits a state-independent lower bound due to their algebraic structure [25],[26] and
references therein. Any quantum state has to satisfy this lower bounds, however, the separable states tend
to impose a stronger lower bound and finding this stronger lower bound provides a separability condition for
bipartite CV systems. This approach was used to derive the separability criteria for bipartite Gaussian states
[27, 28, 29]. In the second approach, the uncertainty relations and other necessary conditions for a quantum
state were used in conjunction with partial transposition (PT). Under PT, the density matrix of a separable
bipartite system transforms into a valid density matrix whereas at least one eigenvalue of the density matrix
of entangled systems becomes negative. This positivity under partial transposition (PPT) is a necessary and
sufficient separability condition of the (2× 2)- and (2× 3)-dimensional systems [30, 31]. Simon showed that the
PT of density matrix corresponds to the time reversal operation in the subspace of bipartite CV system and
also the PPT is a necessary and sufficient condition for the separability of any bipartite Gaussian states [32].
Violation of uncertainty principle, which normally holds for any density matrix, under PT provides a stronger
inseparability condition. Many of these criteria naturally manifest in optical systems.
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Operators describing non-linear optical processes form representations of different Lie algebras and the
coherent states of such Lie algebras are non-Gaussian states. Coherent states of different Lie algebras and their
applications to non-linear optics have been studied extensively [33, 34, 35]. Agarwal et al were the first to point
out the necessity of higher order correlations to detect the entanglement of bipartite non-Gaussian states and
derived an inseparability condition by using the Heisenberg uncertainty relation of su(2) and su(1, 1) algebra
operators in conjunction with PT [36]. These su(2) and su(1, 1) algebra operators were shown to describe the
difference and sum squeezing processes [37]. With the same sets of operators, Hillery et al obtained another pair
of inseparability conditions for bipartite non-Gaussian states using sum uncertainty relations [38]. However,
the result of Agarwal et al was shown to be the stronger condition for detecting the entanglement of su(2)
minimum-uncertainty states [39]. Much stronger separability condition was obtained from the same su(2) and
su(1, 1) algebra operators using the Schrodinger-Robertson uncertainty relation (SRUR) in conjunction with
PT [40].

Existence of different hierarchy of non-Gaussian multipartite CV entangled states increases the complexity
in the detection of multipartite CV entanglement. The method of sum uncertainty relations was used to derive
inseparability conditions for detecting biseparable and fully entangled multimode states [41]. Different ways
to derive separability conditions for multipartite CV systems using PT along with necessary conditions of
quantum states was emphasized in [42]. Along these lines, the violation of uncertainty relations by entangled
multipartite CV states under PT was proposed as inseparability criterion [43, 44]. However, these multipartite
inseparability criteria do not distinguish the genuine W type entangled states from the separable states. The
characteristic of n-partite W type entangled states is that any two arbitrary subsystems obtained by tracing
out other (n − 2) subsystems remain entangled [45, 46]. Different schemes were proposed to prepare single
photon and multiphoton n-mode W type states and the presence of W type entanglement was demonstrated
only by detecting the pairwise entanglement of each of n(n − 1)/2 pairs of modes [47, 48]. Hence, an explicit
inseparability condition to detect the genuine W type CV entangled states needs to be derived.

In this paper, we derive a class of inequality relations to detect the entanglement of multimode non-Gaussian
states. In contrary to other n-mode inseparability conditions [41, 43, 44], where the chosen operators are
nth order in mode creation and annihilation operators, we consider two sets of quadratic operators satisfying
su(2) and su(1, 1) algebras. We derive an inseparability condition for three-mode states by using two different
approaches discussed above. First we consider the sum of uncertainties of su(2) algebra operators to derive
the inseparability condition and show it to be a necessary condition for W type entangled states. The same
inseparability condition is shown to be a sufficient condition to violate the SRUR of partially transposed su(1, 1)
algebra operators. An experimental scheme is proposed to test this violation using linear optical setup. Finally,
we provide a family of inseparability conditions for three-mode states and generalize it to multimode states.
These family of inseparability conditions along with other inseparability conditions proposed earlier [41, 43] can
be used to characterize the entanglement of multipartite CV systems completely.

Inseparability condition for three-mode states
Let â, b̂ and ĉ be the annihilation operators of three modes of electromagnetic field. We define the following set
of three operators:

L̂1 = 1√
2
[
(â+ b̂)ĉ† + (â+ b̂)†ĉ

]
,

L̂2 = i√
2
[
(â+ b̂)ĉ† − (â+ b̂)†ĉ

]
,

L̂3 = N̂a+b − N̂c, (1)

where N̂a+b = (â+ b̂)†(â+ b̂)
2 .

These three operators satisfy a su(2) algebra, [L̂p, L̂q] = 2iεpqrL̂r. Calculating the variances of L̂1 and L̂2
and adding them,

(∆L̂1)2 + (∆L̂2)2 = 2
[
〈N̂a+b(N̂c + 1)〉+ 〈(N̂a+b + 1)N̂c〉 − |〈(â+ b̂)ĉ†〉|2

]
. (2)

If the state under consideration is a pure product state then the sum of variances become,

(∆L̂1)2 + (∆L̂2)2 = 2
[
〈N̂a+b〉〈N̂c + 1〉+ 〈N̂a+b + 1〉〈N̂c〉 − |〈(â+ b̂)〉〈ĉ†〉|2

]
. (3)

The Schwarz inequality, |〈â〉|2 ≤ 〈N̂a〉, |〈b̂〉|2 ≤ 〈N̂b〉 and |〈ĉ†〉|2 ≤ 〈N̂c〉, implies the following inequality
relation for the pure product states,

(∆L̂1)2 + (∆L̂2)2 ≥ 2
[
〈N̂a+b〉+ 〈N̂c〉

]
. (4)
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This inequality can be extended to any separable state as shown in [38]. Hence, an inseparable state should
violate this inequality. From eqs. (2) and (4), a three-mode state is entangled, if it satisfies the following
condition:

|〈(â+ b̂)ĉ†〉|2 > 2〈N̂a+bN̂c〉. (5)

There exists states that satisfy this inequality relation. To show this, we consider the Heisenberg uncertainty
relation of L̂1 and L̂2.

(∆L̂1)(∆L̂2) ≥ 1
2 |[L̂1, L̂2]|. (6)

This implies,

(∆L̂1)2 + (∆L̂2)2 ≥ 2|〈N̂a+b − N̂c〉|. (7)

This relation holds for any state. This lower bound of (∆L1)2 + (∆L2)2 is smaller than the lower bound set
by separable states. Hence there are states that satisfy eq. (7) and violate eq. (4). Such states are entangled
and they obey eq. (5).

The inequality relation represented by eq. (5) is a necessary condition for W type entangled states. To
show this, we consider a density matrix ρ̂ representing the state of three modes of electromagnetic field. If the
reduced density matrix ρ̂ac satisfies the bipartite inseparability condition,

|〈âĉ†〉ρ̂ac
|2 > 〈N̂aN̂b〉ρ̂ac

, (8)

then ρ̂ cannot be written as either
∑
j pj ρ̂aj ⊗ ρ̂bcj or

∑
j pj ρ̂abj

⊗ ρ̂cj
. Similarly, if the reduced density

matrix ρ̂bc satisfies the condition,

|〈b̂ĉ†〉ρ̂bc
|2 > 〈N̂bN̂c〉ρ̂bc

, (9)

then ρ̂ cannot be written as
∑
j pj ρ̂acj

⊗ ρ̂bj
.

Thus if the reduced density matrices, ρ̂ac and ρ̂bc satisfy eqs. (8) and (9) respectively, then ρ̂ represents a
genuinely entangled W type state [49] and it satisfies the following condition,

|〈âĉ†〉ρ̂|2 + |〈b̂ĉ†〉ρ̂|2 > 〈N̂aN̂c〉ρ̂ + 〈N̂bN̂c〉ρ̂. (10)

Since, for separable states, 〈âĉ†〉〈b̂†ĉ〉 ≤ 〈âb̂†N̂c〉 and 〈b̂ĉ†〉〈â†ĉ〉 ≤ 〈b̂â†N̂c〉, W type states satisfy eq. (5).
Hence the inequality relation represented by eq. (5) is a necessary condition for W type entangled states.

Method based on partial transposition (PT)
For two non-commuting observables Â and B̂, the Schrodinger-Robertson uncertainty relation (SRUR) [43, 50]
is written as,

(∆Â)2(∆B̂)2 ≥ 1
4
∣∣〈[Â, B̂]〉

∣∣2 +
∣∣∣∣ 〈ÂB̂ + B̂Â〉

2 − 〈Â〉〈B̂〉
∣∣∣∣2. (11)

This inequality relation is valid for any quantum state. Under partial transposition of one of the subsystem, the
violation of this inequality relation implies the entanglement of partially transposed subsystem with the rest of
the subsystems.

Now we consider the following set of operators:

K̂1 = 1√
2

[(â+ b̂)ĉ+ (â+ b̂)†ĉ†],

K̂2 = i√
2

[(â+ b̂)ĉ− (â+ b̂)†ĉ†],

K̂3 = N̂a+b + N̂c + 1. (12)

These operators satisfy a su(1, 1) algebra, [K̂1, K̂2] = −2iK̂3, [K̂2, K̂3] = 2iK̂1 and [K̂3, K̂1] = 2iK̂2. Under the
partial transposition of the third mode (ĉ), the SRUR of K̂1 and K̂2 can be written as

(∆K̂1)2
ρP T (∆K̂2)2

ρP T ≥ |〈K̂3〉ρP T |2 +
∣∣∣∣ 〈K̂1K̂2 + K̂2K̂1〉ρP T

2 − 〈K̂1〉ρP T 〈K̂2〉ρP T

∣∣∣∣2. (13)

We have the following relations:
(∆K̂1)2

ρP T = 1 + (∆L̂1)2,
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(∆K̂2)2
ρP T = 1 + (∆L̂2)2,

〈K̂3〉ρP T = 〈K̂3〉 = 〈1 + N̂a+b + N̂c〉, (14)

Hence,∣∣∣∣ 〈K̂1K̂2 + K̂2K̂1〉ρP T

2 − 〈K̂1〉ρP T 〈K̂2〉ρP T

∣∣∣∣2 =
∣∣∣∣ 〈L̂1L̂2 + L̂2L̂1〉

2 − 〈L̂1〉〈L̂2〉
∣∣∣∣2 =

[
=
{

[∆(â+ b̂)†ĉ]2
}]2

. (15)

Substituting these expressions in eq. (13) we get

[1 + (∆L̂1)2][1 + (∆L̂2)2] ≥ [1 + 〈N̂a+b〉+ 〈N̂c〉]2 +
[
=
{

[∆(â† + b̂†)ĉ]2
}]2

. (16)

This inequality relation represents a stronger separability condition than the one represented by eq. (4).
To experimentally verify the violation of this separability condition, one has to measure the operators L̂1, L̂2,
L̂1L̂2 + L̂2L̂1 and N̂a+b + N̂c. An experimental scheme to measure these operators is demonstrated in the next
section.

Substituting the expressions of [1 + (∆L̂1)2] and [1 + (∆L̂2)2] in eq. (15) leads to the following inequality
relation:[
2〈N̂a+bN̂c〉−|〈(â+ b̂)ĉ†〉|2

][
2〈(N̂a+b+1)(N̂c+1)〉−|〈(â+ b̂)ĉ†〉|2

]
≥
[
<
{

[∆(â+ b̂)†ĉ]2
}]2 +

[
=
{

[∆(â+ b̂)†ĉ]2
}]2

.
(17)

If we use Heisenberg uncertainty relation (HUR) instead of SRUR then we get,[
2〈N̂a+bN̂c〉 − |〈(â+ b̂)ĉ†〉|2

][
2〈(N̂a+b + 1)(N̂c + 1)〉 − |〈(â+ b̂)ĉ†〉|2

]
≥
[
<
{

[∆(â+ b̂)†ĉ]2
}]2

. (18)

Comparing the right sides of eqs. (16) and (17), it is clear that SRUR provides the stronger separability
condition than HUR. Since the right sides of both eqs. (16) and (17) are positive quantities, a sufficient condition
for entangled states can be written as[

2〈N̂a+bN̂c〉 − |〈(â+ b̂)ĉ†〉|2
][

2〈(N̂a+b + 1)(N̂c + 1)〉 − |〈(â+ b̂)ĉ†〉|2
]
< 0. (19)

This condition is satisfied if, and only if, the following two inequality relations are satisfied simultaneously,

|〈(â+ b̂)ĉ†〉|2 > 2〈N̂a+bN̂c〉,

|〈(â+ b̂)ĉ†〉|2 < 2〈(N̂a+b + 1)(N̂c + 1)〉. (20)

The first condition is the inseparability condition [eq. (5)] obtained in the first section. From Schwarz
inequality we have

|〈(â+ b̂)ĉ†〉|2 ≤ 2〈N̂a+b(N̂c + 1)〉. (21)

Hence the second condition of eq. (19) holds for any state. If eq. (5) is satisfied, it implies the violation of
eq. (15), however, the converse need not be true.

Experimental scheme
Violation of inequality relation represented by eq. (15) can be tested experimentally. An experimental scheme
to measure the operators involved in eq. (15) is shown in Figure 1. The modes â and b̂ are injected into a 50 : 50
beam splitter (BS1). The output mode ê = (1/

√
2)(−â+ b̂) is sent to a beam dump (BD) and d̂ = (1/

√
2)(â+ b̂)

is mixed with the mode ĉ in the second 50 : 50 beam splitter (BS2). The mode ĉ undergoes a phase shift by
φ before injection. The output modes f̂ = (1/

√
2)(d̂ + ĉe−iφ) and ĝ = (1/

√
2)(−d̂ + ĉe−iφ) are detected in

photodiodes (PD1) and (PD2) respectively.
The operators L̂1 and L̂2 can be measured by detecting the photon number difference at the output:

N̂{−,φ} = f̂†f̂ − ĝ†ĝ = (â+ b̂)†ĉe−iφ + (â+ b̂)ĉ†eiφ√
2

. (22)

The choice of φ = 0 gives L̂1. The operator L̂2 can be measured with φ = π/2. The operator L̂1L̂2 + L̂2L̂1 can
be measured in two steps, by choosing φ = π/4 and φ = −π/4, as shown below.

N̂2
{−,φ=π/4} − N̂

2
{−,φ=−π/4} = i

[
(â+ b̂)2(ĉ†)2 − (â† + b̂†)2ĉ2] = L̂1L̂2 + L̂2L̂1 (23)
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Figure 1: Experimental setup to test the violation of separability condition [eq. (15)]. BS1 & BS2, 50 : 50 beam
splitters; BD, beam dump; PS, phase shifter and PD1 & PD2, photodetectors. All the required operators can
be measured by detecting the sum and differences of photon numbers at the output with appropriate phase
shifts as described in the main text.

Irrespective of the phase shift of mode ĉ, the sum of photon numbers at the output provides N̂a+b + N̂c. That
is,

N̂+ = f̂†f̂ + ĝ†ĝ = N̂a+b + N̂c. (24)

Thus the experimental setup shown in Figure 1 can be used to test the violation of separability condition
represented by eq. (15).

General form of inseparability condition
The inseparability criterion eq. (5) suggests that there exist a family of such inseparability criteria. They can
be obtained by replacing (â+ b̂)ĉ† with (âp + b̂q)(ĉ†)r. For a pure product state we have,

|〈(âp + b̂q)(ĉ†)r〉|2 = |〈âp〉|2|〈(ĉ†)r〉|2 + |〈b̂q〉|2|〈(ĉ†)r〉|2 + 〈âp〉〈(b̂†)q〉|〈ĉr〉|2 + 〈(â†)p〉〈b̂q〉|〈ĉr〉|2,

≤ [〈(â†)pâp〉+ 〈(b̂†)q b̂q〉+ 〈âp〉〈(b̂†)q〉+ 〈(â†)p〉〈b̂q〉][〈(ĉ†)r ĉr〉]. (25)

Since for a product state 〈(â†)pâp〉〈(ĉ†)q ĉq〉 = 〈(â†)pâp(ĉ†)q ĉq〉, we have the following inequality relation,

|〈(âp + b̂q)(ĉ†)r〉|2 ≤ 〈(âp + b̂q)†(âp + b̂q)(ĉ†)r ĉr〉, (26)

holding for any separable state. To show this, we consider the density matrix ρ̂ =
∑
k pkρ̂k representing a

general separable state, where ρ̂k is a product state and
∑
k pk = 1. Let us define Â = âp, B̂ = b̂q and Ĉ = ĉr.

Then we have
|〈(Â+ B̂)Ĉ†〉| ≤

∑
k

pk|〈(Â+ B̂)Ĉ†〉k|,

=
∑
k

pk

√
〈(Â+ B̂)Ĉ†〉k〈(Â† + B̂†)Ĉ〉k,

≤
∑
k

pk

√
〈(Â+ B̂)†(Â+ B̂)Ĉ†Ĉ〉k,
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≤
√∑

k

pk

√∑
k

pk〈(Â+ B̂)†(Â+ B̂)Ĉ†Ĉ〉k.

Thus for a general separable state we have

|〈(Â+ B̂)Ĉ†〉| ≤
√
〈(Â+ B̂)†(Â+ B̂)Ĉ†Ĉ〉. (27)

Therefore the general form of inseparability condition can be written as

|〈(âp + b̂q)(ĉ†)r〉|2 > 〈(âp + b̂q)†(âp + b̂q)(ĉ†)r ĉr〉. (28)

This higher order inseparability condition can be used to detect the entanglement of multiphoton three-mode
W type states.

Generalization to multimode states
The inseparability criterion derived for three-mode states can be generalized to multimode states. Let â1,
â2,.....,ân be the annihilation operators of n modes of electromagnetic field. The inseparability condition for
n-mode states is given by

|〈(â1 + â2 + .....+ ân−1)â†n〉|2 > (n− 1)〈N̂a1+a2+.....+an−1N̂an
〉, (29)

where N̂a1+a2+.....+an−1 = (â1 + â2 + .....+ ân−1)†(â1 + â2 + .....+ ân−1)
(n− 1) .

The most general form of entanglement condition for n-mode states can be written as

|〈(âp1
1 + âp2

2 + .....+ â
pn−1
n−1 )(â†n)pn〉|2 > 〈(âp1

1 + âp2
2 + .....+ â

pn−1
n−1 )†(âp1

1 + âp2
2 + .....+ â

pn−1
n−1 )(â†n)pn(ân)pn〉. (30)

Conclusion
In conclusion, we have presented a sufficient condition of inseparability for three-mode states of electromagnetic
field, using su(2) and su(1, 1) algebra operators that are quadratic in mode creation and annihilation operators.
This inseparability condition is obtained by using two different approches: by considering the sum uncertainty
relations of su(2) algebra operators and the SRUR of partially transposed su(1, 1) algebra operators. The latter
approach provides a stronger separability criterion and the result of former approach is explicitly shown to be
a sufficient condition to violate this stronger separability criterion and also a necessary condition for W type
entangled states. A general form is provided for a family of such inseparable conditions which are generalized to
multimode states. An experimental scheme is proposed to test the violation of the proposed stronger separability
condition. Thus, we circumvent the difficulty of testing n(n − 1)/2 entanglement conditions for each pair of
modes of W type states, by proposing a necessary inseparaiblity condition.
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