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Abstract: In this paper, we studied an open problem, where using two dif-
ferent methods, we obtained several results for a Lyapunov-type and Hartman-
Wintner-type inequalities for a Hadamard fractional differential equation on a
general interval [a;b], (1 < a < b) with the boundary value conditions.
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1 introduction

The first result in this domain is due to Lyaponov [1], can be stated as follows:
If a nontrivial continuous solution to the following boundary value problem

u”(t) + q(t)u (t) =0, a<t<b,

(1)
u(a) =u(b) =0
existe, where ¢ : [a;b] — R is a continuous function, then
[ 1atoyas > 2 @)
s)|ds > ——.
o e b—a

Recently, several articles from the inequality of Lyapunov have been published
about a differential equations of the integer order and fractional order, see [5-
10] and references therein, for example: The following result for the Riemann-
Liouville fractional boundary value problem is found by D. O’'Regan and B.
Samet [4]

ED(t) + q(t)u(t) =0, a<t<b 3<a<i,

3)



has a nontrivial continuous solution, then

b a)(a — 2)2—2
[ ol > g (@

In [2] Qinghua, Chao and Jinxun established a Lyapunov-type inequality for a
differential equation that depands on the Hadamard fractional derivative, for
the boundary value problem

HDo(t) — q(t)u (t) = 0, l<t<e, 1<a<?2,

()
u(l)=u(e) =0

where ¢ : [1;€] — R is a continuous function.They proved that if a nontrivial
continuous solution to the above problem, then

[ latslds > T @ - (6)

where A = 2"‘*1*@.
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And they have presented the following open problem for readers:

How to get the Lyapunov inequality for the following the Hadarmard fractional
value problem (HFBVP)

Hpoy(t) —qt)u(t) =0, 1<a<t<b 1l<a<2,

(7)
u(a) =u(b) =0

where #D® is the Hadamard fractional derivative, and ¢ : [a;b] — R is a
continuous function.

In this paper we answered the previous question by using two methods, and also
we get the Hartman-Wintner-type inequalities.

2 Preliminaries

Definition 1 [8] Let a,b,a € RT wherea < b andn—1 < o < n withn € N*,
The Hadamard fractional integral of ordre o.for a function f € L'[a,b] is defined

) fftaf(t)zr(la)/at <lnz)a_1f(s)dj, a<t<b (8)

with T' is Gamma Fuler function

Definition 2 [3] Let a,b € R with a < b, The Hadamard fractional derivative
of ordre o € R .for a function f € L'[a,b] is defined as

1 dn t n—a—1 dS
fD?f(t)_F(n—a)tndt"/ <1nt) () e a<t<b 9)

S

where n — 1 < o < n with n € N*



Lemma 3 [3] Let 0 < a <b and o >0 wheren —1 < a < n. andn € N* The

equation T DYu(t) = 0 has as its solutions

and moreover ' 4
=n t a—1
Hre Hpou(t) = u(t) + Y e (m a) ,
where ¢; € R, (i =1,...,n) are constants.

Lemma 4 Let A, B € R, we have

(A+ B)?

AB <
4

3 Main results
Lemma 5 Let u € C([a;b],R), the following problem
Hpou(t) —q(t)u(t) =0, 1<a<t<b 1<a<2,
u(a) =u(b) =0
has equivalent to the fractional integral equation
b
w(t) = / G (t5) q(s)u (5) ds

where

a—1 4

with 1 < a < b.

Proof. Using Lemma 3, we have

w(t) = e (m 2>a_1 te (m 2>H + F(la)/t (m z)a_l a(s)u(s)

where c1,c0 € R
using the boundary condition u(a) = u(b) = 0 we get co = 0 and

o = —% [ (=) aomn®

ds
S

(10)

(11)

(16)

(17)



Substituting the values of ¢; and ¢z in (16), we obtain

w(t) —anéyhlOngf_ilb<mb)a_aﬂ@u@)ds

b
_ / Gt ) q(s)u (s) ds (18)
the proof is complete m

Lemma 6 The Green’s function G defined in Lemma 5, has the following prop-
erties

i) G(t,s) < ga(s,s) <0, for all (t,s) € [a,b] X [a,]]

i1) For any s € [a,b]

6(t.5) < 66| = (59 < amipra (03) (9

Proof. We start by fizing an arbitrary s € [a,b]. Differentiating G(t, s) with
respect to t, we get
Forl1l<a<t<s<b, wehave

1 1 t a—2 1 b a—1
ot [(«a)st (In 2)0‘
we obtain
g2(s,8) < ga(t, s) < g2(a,s) =0, (21)
while for 1 < a < s <t <b, we have
0 _ 0 lam) (T
ot T ;% I(«a)st s

G V) UL R Rt VI A
- T(a)st (In g)a_l + ['(a)st (1 s)
2

=D [ty m) T )
- T(a)st [(l s) (In 2)*7" ]




(@—1)(In )"~ [(m :
T(a)st

i I

byl <a<s<t<bwe get

and

So thus

Using 1 <a <s<t<bwe get

We obtain
hence

We prove that

1 b a—1
< - - hd
|G(s,8)] < (o) (lna)

we have G(s,3) = ga(s,8) = q1(s,5) < g2(t,8) < q1(¢, ) < 0.

Using Lemma 4, we have

G(s, )] W [(m 2) (m z)rl

N

(23)

(24)

(27)
(28)

(29)

(30)



Therefore

a—1
Gt )] < |G (s, 8)] = —ga(s,8) <~ — (lnb) (31)

The proof is complete m
We have the following Hartman-Wintner-type inequality.

Theorem 7 If a nontrivial continuous solution to the Hadamard fractional
boundary value problem (7) existe, then

/abi (lnfﬂn DCH la(s)lds > (ln 2)a_1 I'(c) (32)

Proof. Let E = C ([a,b],R) be the Banach space endowed with the norm

[ul| = sup |u(t)|
t€la,b]

we have .
O] < [ 1G5 lalo)] fu )] ds
which yields ,
ol <l [ 12 5.9 (o) ()]

Since w is non trivial, then ||u|| # 0, so

b a—1
a (In?2 I'a)s

from which the inequality in (32) follows m

Corollary 8 If a nontrivial continuous solution to the Hadamard fractional
boundary value problem existe, then

[ (2w b)l (o) ds > a (in 2)“1p<a) )



Proof. from theorem 7, we have

b a—1 a—1
/ 1 <lnsln b> lg(s)| ds > (ln b) I'(«)
0 S a s a

nexte we not = > 1

thus we get
b a—1 a—1
s. b b
In—In—- > In — r 4
/a(nans) a(s)] ds (n) (@) (34)
]

We have the following Lyapunov-type inequality.

Theorem 9 If a nontrivial continuous solution to the Hadamard fractional
boundary value problem (7) existe, then

/ ' lg(s)] ds > 40~V (a)a () (33)

Proof. from the corollary 8, we have

[ atotas > o (1 b) Do) (36)

h
e

h(s) = (len 2)a1 (37)

If s=aors=>0then h(s) =0
Else if s €]a, b] we differentiate h(s)

W(s) = M(mi’-mi)

where

we have only one solution

so = Vab (38)

of the equation h'(s) = 0 on |a; b[. We obtain

max h(s) = h(sg) = (111 @ In b) (39)

s€la,b] a \/(%
‘We have
2
ab:\/@m@m@:lni@ 111@7111L =0
a ab a Vab



by (39) and (40)

1

2(a—1)
h(s) = h(so) = —— (In 2 41
) =ho0) = g (1n7) “

we substiting (41) into (36) we obtain
b b 11—«
/ lg(s)| ds = 4 DT (a)a <ln >
a a

The proof is complete m
We define the constants:

& =exp (; [[2(al)+lnba}\/4(oz1)2+ln2 Z]) (42)

and

&y = exp <; [[2(&— 1) + Inba] + \/4(@— 1)* +In? Z]) . (43)

Lemma 10 The function G defined in Lemma 5, satisfie the following property

o 1 ln%lng o "
t,s)| = ! ,
225 100 = g | T .
Proof. we have max |G(t, s)| = max |ga(s, s)]|
t,s€[a,b] s€la,b]
where .
1 (lnilng)a

92(s,8) = _I‘(a) (in %)a—l s

It follows that we only need to get the maximum value of the function
(In1n)*™"

Jls) = el (45)

S



we observe that f(a) = f(b)
If s €]a, b], differentiate f(s)

|
e

we have

f(s)=0 & (a—1)(In2-In2)=mnsn?
& [2(a—1)+Inb+1Inallns — [(a — 1) +Inb/lna —In’*s — (a —1)Inb=0
e In®s—[2(a—1)+Inba]Ins+ [(« —1)Inba+Inblna] =0

S22 —[2(a—1)+1Inba)z + [(a —1)Inba + Inblna] = 0

where x = In s.

we get
T = [2(a—l)+12nba]—\/z _ lnfl
(46)
Ty = [2(a— 1)+lnba]+\/7 1115
where b
A:4(oéf1)2+1n2a (47)
we have
In ba + (ln 2)2
To > =1Inb
2
= & Easb]

Also we have

"o ( 0‘—1+1nba—\/<2(a—1)+lnz>2—4(a—1)(mZ))
( (a—1) +1nba—\/<2(a—1)+1nz>2)

b
(2 a—1)+Inba—2 (a—l)—ln> =Ina
a

N =

= 1>a



and

1
T = 5

2(a—1)+lnba—\/(Q(Q_l)_ln2)2+4(a_1)1n2)
2(@—1)+lnba—\/(z(a_l)_lns)z)

2(a—l)+lnba—'2(a_1)_ln2)

)

2(a—1) +Inba— <2(a_1)_1nb>) —Inb

A
\

N | =
N/

2(a—1)+Inba — <|2(a1)

a

VA
N~ N~ N~
S~ N7 N7 N

I
o
AN
o

we obtient &; €]a;b]

Hence 1
1 & b\
=~ (Intn— 48
2 el =g <“a “&) (4
Therefore
C 1 ln%lng ot
t,s)| = ! . 49
2 0= mrg \ T )

The proof is complete
We have the following Lyapunov-type inequality.

Theorem 11 If a nontrivial continuous solution to the HFBVP (7) existe, then

e’

b Inln gi
[ lalds > v, <> , (50)

Ju—

n

&, =exp (; [[2(a—l)+lnba]—\/4(a—1)2+1n221).

Proof. By Lemma 5, the solution of the HFBVP can be written as

where

b
w(t) = / G (4 5) q(s)u (5) ds

10



Thus for all ¢ € [a, b] we have

b
wOl < [ 16w )] ds
b
< lul / G (t,9)] a(s)] ds

which yields

b
[Jull < IIUII/ |G (¢, )] la(s)| ds

Since u is non trivial, then |Ju| # 0, so

b
1 </ G (t,5)] la(s)] ds

New, an application of Lemma 10, we obtain

et

b ln%lln§L
/ lg(s)|ds > (e, [ 2 &

Int
a

The proof is complete m
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