Study of transformations

Yeray Cachón Santana

July 18, 2018

Abstract

This paper covers a first approach study of the angles and modulo of vectors in spaces of Hilbert considering a riemannian metric where, instead of taking the usual scalar product on space of Hilbert, this will be extended by the tensor of the geometry g. As far as I know, there is no a study covering space of Hilbert with riemannian metric. It will be shown how to get the angle and modulo on Hilbert spaces with a tensor metric, as well as vector product, symmetry and rotations. A section of variationals shows a system of differential equations for a riemannian metric.

Contents

1	Elements	2
	1.1 Length of a curve in a curvilinear coordinate system	3
	1.2 The first fundamental form	3
	1.3 Vector product	
	1.4 Mixed Product	
	1.5 Definition of tangent vector	4
	1.6 External differential	5
2	Symmetry	6
3	Rotations	7
4	Variationals	9
5	Bibliography	10

1 Elements

On a Hilbert space, the scalar product of 2 functions is given by:

 $\langle f,g \rangle = \int_X f^*(x)g(x)dx$, where f^* is the complex conjugated of f

Now, considering a scalar product function g, let's define the scalar product of e and f by the product function g:

$$< e |\tilde{g}| f> = \int_{x} e^{*}(x) \tilde{g}f(x) dx$$

Having this, the angle of 2 functions is defined by:
$$cos(e,f) = \frac{\langle e \, | \, \tilde{g} | \, f \rangle}{\|e\| \, \|f\|} = \frac{\int_x e^*(x) \tilde{g} f(x) dx}{\sqrt{\int_x e^*(x) \tilde{g} e(x) dx} \sqrt{\int_x f^*(x) \tilde{g} f(x) dx}}$$

Discrete form:
$$g_{kl}(y) = \sum \frac{\partial x^i}{\partial y^k} \frac{\partial x^i}{\partial y^l} = \sum_{i=l}^n \sum_{m,p} \frac{\partial x^i}{\partial z^m} \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial z^p} \frac{\partial z^p}{\partial y^l} = \sum_{m,p} \frac{\partial z^m}{\partial y^k} \left(\sum_{i=l}^n \frac{\partial x^i}{\partial z^m} \frac{\partial x^i}{\partial z^p} \right) \frac{\partial z^p}{\partial y^l} = \sum_{m,p} \frac{\partial z^m}{\partial y^k} g_{m,l}(z) \frac{\partial z^p}{\partial y^l}$$
On continuous form:

$$g_{k,l}(y) = \int \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} dg_{m,l}(z)$$

On continuous form:
$$g_{k,l}(y) = \int \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} dg_{m,l}(z)$$
The "angle" between 2 functions can be defined as the scalar product of those functions:
$$\int \int e^*(x) \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} f(x) dg_{m,l}(z) dx$$

$$\cos(e,f) = \frac{\int \int e^*(x) \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} f(x) dg_{m,l}(z) dx}{\int \int \int e^*(x) \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} f(x) dg_{m,l}(z) dx}$$
Taking as particular case
$$\frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} = \delta_k^m \delta_l^p, \int \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} dg_{m,l}(z) = \int \delta_k^m \delta_l^p dg_{m,l} = \mathbb{I}, \text{ so}$$

Taking as particular case $\frac{\partial z^m}{\partial u^k} \frac{\partial z^p}{\partial u^l} = \delta_k^m \delta_l^p, \int \frac{\partial z^m}{\partial u^k} \frac{\partial z^p}{\partial u^l} dg_{m,l}(z) = \int \delta_k^m \delta_l^p dg_{m,l} = \mathbb{I}$, so

$$cos(e,f) = \frac{\int e^*(x)f(x)dx}{\sqrt{\int e^*(x)e(x)dx}\sqrt{\int f^*(x)f(x)dx}}, \text{which matchs with the Hilbert's formula.}$$
 The modulo can be defined as:
$$\left\|f\right\|^2 = \int_X f^*(x)\tilde{g}f(x)dx = \int_X \int f^*(x)\frac{\partial z^m}{\partial y^k}\frac{\partial z^p}{\partial y^l}f(x)dg_{m,l}(z)dx$$

The modulo can be defined as:
$$||f||^2 = \int_X f^*(x)\tilde{g}f(x)dx = \int_X \int_X f^*(x)\frac{\partial z^m}{\partial y^k}\frac{\partial z^p}{\partial y^l}f(x)dg_{m,l}(z)dx$$

so

$$||f|| = \sqrt{||f||^2} = \sqrt{\int_X \int f^*(x) \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} f(x) dg_{m,l}(z) dx}$$

Following a similar way, taking as particular case $\frac{\partial z^m}{\partial u^k} \frac{\partial z^p}{\partial u^l} = \delta_k^m \delta_l^p, \int \frac{\partial z^m}{\partial u^k} \frac{\partial z^p}{\partial u^l} dg_{m,l}(z) = \int \delta_k^m \delta_l^p dg_{m,l} = \mathbb{I},$

$$||f|| = \sqrt{\langle f, f \rangle} = \sqrt{\int f^*(x)f(x)dx}$$

The distance between 2 functions
$$f_1$$
 and f_2 will be given by:
$$d = \sqrt{\|f_1 - f_2\|^2} = \sqrt{\int_X \int (f_1(x) - f_2(x))^* \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} (f_1(x) - f_2(x)) dg_{m,l}(z) dx}$$

Let's see the Minkowski's inequality:
$$||f_1 + f_2||^2 = \int_X \int (f_1(x) - f_2(x))^* \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} (f_1(x) - f_2(x)) dg_{m,l}(z) dx =$$

$$= \int_X \int (f_1(x))^* \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} (f_1(x)) dg_{m,l}(z) dx + \int_X \int (f_2(x))^* \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} (f_2(x)) dg_{m,l}(z) dx +$$

$$\int_X \int (f_1(x)^* f_2(x) - f_1(x) f_2(x)^*)^* \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} dg_{m,l}(z) dx \leq \int_X \int (f_1(x))^* \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} (f_1(x)) dg_{m,l}(z) dx$$

$$+ \int_X \int (f_2(x))^* \frac{\partial z^m}{\partial y^k} \frac{\partial z^p}{\partial y^l} (f_2(x)) dg_{m,l}(z) dx = ||f_1||^2 + ||f_2||^2 \leq (||f_1|| + ||f_2||)^2$$

$$\operatorname{So}_0 ||f_1 + f_2|| \leq ||f_1|| + ||f_2||$$

2

Theorem: Let g_{ij} be a metric on M^n . Then there exists a unique symmetric affine connection compatible with g_{ij} and such that

$$T_{jk}^{i} = \frac{1}{2}g^{i\alpha} \left(\frac{\partial g_{k\alpha}}{\partial x^{j}} + \frac{\partial g_{j\alpha}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{\alpha}} \right)$$

$$T_{jk}^{i} = \frac{1}{2}g^{i\alpha} \left(\frac{\partial g_{k\alpha}}{\partial x^{j}} + \frac{\partial g_{j\alpha}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{\alpha}} \right)$$
So, let's calculate the square modulo of a function in this way:
$$\|f\|^{2} = \left| \left\langle f \left| \widetilde{T} \right| f \right\rangle \right| = \int_{X} f^{*}(x)\widetilde{T}f(x) = \int_{X} f_{i}(x)T_{i,j}^{k}f_{k}(x)dx^{j} = \frac{1}{2}\int_{X} f_{i}g^{i\alpha} \left(\frac{\partial g_{k\alpha}}{\partial x^{j}} + \frac{\partial g_{j\alpha}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{\alpha}} \right) f^{k}dx^{j}$$
So,

$$||f||^2 = \frac{1}{2} \int_X f_i g^{i\alpha} \left(\frac{\partial g_{k\alpha}}{\partial x^j} + \frac{\partial g_{j\alpha}}{\partial x^k} - \frac{\partial g_{jk}}{\partial x^\alpha} \right) f^k dx^j$$

 $\|f\|^2 = \frac{1}{2} \int_X f_i g^{i\alpha} \left(\frac{\partial g_{k\alpha}}{\partial x^j} + \frac{\partial g_{j\alpha}}{\partial x^k} - \frac{\partial g_{jk}}{\partial x^\alpha} \right) f^k dx^j$ Let's now consider an operator A. In order to calculate the norm of the vector associated to the operator, we will follow a similar way: $|\langle f | A | f \rangle|^2 = \int_X f^*(x) \tilde{g}(x) A(x) f(x) dx$ Let's see some examples:

$$\left| \langle f | A | f \rangle \right|^2 = \int_X f^*(x) \tilde{g}(x) A(x) f(x) dx$$

1) Polar coordinates

$$d\psi = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -r\sin\varphi & r\cos\varphi \end{pmatrix}^{T}, \text{so}$$

$$G(r,\varphi) = (d\psi)^{T} (d\psi) = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -r\sin\varphi & r\cos\varphi \end{pmatrix} \begin{pmatrix} \cos\varphi & -r\sin\varphi \\ \sin\varphi & r\cos\varphi \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & r^{2} \end{pmatrix}$$
So,

$$L(\gamma) = \int_a^b dt \sqrt{\left\langle \frac{d\gamma}{dt} \left| G \right| \frac{d\gamma}{dt} \right\rangle} = \int_a^b \sqrt{\left(\frac{dr}{dt} \right)^2 + r^2 \left(\frac{d\varphi}{dt} \right)^2} dt$$
Now, taking the modulo of a function, considering the

$$||f||^2 = \int f^*(t)Gf(t)dt = \int f^*(t)\sqrt{\left(\frac{dr}{dt}\right)^2 + r^2\left(\frac{d\varphi}{dt}\right)^2}f(t)dt$$

2) Cartesian coordinates

In this case,
$$G(r,\varphi) = (d\psi)^T (d\psi) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
. We consider that t=x, so

$$||f||^2 = \int f^*(x)Gf(x) = \int f^*(x)\sqrt{\left(\frac{dx}{dx}\right)^2 + \left(\frac{dy}{dx}\right)^2}f(x)dx$$

As x and y are independent, $\frac{dy}{dx} = 0$, so

 $||f||^2 = \int f^*(x)Gf(x) = \int f^*(x)f(x)dx$, which matches with the usual scalar product.

Length of a curve in a curvilinear coordinate system

Let's consider an arbitrary curvilinear coordinate system in a domain γ . Denoting the curvilinear coordinates, the law of differentiation of a composite function:

$$\frac{dx^{i}(t)}{dt} = \sum_{(k)} \frac{dx^{i}}{dz^{k}} \frac{dz^{k}}{dt}$$

The length of a curve will be given by:

$$L(\gamma) = \int_{a}^{b} \sqrt{\sum \left(\frac{dx^{i}}{dt}\right)^{2}} dt = \int_{a}^{b} \sqrt{\sum_{m,l}^{n-1} g_{m,l} \frac{dx^{m}}{dt} \frac{dx^{l}}{dt}} dt$$

Considering a density of scalar product, the length of a curve will be given by:

$$L(\gamma) = \int_{a}^{b} \sqrt{\int_{Y} dg_{m,l} \frac{dx^{m}}{dt} \frac{dx^{l}}{dt}} dt$$

The first fundamental form

The first fundamental form of a hypersurface V^{n-1} is the form $ds^2\big|_V = \sum_{m,p} g_{m,p} dz^m dz^p$.

The differential of space will have the following form:
$$ds^2\big|_V = \sum_{m,p} g_{m,p} dz^m dz^p = \sum_{i=1}^{n-1} \left(dx^i\right)^2 + \sum_{k,p=1}^{n-1} \frac{\partial f}{\partial x^k} \frac{\partial f}{\partial x^p} dx^k dx^p = \sum_{k,p=1}^{n-1} \left(\delta_{k,p} + \frac{\partial f}{\partial x^k} \frac{\partial f}{\partial x^p}\right) dx^k dx^p$$
 Considering a density $dg_{m,l}$, the differential can be written like this:

$$ds^{2}\big|_{V} = \int dg_{m,p} dz^{m} dz^{p} = \int dg_{m,l} (dz')^{2} + \int dg_{m,l} \frac{\partial f}{\partial x^{k}} \frac{\partial f}{\partial x^{p}} dx^{k} dx^{p}$$

$$ds^{2}\big|_{V} = \int dg_{m,l} \left\{ \delta_{k,p} + \frac{\partial f}{\partial x^{k}} \frac{\partial f}{\partial x^{p}} \right\} dx^{k} dx^{p} = g_{k,p} dx^{k} dx^{p}$$

Let now V^{n-1} be given as an implicit function. Then, $F(x^1,...,x^n)=0$ has the solution $x^n=f(x^1,...,x^{n-1})$, with $\frac{\partial f}{\partial x^1} = -\frac{\frac{\partial F}{\partial x^1}}{\frac{\partial F}{\partial x}}$. Substituting $\frac{\partial f}{\partial x^{\alpha}}$ for $f_{x^{\alpha}}$, we get: $g_{k,p} = \left\{ \left(\frac{\partial F}{\partial x^k} \frac{\partial F}{\partial x^p} \right) \left(\frac{\partial F}{\partial x^n} \right)^{-2} \right\} + \delta_{k,p}$

Vector product

Let's define the vector product of 2 functions like this:

Let's define the vector product of 2 functions like this:
$$h = e \otimes f = \int_X e^* \otimes f dx = \int_X \epsilon_{ij}^k e^{*,j}(x) f_k(x) dx, \quad \epsilon_{ij}^k = g^{kk'} \epsilon_{ijk'}, \text{ where } \epsilon_{ijk} \text{ is the levy-civita tensor:}$$

$$\epsilon_{ijk} = \begin{cases} 0 & 2 \text{ labels are the same} \\ 1 & \text{ even pem } 1, 2, 3 \\ -1 & \text{ odd pem } 1, 2, 3 \end{cases}$$
Properties:
$$1) e \otimes (f_1 + f_2) = e \otimes f_1 + e \otimes f_2$$
Prof:
$$h = e \otimes (f_1 + f_2) = \int_X e^* \otimes (f_1 + f_2) dx = \int_X \epsilon_{ij}^k e^{*,j}(x) \left(f_{k1}(x) + f_{k2}(x) \right) dx = \int_X \epsilon_{ij}^k e^{*,j}(x) f_{k1}(x) dx + \int_X \epsilon_{ij}^k e^{*,j}(x) f_{k2}(x) dx = e \otimes f_1 + e \otimes f_2$$

$$2) f \otimes f = 0$$
Prof:
$$f \otimes f = \int_X f \otimes f dx = \int_X \epsilon_{ij}^k f^{*,j}(x) f_j dx = \int_X \epsilon_{ij}^k f^{*,j}(x) \delta_j^k f^k dx = \int_X \epsilon_{ij}^k \delta_j^k f^{*,j}(x) f^k dx = \int_X \epsilon_{ik}^k f^{*,j}(x) f^k dx = 0$$

$$3) e \otimes f = -(f \otimes e)^*$$
Prof:
$$e \otimes f = \int_X e^* \otimes f dx = \int_X \epsilon_{ij}^k e^{*,j}(x) f_k(x) dx = -\int_X \epsilon_{ik}^j e^{*k}(x) f_j(x) dx = -\left(\int_X \epsilon_{ik}^j e^k(x) f_j^*(x) dx\right)^* = -\left(\int_X \epsilon_{ik}^j f_j^*(x) e^k(x) dx\right)^* = -\left(\int_X \epsilon_{ik}^j f_j^*(x) e^k(x) dx\right)^* = -(f \otimes e)^*$$

Mixed Product 1.4

From the usual geometry, the mixed product of 3 vectors, is given by $P = \overrightarrow{d} \bullet (\overrightarrow{b} \otimes \overrightarrow{c})$. Let's define the mixed product of 3 functions on Hilbert space. Having defined the vector product:

$$h = b \otimes c = \int_X b^* \otimes c dx = \int_X \epsilon_{ij}^k b^{*,j}(x) c_k(x) dx$$
Now, taking in consideration the scalar product formula: $\langle e | \tilde{g} | f \rangle = \int_X e^*(x) \tilde{g} f(x) dx$

$$\langle a | \tilde{g} | b \otimes c \rangle = \int_X a^*(x) \tilde{g} (b \otimes c) dx = \int_X dx a^*(x) \tilde{g}(x) \left\{ \int_X \epsilon_{ij}^k b^{*,j}(x') c_k(x') dx' \right\} = \int_X \int_{X^*} a^{i*} \tilde{g}(x) \epsilon_{ij}^k b^{*,j}(x') c_k(x') dx dx'$$

1.5 Definition of tangent vector

On differential geometry, the tangent vector follows this definition:

Definition: Let M be a smooth n-dimentional manifold and $P_0 \in M$ an arbitrary point. A tangent vector ξ at the point P_0 to the manifold satisfies the following relation for each pair of local coordinate systems:

$$\xi_i^k = \sum\limits_{l=1}^n \, \frac{dx_i^h}{dx_j^i}(P_0)\xi_j^l$$

In order to extend this on a differential system, let's take infinitesimals on each member of the equation:

$$d\xi_i^k = \frac{dx_i^h}{dx_i^i}(P_0)d\xi_j^l$$

So,
$$\xi_i^k = \int_X \frac{dx_i^h}{dx_j^i} (P_0) d\xi_j^l$$

In this case, the tangent will be a curve defined by ξ_i^k . This relation is the tensor law of the curve transfor-

Let's call $T_{P_0}(M)$ the set of all the tangent vectors to a manifold M at a fixed point P_0 . In order to define the tangent vector we need to find its coordinates in any local coordinates. $\xi_i^k = \sum_{i=1}^n \frac{dx_i^k}{dx_i^k}(P_0)\xi_j^l$

$$\xi_{i}^{k} = \sum_{l=1}^{n} \frac{dx_{i}^{h}}{dx_{i_{0}}^{t}}(P_{0})\xi_{j}^{l}. = \sum_{l=1}^{n} \frac{dx_{i}^{h}}{dx_{j}^{s}}(P_{0}) \sum_{s=1}^{n} \frac{dx_{j}^{s}}{dx_{i_{0}}^{s}}(P_{0})\xi_{j}^{l} = \sum_{l=1}^{n} \left(\sum_{s=1}^{n} \frac{dx_{i}^{h}}{dx_{j}^{s}}(P_{0}) \frac{dx_{j}^{s}}{dx_{i_{0}}^{s}}(P_{0})\right) \xi_{j}^{l}$$
When considering a differential:

$$d\xi_i^k = \sum_{l=1}^n \left(\sum_{s=1}^n \frac{dx_i^h}{dx_j^s} (P_0) \frac{dx_j^s}{dx_{i_0}^s} (P_0) \right) d\xi_j^l$$
 So, taking a density (in order to consider functions):

$$df_k = d\xi_i^k = \sum_{l=1}^n \left(\sum_{s=1}^n \frac{dx_i^k}{dx_j^s} (P_0) \frac{dx_j^s}{dx_{i_0}^s} (P_0) \right) d\xi_j^l$$

$$\xi_i^k = \int_X \frac{dx_i^k}{dx_j^s} (P_0) \frac{dx_j^s}{dx_{i_0}^s} (P_0) d\xi_j^l$$

As the space $T_{P_0}(M)$ can be identified with the vector space \mathbb{R}^n , it can be associated with a linear space. The tensor law of coordinate transformation can be used in order to identify arithmetic spaces of the coordinates of

$$\begin{pmatrix} \xi_i^1 \\ \xi_i^n \end{pmatrix} = \begin{pmatrix} \frac{dx_i^1}{dx_j^1} & \frac{dx_i^1}{dx_j^n} \\ \frac{dx_i^n}{dx_j^1} & \frac{dx_i^n}{dx_j^n} \end{pmatrix} \begin{pmatrix} \xi_j^1 \\ \xi_j^n \end{pmatrix}$$

On a Hilbert space, this will be defined according to the formula $\xi_i^k = \int_X \frac{dx_i^h}{dx_i^s}(P_0) \frac{dx_j^s}{dx_{is}^s}(P_0) d\xi_j^l$, where the coordinates have been mapped by a density.

1.6 External differential

Differential calculus of exterior differential form can be calculated by a gradient of an exterior differential form. In the local coordinate system $\{x^1, ..., x^n\}$ the differential form will have the components $\{\omega_1, ...\omega_k\}$. The

$$(d\omega)_{j_1....j_{k+1}} = \sum_{\sigma} (-1)^{|\sigma|} \nabla_{\sigma(j_{k+1})} \omega_{\sigma} = \sum_{\sigma} (-1)^{|\sigma|} \frac{\partial \omega_{\sigma}}{\partial x^{\sigma}} - \sum_{\sigma} \sum_{s} (-1)^{|\sigma|} T^{\alpha}_{\sigma(j_{k+1})\sigma(j_s)....\sigma(j_k)}$$

The second term vanishes because, for fixed s and α , exists 2 permutations of indices $j_1...j_{k+1}\sigma$ and σ' such that $\sigma(j_i) = \sigma'(j_i)$. Also, as the Christoffel symbols are symmetric in the lower indices, the permutations σ and σ' are canceled. So:

$$(d\omega)_{j_1...j_{k+1}} = \sum_{\sigma} (-1)^{|\sigma|} \frac{\partial \omega_{\sigma}}{\partial x^{\sigma}}$$

Considering Hilbert spaces with the scalar product. Let \widetilde{g} the orthonormal base. So, the components of x_i and ω_i will be given by:

$$x_i = \int \widetilde{g}(x) \widetilde{f}(x) dx$$
 and

$$\omega_i = \int \widetilde{g}(x)\omega(x)dx$$

Putting in differential form:

$$dx_{\sigma} = \widetilde{g}(x)f(x)dx$$

$$d\omega_i = \widetilde{g}(x)\omega(x)dx$$

So,

$$(d\omega)_{j_1,\dots,j_{k+1}} = \sum_{\sigma} (-1)^{|\sigma|} \frac{\partial \omega_{\sigma}}{\partial x^{\sigma}} = \sum_{\sigma} (-1)^{|\sigma|} \frac{\underline{\widetilde{g}}(x)\omega(x)dx}{\overline{\widetilde{g}}(x)f(x)dx} = \sum_{\sigma} (-1)^{|\sigma|} \frac{\omega(x)}{f(x)}$$

$$d(\omega_1 \wedge \omega_2) = \sum_{\sigma} (-1)^{|\sigma|} \nabla_{\sigma} (\omega_1 \wedge \omega_2)_K = \sum_{\sigma} (-1)^{|\sigma(i)|} \sum_{I} (-1)^{|\sigma(I)|} \frac{\partial \omega_{\sigma}}{\partial x^i} = \sum_{K} (-1)^{|\sigma(I)|} \frac{\partial (\omega_1, I\omega_2, J)}{\partial x^i}$$

As
$$(d\omega)_{j_1....j_{k+1}} = \sum_{\sigma} (-1)^{|\sigma|} \frac{\partial \omega_{\sigma}}{\partial x^{\sigma}} = \sum_{\sigma} (-1)^{|\sigma|} \frac{\widetilde{g}(x)\omega(x)dx}{\widetilde{g}(x)f(x)dx} = \sum_{\sigma} (-1)^{|\sigma|} \frac{\omega(x)}{f(x)}$$
Let's calculate the differential of a product:
$$d(\omega_1 \wedge \omega_2) = \sum_{\sigma} (-1)^{|\sigma|} \nabla_{\sigma} (\omega_1 \wedge \omega_2)_K = \sum_{\sigma} (-1)^{|\sigma(i)|} \sum_{I} (-1)^{|\sigma(I)|} \frac{\partial \omega_{\sigma}}{\partial x^i} = \sum_{K} (-1)^{|\sigma(I)|} \frac{\partial (\omega_1, I\omega_2, J)}{\partial x^i}$$

$$= \sum_{K=I \bigcup J \bigcup \{i\}} (-1)^{|\sigma(I)|} \frac{\partial (\omega_1, I)}{\partial x^i} \omega_{2,J} + \sum_{K=I \bigcup J \bigcup \{i\}} (-1)^{|\sigma(I)|} \omega_{1,I} \frac{\partial (\omega_2, J)}{\partial x^i} = (d\omega_1 \wedge \omega_2)_K + (-1)^{deg\omega_2} (\omega_1 \wedge d\omega_2)_K$$
As $(d\omega)_{j_1,...,j_{k+1}} = \sum_{I} (-1)^{|\sigma|} \frac{\omega(x)}{f(x)}$ and $\omega_i = \int_{I} \widetilde{g}(x)\omega(x)dx$,

As
$$(d\omega)_{j_1,...,j_{k+1}} = \sum_{\sigma} (-1)^{|\sigma|} \frac{\omega(x)}{f(x)}$$
 and $\omega_i = \int \widetilde{g}(x)\omega(x)dx$,

$$d(\omega_1 \wedge \omega_2)_K = \sum_{\sigma} (-1)^{|\sigma|} \frac{\omega_1(x)}{f(x)} \wedge \int \widetilde{g}(x) \omega_2(x) dx + (-1)^{deg\omega_2} \left(\left(\int \widetilde{g}(x) \omega(x) dx \right) \wedge \sum_{\sigma} (-1)^{|\sigma|} \frac{\omega(x)}{f(x)} \right)_K$$

2 Symmetry

Let's see how can we define a symmetry of a function on a Hilbert space. Given a line, the equation is given by the function y=ax. Let's call $tg\alpha = a$, so, on a Euclidean metric, the symmetry is calculated by:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = G_{\alpha}S'G_{-\alpha}P = \begin{pmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{pmatrix} \cos\alpha & -\sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos2\alpha & -\sin2\alpha \\ \sin2\alpha & -\cos2\alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = S \begin{pmatrix} x \\ y \end{pmatrix}$$

But, when considering a general Hilbert space, a matrix cannot be used. In order to find a symmetric function, let's use the Hilbert formula:

$$\cos(f, f_G) = \frac{\int f^*(x) f_G(x) dx}{\sqrt{\int f^*(x) f(x) dx} \sqrt{\int f^*_G(x) f_G(x) dx}},$$
 The symmetry will be $f * f_G = |f| |f_G| \cos(2\alpha)$

In order to simplify, let's consider that the functions f and f_G are on a orthonormal base:

From Fig. 1. So,
$$\overrightarrow{f} = \sum f_i \overrightarrow{e}_i$$

$$\overrightarrow{f_G} = \sum f_{G,i} \overrightarrow{e}_i, \text{ where } e_i e_j = \delta_j^i, \text{ so } \sqrt{\int f_G^*(x) f_G(x) dx} = \sqrt{\int f^*(x) f(x) dx} = 1$$
So,
$$\cos(f, f_G) = \sum_i \int f_i f_{G_i} dx$$

Example: Let's f(x)=x. Let's calculate the symmetric with the scalar product $\langle f,g\rangle = \int_0^1 f^*gdx$ versus

the function g . Let's consider
$$g(x) = x^2$$

$$cos(f,g) = \frac{\langle f,g \rangle}{\|f\| \|g\|} = \frac{\int_0^1 x * x^2 dx}{\sqrt{\int_0^1 x^2 dx} \sqrt{\int_0^1 x^4 dx}} = \frac{\sqrt{15}}{4}$$

$$cos(f,f_G) = \frac{\langle f,f_G \rangle}{\|f\| \|f_G\|} = cos(2 < f,g >)$$

Let's consider
$$f_G = Ax^{\beta}$$

Let's consider
$$f_G = Ax^{\beta}$$

 $||f_G||^2 = \int_0^1 A^2 x^{2\beta} dx = \frac{A^2}{2\beta + 1}$

$$< f, f_G > = \int_0^1 Ax^{\beta+1} dx = \frac{A}{\beta+2}$$

$$||f||^2 = \int_0^1 x^2 dx = \frac{1}{3}$$

$$\cos(f, f_G) = \frac{\langle f, f_G \rangle}{\|f\| \|f_G\|} = \cos\left(2\frac{\sqrt{15}}{4}\right) = \cos\left(\frac{\sqrt{15}}{2}\right)$$

So,
$$\langle f, f_G \rangle = ||f|| ||f_G|| \cos\left(\frac{\sqrt{15}}{2}\right)$$

$$\frac{A}{\beta+2} = \sqrt{\frac{1}{3}} \frac{A}{\sqrt{2\beta+1}} \cos\left(\frac{\sqrt{15}}{2}\right)$$

$$\frac{A}{\beta+2} = \sqrt{\frac{1}{3}} \frac{A}{\sqrt{2\beta+1}} cos\left(\frac{\sqrt{15}}{2}\right)$$

$$\frac{1}{\beta+2} = \sqrt{\frac{1}{3}} \frac{1}{\sqrt{2\beta+1}} cos\left(\frac{\sqrt{15}}{2}\right) = \frac{K}{\sqrt{2\beta+1}}. \text{ so } \beta_{+} \text{ and } \beta_{-} \text{ will be the roots of the equation } 2\beta + 1 = K^{2} (\beta + 2)^{2}$$
Solving the equation:

$$K^{2} e^{2} = (4K^{2} - 2)^{2} + 4K^{2} - 2 = 2$$

Solving the equation:
$$K^2\beta^2 + (4K^2 - 2)\beta + 4K^2 - 1 = 0,$$

$$\beta = \frac{1 - 2K^2 \pm \sqrt{1 - 3K^2}}{K^2}$$

$$\beta = \frac{1 - 2K^2 \pm \sqrt{1 - 3K^2}}{K^2}$$

So, getting the root
$$\beta_{+}$$
, in order to normalize, $||f_{G}||^{2} = \int_{0}^{1} A^{2}x^{2\beta}dx = \frac{A^{2}}{2\beta+1} = 1$, so $A = \sqrt{2\beta_{+} + 1}$

$$f_G = \sqrt{2\beta_+ + 1}x^{\beta_+}$$

Rotations 3

Considering a Euclidean two-dimensional plane, the condition that the metric $dx^2 + dy^2$, $g_{ij} = \delta_{ij}$ is invariant can be written as $E = AA^T$, where A is a linear transformation. In this case, the orthogonal groups will be

*
$$\begin{pmatrix} cos\varphi & sin\varphi \\ -sin\varphi & cos\varphi \end{pmatrix}$$
 (proper rotations)
* $\begin{pmatrix} cos\varphi & sin\varphi \\ sin\varphi & -cos\varphi \end{pmatrix}$ (reflections)

Let's consider indefinite metrics. In this case, let's consider the metric $-dx^2 + dy^2$, which transforms a 2-dimensional space into a pseudo-Euclidean plane. The matrix will be $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. As the rotations are

orthogonal transformation,
$$B = ABA^{T}$$
. Let's find the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$:
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -a & -c \\ b & d \end{pmatrix} = \begin{pmatrix} -a^{2} + b^{2} & -ac + bd \\ -ac + bd & -c^{2} + d^{2} \end{pmatrix}$$
Where ac=bd. Solving the equations:

$$\begin{cases}
-a^2 + b^2 = -1 \\
-c^2 + d^2 = 1 \\
ac = bd \\
a = d = cosh\alpha
\end{cases}$$

 $b = c = \sinh \alpha$

$$b = c = \sinh\alpha$$
So the matrix will be like this: $(G_{H_{\alpha}}) = \begin{pmatrix} \pm \cosh\alpha & \pm \sinh\alpha \\ \pm \sinh\alpha & \pm \cosh\alpha \end{pmatrix}$, with the metric $-dx^2 + dy^2$. The combinations matching the relation $|G_{H_{\alpha}}| = \pm 1$ (rotations or reflections) are:
$$\begin{cases} \begin{pmatrix} + & + \\ + & + \end{pmatrix}, \begin{pmatrix} - & - \\ - & - \end{pmatrix}, \begin{pmatrix} + & - \\ + & - \end{pmatrix}, \begin{pmatrix} - & + \\ - & + \end{pmatrix} \\ \text{On a hyperbolic plane:} \end{cases}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = G_{H_{\alpha}}SG_{H_{-\alpha}}P = \begin{pmatrix} \cosh\alpha & \sinh\alpha \\ \sinh\alpha & \cosh\alpha \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cosh\alpha & -\sinh\alpha \\ -\sinh\alpha & \cosh\alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cosh(2\alpha) & -\sinh(2\alpha) \\ -\sinh(2\alpha) & \cosh(2\alpha) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{vmatrix} \cosh(2\alpha) & -\sinh(2\alpha) \\ -\sinh(2\alpha) & \cosh(2\alpha) \end{vmatrix} = -1$$

Let's see if there a way to find the angle of 2 functions on a hyperbolic metric. In this case, let's take the previous formula:

$$\cos(f,g) = \frac{\int f^*(x)g(x)dx}{\sqrt{\int f^*(x)f(x)dx}\sqrt{\int g^*(x)g(x)dx}},$$
 In order to find a formula for cosh, let's add a weight function in order to define the cosh as precedent:

$$cosh(f,g) = \frac{\int f^*(x)g(x)G_{H_{\alpha}}dx}{\sqrt{\int f^*(x)f(x)G_{H_{\alpha}}dx}\sqrt{\int g^*(x)g(x)G_{H_{\alpha}}dx}}$$

 $\cosh(f,g) = \frac{J}{\sqrt{\int f^*(x)f(x)G_{H_{\alpha}}dx}\sqrt{\int g^*(x)g(x)G_{H_{\alpha}}dx}},$ The weight function $G_{H_{\alpha}}$ will define the transformation of Cartesian coordinates to hyperbolic. Let's calculate

$$\int_{0}^{\infty} f^{*}(x)g(x)G_{H_{\alpha}}dx = \int_{0}^{\infty} f^{*}(x)g(x)\frac{\partial(u,v)}{\partial(x,y)}dx$$

On hyperbolic coordinates:

$$x = ve^{u}$$
 and $y = ve^{-u}$, so $u = ln\sqrt{\frac{x}{y}}$ and $v = \sqrt{xy}$

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} \frac{1}{2x} & -\frac{1}{2y} \\ \frac{1}{2}\sqrt{\frac{y}{x}} & \frac{1}{2}\sqrt{\frac{x}{y}} \end{vmatrix} = \frac{1}{4}\left(\frac{1}{x}\sqrt{\frac{x}{y}} + \frac{1}{y}\sqrt{\frac{y}{x}}\right) = \frac{1}{2\sqrt{xy}}$$

$$\cosh(f,g) = \int f^*(u)g(u)\frac{\partial(u,v)}{\partial(x,y)}dx = \int f^*(x)g(x)\frac{dx}{2\sqrt{xy}}$$

Now, taking the change: $x = R \cosh \alpha$ and $y = R \sinh \alpha$, as it's considered the variable x (single variable), let's fix R, $x = x(\alpha)$ and $y = y(\alpha)$, so $dx = Rsinh\alpha d\alpha$ $\int f^*(x)g(x)G_{H_\alpha}dx = \int f^*(\alpha)g(\alpha)\frac{Rsinh(\alpha)dx}{2R\sqrt{cosh(\alpha)sinh(\alpha)}} = \frac{1}{2}\int f^*(\alpha)g(\alpha)\sqrt{tgh(\alpha)}d\alpha$ Following the same procedure, the cosh for those functions is given by:

$$\int f^*(x)g(x)G_{H_{\alpha}}dx = \int f^*(\alpha)g(\alpha)\frac{Rsinh(\alpha)dx}{2R\sqrt{cosh(\alpha)sinh(\alpha)}} = \frac{1}{2}\int f^*(\alpha)g(\alpha)\sqrt{tgh(\alpha)}dc$$

$$cosh(f,g) = \frac{\int f^*(\alpha)g(\alpha)\sqrt{tgh\left(\alpha\right)}d\alpha}{\sqrt{\int f^*(\alpha)f(\alpha)\sqrt{tgh\left(\alpha\right)}d\alpha}\sqrt{\int g^*(\alpha)g(\alpha)\sqrt{tgh\left(\alpha\right)}d\alpha}}$$

4 Variationals

In this section it will be shown a method to find the extremal (stationary) functions for a functional J when considering a g depending on coordinates. For a Riemann manifold a geodesic is defined as a trajectory where the translation preserves the velocity field of the trajectory.

The functional \mathcal{L} of the length of the trajectory $\gamma(t)$ is given by:

$$\mathcal{L} = \int_0^1 \sqrt{g_{ij}(x) \frac{dx^i}{dt} \frac{dx^j}{dt}} dt$$

Let's call the Lagrangian $\mathcal{L} = \mathcal{L}(g_{ij}, ..., x_i, ..., t)$, where the components of the tensor g_{ij} will be functions of x_i . Following the Lagrange formulation for continuous systems, and applying the Hamilton's principle, let's see how to find the differential equations:

$$\begin{split} \delta I &= \delta \int \mathcal{L} dx = 0 \\ \frac{dI}{d\alpha} &= \int_{x_1}^{x_2} dx \left\{ \sum_{i,j} \frac{\partial \mathcal{L}}{\partial g_{i,j}} \frac{\partial g_{i,j}}{\partial \alpha} + \sum_{i,j} \frac{\partial \mathcal{L}}{\partial x^i} \frac{\partial x^i}{\partial \alpha} + \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial g_{i,j}}{\partial x_i}\right)} \frac{\partial}{\partial \alpha} \left(\frac{\partial g_{i,j}}{\partial x_i}\right) \right\} \\ \frac{dI}{d\alpha} &= \sum_{i,j} \int_{x_1}^{x_2} dx \left\{ \frac{\partial \mathcal{L}}{\partial g_{i,j}} \frac{\partial g_{i,j}}{\partial \alpha} + \frac{\partial \mathcal{L}}{\partial x^i} \frac{\partial x^i}{\partial \alpha} + \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial g_{i,j}}{\partial x_i}\right)} \frac{\partial}{\partial \alpha} \left(\frac{\partial g_{i,j}}{\partial x_i}\right) \right\} = 0 \end{split}$$

Integrating by parts:

$$\int_{x_1}^{x_2} dx \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial g_{i,j}}{\partial x_i}\right)} \frac{\partial}{\partial \alpha} \left(\frac{\partial g_{i,j}}{\partial x_i}\right) = -\int_{x_1}^{x_2} \frac{d}{dx} \left(\frac{\partial \mathcal{L}}{\partial \left(\frac{\partial g_{i,j}}{\partial x_i}\right)}\right) \frac{\partial g_{i,j}}{\partial \alpha} dx$$

$$\frac{dI}{d\alpha} = \sum_{i,j} \int_{x_1}^{x_2} dx \left\{ \frac{\partial \mathcal{L}}{\partial g_{i,j}} - \frac{d}{dx} \left(\frac{\partial \mathcal{L}}{\partial \left(\frac{\partial g_{i,j}}{\partial x_i} \right)} \right) \right\} \frac{\partial g_{i,j}}{\partial \alpha} = 0$$

As it must be 0 for any choose of x_1 and x_2 , the equation of extremals of the function \mathcal{L} considering the functions g_{ij} will be given by:

$$\frac{\partial \mathcal{L}}{\partial g_{i,j}} - \frac{d}{dx_i} \left(\frac{\partial \mathcal{L}}{\partial \left(\frac{\partial g_{i,j}}{\partial x_i} \right)} \right) = 0$$

The above system of differential equations is called the Euler's equations for a differential.

5 Bibliography

References