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Abstract: In this paper, we study an open problem; where we obtained
several results for a Lyapunov-type and Hartman-Wintner-type inequalities for a
Hadamard fractional differential equation on a general interval [a; ], (1 < a < b)
with the boundary value conditions.
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1 introduction

The first result in this domain is due to Lyaponov [1], can be stated as follows:
If a nontrivial continuous solution to the following boundary value problem

u”(t) + q(t)u (t) =0, a<t<b,
(1)
u(a) =u(b) =0,

existe, where ¢ : [a;b] — R is a continuous function, then

b
[ s> 2 &)

Recently, several articles from the inequality of Lyapunov have been published
about a differential equations of the integer order and fractional order, see [5-10]
and references therein, for example:

The following result for the Riemann-Liouville fractional boundary value prob-
lem is found by D. O’Regan and B. Samet [4]

ED(t) + q(t)u(t) =0, a<t<b 3<a<i,
®3)



has a nontrivial continuous solution, then

b a)(a — 2)2—2
[ ol > g (@

In [2] Qinghua, Chao and Jinxun established a Lyapunov-type inequality for a
differential equation that depands on the Hadamard fractional derivative, for
the boundary value problem

HDo(t) — q(t)u (t) = 0, l<t<e, 1<a<?2,

()
u(l) = u(e) =0,

where ¢ : [1;€] — R is a continuous function.They proved that if a nontrivial
continuous solution to the above problem, then

[ latslds > T @ - (6)

where A = 2"‘*1*@.

and they have presented the following open problem for readers:
How to get the Lyapunov inequality for the following the Hadarmard fractional
value problem (HFBVP)

Hpoy(t) —qt)u(t) =0, 1<a<t<b 1l<a<2,

(7)
u(a) = u(b) =0,

where #D® is the Hadamard fractional derivative, and ¢ : [a;b] — R is a
continuous function.

In this paper we answered the previous question by using two methods, and also
we get the Hartman-Wintner-type inequalities.

2 Preliminaries

Definition 1 [8] Let a,b,a € RT wherea < b andn—1 < o < n withn € N*,
The Hadamard fractional integral of ordre o.for a function f € L'[a,b] is defined

) fftaf(t)zr(la)/at <lnz)a_1f(s)dj, a<t<b (8)

with T' is Gamma Fuler function

Definition 2 [3] Let a,b € R with a < b, The Hadamard fractional derivative
of ordre o € R .for a function f € L'[a,b] is defined as

1 dn t n—a—1 dS
fD?f(t)_F(n—a)tndt"/ <1nt) () e a<t<b 9)

S

where n — 1 < o < n with n € N*



Lemma 3 [3] Let 0 < a <b and o >0 wheren —1 < a < n. andn € N* The

equation T DYu(t) = 0 has as its solutions

Jj=n a—i
() =3 e (m 2) . telal
j=1

and moreover

j=n a—i
t
H o Hpoy(t) = u(t) + E ci <ln a> ,

j=1

where ¢; € R, (i =1,...,n) are constants.
Lemma 4 Let A, B € R, we have

Ap< AtB)”
= 4

3 Main results
Lemma 5 Let u € C([a;b],R), the following problem
HDoy(t) — q(t)u (t) =0, 1<a<t<b 1<a<?2,
u(a) =u (b) =0,
has equivalent to the fractional integral equation
t
w(t) = / Gt 5) g(s)u (s) ds
0

where

with 1 < a < b.

Proof. Using Lemma 3, we have

w(t) = e <1n 2>a1 +e <ln 2>“ + F(la)/t <1n 2>a1 a(s)u (s)

where c1,c0 € R
using the boundary condition u(a) = u(b) = 0 we get co = 0 and

o = —% [ (=) aomn®

(10)

(12)

(13)

(16)

(17)



Substituting the values of ¢; and ¢z in (16), we obtain

w(t) = _(1HZ)Q_F1(O([1)HZ < ) is
i, (mi)a“q@ Ok
) () () () i
o] (02 () () o
= /atG(tvS)q(S)U(s)ds a8)

the proof is complete m

Lemma 6 The Green’s function G defined in Lemma 5, has the following prop-
erties

i) G(t,s) < ga2(s,s) <0, for all (t,s) € [a,b] X [a,]]

i1) For any s € [a,b]

1 b a—1
6(t.5) < [6(6.9)] = ~g2(6:9) € gy (1) (19)
Proof. We start by fizing an arbitrary s € [a,b]. Differentiating G(t,s) with
respect to t, we get
For1<a<t<s<b, wehave

1 1 t a—2 1 b a—1
QQQZ—(Q )(na) (rif) SO’ (20)
ot I(a)st (In é)“
we obtain
92(s,8) < 92(t, 8) < g2(a,s) =0, (21)
while for 1 < a < s <t<b, we have
o _ 9. la=l( ¢ o2
alt T o I'(a)st s




(@—1)(In )"~ [(m :
T(a)st

e ol GG

byl <a<s<t<bwe get

and

So thus

Using 1 <a <s<t<bwe get

We obtain
92(873> < 92(t73) < gl(tvs) <0,
hence
G(t,s) <0
We prove of

1 b a—1
< - - hd
|G(s,8)] < (o) (lna)

we have G(s,3) = ga(s,8) = q1(s,5) < g2(t,8) < q1(¢, ) < 0.

Using Lemma 4, we have

G(s, )] W [(m 2) (m z)rl

N

(23)

(24)

(27)
(28)

(29)

(30)



Therefore

a—1
Gt )] < |G (s, 8)] = —ga(s,8) <~ — (lnb) (31)

The proof is complete m
We have the following Hartman-Wintner-type inequality.

Theorem 7 If a nontrivial continuous solution to the Hadamard fractional
boundary value problem (7) existe, then

/:i (lniln l;)a_l la(s)] ds > (ln Z)CH I'(a) (32)

Proof. Let E = C ([a,b],R) be the Banach space endowed with the norm

[ul| = sup |u(t)|
t€la,b]

we have .
lu(t)] < / |G (t,5)|lq(s)| |u(s)| ds
which yields

Jull < HUII/ |92 (s, 5)[ lg(s)| [u(s)[ ds

Since u is non trivial, then |Ju| # 0, so

t a—1
1</ % <1nslnb> lg(s)| ds
a (In2)™ " T(a)s a s

from which the inequality in (32) follows m

Corollary 8 If a nontrivial continuous solution to the Hadamard fractional
boundary value problem existe, then

[ <1nZln i’)a_l lq(s)|ds > a (1n Z)a_lr(a) (33



Proof. from theorem 7, we have

t a—1 a—1
/ 1 <lnsln b> lg(s)| ds > (ln b) ')
0 S a s a

nexte we not = > 1
thus we get
t a—1 a—1
s. b b
In—In- ds > In — I 34
[ (m2w?) eiaszo(nl) e (34)
=

We have the following Lyapunov-type inequality.

Theorem 9 If a nontrivial continuous solution to the Hadamard fractional
boundary value problem (7) existe, then

/ 'a(s)] ds > 4C~DD(a)a () (35)

We prove this theorem in two methods
Proof. from the corollary 8, we have

/ la(s)] ds > a (1 b) T (36)

h
s h(s)

where

h(s) = (lnsln b>a_1 (37)

a S

If s=aor s="0then h(s) =0
Else if s €]a, b we differentiate h(s)

) = @7 (mfs’ —1n5>

we have only one solution

S0 = \/CE (38)

of the equation h'(s) = 0 on |a; b[. We obtain

- - \/@ b a—1
Srél[gfé]h(s) = h(sg) = (hl — In m) (39)



We have

Jab b b b\’
ab=vavab oYL =l o (m YL _m—2 | =o
a Vab a

a-1 2(a—1)
< |In @ In b - In b (40)
a Vab 4la=1) a

by (39) and (40)

1 b 2(a—1)

we substiting (41) into (36) we obtain
t b 11—«
/ lg(s)| ds = 4 VT (a)a <ln >
a a

The proof is complete m
We define the constants:

flzexp<1 [2(@—1)+1nba]—\/4(04—1)2-1-11122 ), (42)

2
and _ -
1 b
gzzexp(2 [2(@—1)+1nba]+\/4(@—1)2—1—1112 ) (43)
a
Lemma 10 The function G defined in Lemma 5, satisfie the following property
o 1 In % In % ot
t = 44
 max |G(t, s)] T, In® ; (44)
Proof. we have max |G(t,s)| = max |g2(s, s)]|
t,s€[a,b] s€la,b]
where .
1 In2n2)*"
92(8,5):7 ; a—l( a s)
') (ln g) s



It follows that we only need to get the maximum value of the function

(nsmb)*
S

fs) =

we observe that f(a) = f(b) =0.
If s €]a, b], differentiate f(s)

we have

f(s)=0 & (a—1)(In2-In2)=Inshn?

& [2(a—1)+Inb+1Inallns — [(a—1) +Inb]lna —In®s — (a —

oIn®s—[2(a—1)+Inba]lns+ [(a —1)Inba +Inblna) =0
22— 2(a—-1)+Inbajz + [(a—1)Inba+Inblna] =0

where x = In s.

we get
£, = [2(a71)+12nba]7\/z —Ing,
Ty = [2(a— 1)+lnba]+f 11'1§
where
2 2 b
A=4(a—1)"+In" -
a
we have

In ba + (lng)2
To > 9 =Inb

= & ¢Ea b

Also we have

Hnba_ﬂm_wgf)

1(2 (a—1)+Inba—2(a—1)— lnb>:1na
2 a
= £ >a

o ( “‘1+lnba—\/<2(a—1)+1n2>2—4(a—1)<1n2>)

1)Inb=0



and

—_

T =

2
2(a—1)+lnba—\/(2(04—1)—1nb) +4(a—1)

2<a_1>+mba_ﬂg(a_n_mgy)
)

2(al)+lnba'2(a1)ln
)

2(a — 1) + Inba - (2(a_1)_1nb>> —Inb

DN =

2(a—1)+Inba — <|2(a—1)—

a

VAN
N~ N~ N~
7~/ N7 N -7 N

b

I
A
A

we obtient &, €]a;b]
Hence )
1 & . b >a‘
max s)l=—(Iln>=>1In—
o 19 = ¢ (% g
Therefore

£ b a—1
G . >| _ 1 ln o hl a
t,?é?fb]l (t5)| = NI 1ng ’

The proof is complete ®
We have the following Lyapunov-type inequality.

(49)

Theorem 11 If a nontrivial continuous solution to the HFBVP (7) existe, then

-«

i ln%lngi
/ lg(s)| ds > T ()&, <1> ,

Int
a

&, =exp <; [[2(al)+lnba]\/4(041)2+1n221).

Proof. By Lemma 5, the solution of the HFBVP can be written as

where

w(t) = / G (t5) q(s)u (s) ds

10

(50)



Thus for all ¢ € [a, b] we have

wOl < [ 16 a6 ()] ds
< lul / G (¢, 5)] a(s)] ds

which yields

[Jull < IIUII/ |G (¢, )] la(s)| ds

Since u is non trivial, then |Ju| # 0, so

| </ G (t, )| la(s)] ds

New, an application of Lemma 10, we obtain

11—

In 2

t ln%lngi
[ la@lds > P, ()

The proof is complete m
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