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Abstract

This paper covers a first approach study of the angles and modulo of vectors in spaces of Hilbert considering a
riemannian metric where, instead of taking the usual scalar product on space of Hilbert, this will be extended
by the tensor of the geometry g. As far as I know, there is no a study covering space of Hilbert with riemannian
metric. It will be shown how to get the angle and modulo on Hilbert spaces with a tensor metric, as well as
vector product, symmetry and rotations. A section of variationals shows a system of differential equations for
a riemennian metric.
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1 Elements

On a Hilbert space, the scalar product of 2 functions is given by:

< .9 >= [y [*(x)g(x)dx, where f*is the complex conjugated of f

Now, considering a scalar product function g, let’s define the scalar product of e and f by the product
function g:

<elglf >= [, e (2)gf(x)dx
Having this, the angle of 2 functions is defined by:

cosle, f) = <€€||9||| Iz y G >9j ()dz
|, er(x)ge(z)dzy/ [ f*(x
Discrete forrg: " Ot Oz 02 0x* 0 0 oz’ dz'\ 0 0 0
zt Ozt » zt §z™ Ox' OzP ™ (& Oxt Oxt\ 0P z™ 2P
) = 22 Gy oyt = 202 0yF 0 0~ 25,047 (Z o) = oo g

On continuous form'
2™ OzP
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The “angle” between 2 functions can be deﬁned as the scalar product of those functions:
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Taking as particular case ?’9 - gzz =00, [ (?;k gzz dgmi(z) = [ 6767 dgm, =1, so

/e*(:t)f(m)dx
cos(e, ) = which matchs with the Hilbert’s formula.
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The modulo can be defined as:
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Following a similar way, taking as particular case a—yka—yl = 6707, a—yka—yldgml = [0767dgm, =1,
SO

IIfH:\/7<ff>ﬂ//f 2)da

The distance between 2 functions fiand fo Will be given by:

d=\/||f1—f2||2=J// (o) = fola))" o g (o) = fo(e) dama(2)d

Let’s see the Minkowski’s 1nequahty
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Theorem: Let g;;be a metric on M™. Then there exists a unique symmetric affine connection compatible
with g;;and such that
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So, let’s calculate the square modulo of a function in this way:
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Let’s now consider an operator A. In order to calculate the norm of the vector associated to the operator,
we will follow a similar Way
[(FIALNE = [x £ (@)3(2)A(2) f (x)da
Let’s see some examples
1) Polar coordinates

. T
) = ( cosy sinp > S0

—rsiny rcosy
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Now, taking the modulo of a functlon cons1der1ng the Hilbert space:

£ = [ £(6)Gf(t)dt = /f \/(ZZ) 7‘2<Cf;f>2f(t)dt

2) Cartesian coordinates
). We consider that t=x, so

In this case, G(r, p) = (de) (dy) = < !

11 = 5-@G 1) = [ 17 \/( )+ (&) s

As x and y are 1ndependen d—y = O 80

||f|l = f 1*( f f*(x) f(z)dz, which matches with the usual scalar product.
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1.1 Length of a curve in a curvilinear coordinate system

Let’s consider an arbitrary curvilinear coordinate system in a domain . Denoting the curvilinear coordinates,
the law of differentiation of a composite function:
dz'(t) _ dz® dz*
a )dz dt

The length of a curve w1ll be given by:
dasZ dz™ dx!
/ \/ dt dt / Zg"”dt pral
Considering a density of scalar product the length of a curve will be given by:

dz™ dx
m, —dt
/\// WGmi =3

1.2 The first fundamental form

The first fundamental form of a hypersurface V"~ lis the form d82|v = > gmpdz"dzP.
m,p

The differential of space will have the following form:
n—1

2|V Egm pdzMdzP = E (da! ) + Z gfﬂ gxfp da® daP —kz ) ((5k,p + 887]; ai{,) dxFdxP
i=1 k,p=1 =
Cons1der1ng a density dg.,,;, the differential can be written like this:

ds’|,, = [ dgm pdz"dz = /dgm,l(dz) +/dgmza];a{, da* da?
So,

of o0
ds*|,, = /dgm,l {&w + %axj;}dx’“dxp = gk pdada?




Let now V”flbe given as an implicit function. Then, F (xl, . x”) = Ohas the solution z" = f (xl, - w”fl),

with % =— 311 Substituting -2 v L for foe, we get:

81"'

Jk,p = {(%gg) (gf) }+5k-p

1.3 Vector product

Let’s define the vector product of 2 functions like this
h=e® f=[yer® fde= [y efen(x) fr(x)dr, e = g"* €i1r, where €5, is the levy-civita tensor:
0 2labels are the same
€ijk = 1 evenpem 1,2,3
-1 oddpem 1,2, 3
Properties:
De@(fi+f)=e@fi+e® fo
Prof: h = & (fi + f2) = fy € & (fi + f2) dz = [ic e (@) (fia (@) + fua(@)) do = [y ee%9 () fua (w)da +
[x ehie? (z) fre(r)de = e® fL +e® fa
2)f ® f =0
Prof: fof = [y f@fdr = [y el [ (x) fde = [y ek f*I(x)0k foda = [ €6k I (z) foda = [y € f9 () frde =

e f=—(f@e) ' )
Prof: e@ f = [y e ® fdv = [y hie™i (@) fr(w)de = — [y e, e (2) f;(x)de = — (fX egkek(x)f;(x)dx) _
— (fX egkf;(z)ek(x)d:r) =—(foe)"
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1.4 Mixed Product

From the usual geometry, the mixed product of 3 vectors, is given by P = @ e (Z) ® 7) .Let’s define the mixed
product of 3 functions on Hilbert space. Having defined the vector product:
h=b®c= [y b*®@cdr = [y €™ (z)ck(x)dx
Now, taking in consideration the scalar product formula <elg| f >: [, e (x)gf(z)da
<alglbee>= [ a*(x)§(b®c)de = [ dea*(x {fX B (2l )ep(a)da'} = [ [ ai*g(z)efjb*’j(x’)ck(x’)dxdx‘

1.5 Definition of tangent vector

On differential geometry, the tangent vector follows this definition:

Definition: Let M be a smooth n-dimentional manifold and Py € Man arbitrary point. A tangent vector £at
the point Pyto the manifold satisfies the following relation for each pair of local coordinate systems:
gic :lZL dzg (PO)fé
In order to extend this on a differential system, let’s take infinitesimals on each member of the equation:

dek = 4 o (1 0)dE;
dal
So, &F = / L
o ¢t = [ g mg
In this case, the tangent will be a curve defined by ¢F. This relation is the tensor law of the curve transfor-
mation.
Let’s call Tp, (M) the set of all the tangent vectors to a manifold M at a fixed point Py. In order to define

o
T (Po)g).

n
the tangent vector we need to find its coordinates in any local coordinates.ﬁf =>
=1
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So, taking a density (in order to consider functions):
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As the space Tp, (M) can be identified with the vector space R, it can be associated with a linear space.The
tensor law of coordinate transformation can be used in order to identify arithmetic spaces of the coordinates of
tangent vector in any local coordinate system:

da; dx}
511 dm; dz;‘ fjl
n dx] da? n
51 dr; ﬁ 6-7
. N . & dah dz} .
On a Hilbert space, this will be defined according to the formula £ = o (Po)d = (Py)d¢;, where the
xl

coordinates have been mapped by a density.

1.6 External differential

Differential calculus of exterior differential form can be calculated by a gradient of an exterior differential
form. In the local coordinate system {xl, e x"}the differential form will have the components {wy, ...w}. The
gradient will be:

(dw)jl....Jk+1 - Z( )IUlVU(]k 1)Wo = Z( )|U| 80.)(, ZZ( )I IT o (Jr1yo(gs)----o ()

The second term vanishes because, for ﬁxed s and «, ex1sts 2 permutations of indices ji...jx+10 and ¢’ such
that o(j;) = 0’(j;). Also, as the Christoffel symbols are symmetric in the lower indices, the permutations o and
o’ are canceled. So:

(dw)j, o = D(=D)I7152
Considering Hilbert spaces with the scalar product. Let g the orthonormal base. So, the components of x;
and wz will be given by:
fg da: and
=[9(z
Putting in differential form:
dvy = g(z)f(x)dz
dw; = g(z)w(z)dz
‘So,
(0);, .. = D112 = S ERHEE = S (-5
Let’s calculate the differential of a product:
d(wi Awn) = X(=DIVg (@1 Awn) e = DO ()70 gg = 33 (-1)lr Dl Hergipn

= —1)le )\Mw g+ Z (-1 )IU(I)IWL % = (dwy Aws) i + (—1)%9%2 (w1 Adws)
K=1JJU{i} K= IUJU{Z}

As (dw);, .. = go:( )wv;gx and w; = [ g(x)
d(wn Awn) e = S(=DIHE A [ Glayws(w)do + (~1) %o ((fg z)de) A (- >““(”§)K



2 Symmetry

Let’s see how can we define a symmetry of a function on a Hilbert space. Given a line, the equation is given by
the function y=ax. Let’s call tga = a, so,on a Euclidean metric, the symmetry is calculated by:

x: — G.S'G_.P = co§a sino 1 0 cc?sa e T
Y —sino cosa 0 -1 sino coso y
- cosa  —sina cosa —sino T\ [ cos2a —sin2a T\_g( @
T\ —sina  cosa sina  cosa y )\ sin2a —cos2a y ] Yy
But, when considering a general Hilbert space, a matrix cannot be used. In order to find a symmetric
function, let’s use the Hilbert formula:

/ (@) fe(@)de
cos(f. f) =

VTP @f@da/[ f5 @) fe(@)de’
The symmetry will be f * fo = |f||fa|cos(2«)
In order to simplify, let’s consider that the functions f and fgare on a orthonormal base:

zz S £

fo = chﬂ‘?i, where e;e; = (5;-, S0 \/f f&(z) fo(z)de = \/f f*(@)f(x)dx =1
So,

cos(f, fa) =32 [ fifc.dx

Example: Let’s f(x)=x. Let’s calculate the symmetric with the scalar product < f,g >= fol f*gdx versus

the function g . Let’s consider g(z) = 22
_ <fig> _ Jo wrade — V15

cos(f,g) = el = NN =2
cos(f, fa) = 7H<fj\c|’\lf?c>|\ =cos(2< f,g>)
Let’s consider fg = Axz®

2 1 2

Ifcll” = [ A*2*de = 555
< f, fa>= fol AxPHldy = ﬁ

2 1 9 1
IFI7 = Jy 2*dw = 3

cos(f, fa) = ”<ff|"’|:?G>” = cos (2@) = cos (%)

S0, < f, /o >= 1] /el cos (*52)

A 1A V15
B2 \/;\/2ﬁ+1005 (T)

ﬁ = \/gﬂéﬁcos (‘/f’) = \/Qgﬁ so Brand B_will be the roots of the equation 28 + 1 = K2 (8 + 2)?

Solving the equation:
K?B% 4+ (4K? —2) B+ 4K? —1=0,
8= 1-2K*+/1-3K?

= =

So, getting the root B4, in order to normalize, || f¢|*> = fol A2 dy = A =150 A= /28, + L.

BT
fo = /281 +1aP+




3 Rotations

Considering a Euclidean two-dimensional plane, the condition that the metric dz? + dy?, gij = 05 is invariant
can be written as E = AAT, where A is a linear transformation. In this case, the orthogonal groups will be
defined by the matrices:

% ( cosp  Sinp

_sing  cosp )(proper rotations)

* ( cosie snp (reflections)
sing  —cosp
Let’s consider indefinite metrics. In this case, let’s consider the metric —dz? + dy?, which transforms a

-1 0

2-dimensional space into a pseudo-Euclidean plane. The matrix will be ( 0 1

). As the rotations are

a b
d

c
<—1 O)(a b)<—1 0)<a c> <a b>(—a —c)(—a2+b2 —ac+bd>
0 1) \c d 0 b d c d b d )\ —ac+bd —c*+d?
Where ac=bd. Solving the equations:
—a? + b =—
—+d*=1
ac =bd
a = d = cosha
b=c = sinha
So the matrix will be like this: (Gg,) =

orthogonal transformation, B = ABAT. Let’s find the matrix A =

+cosha +sinha
+sinha  +cosha
nations matching the relation |G, | = £1(rotations or reflections) are:
+ + - - + - ( - +
+ + )\ - =)'+ =)' - +
On a hyperbolic plane:
nyc: — Gu.SGu P = ( cosha  sinha 1 0 > ( cosha  —sinha ) < T >

) ,with the metric —dz? + dy?. The combi-

sinha  cosha 0 -1 —sinha  cosha Y
( x! ) _ ( cosh(2a)  —sinh(2a) ) < x )
y )\ —sinh(2a)  cosh(2a) Yy
‘ cosh(2a)  —sinh(2a) _ 1
—sinh(2a)  cosh(2a) |

Let’s see if there a way to find the angle of 2 functions on a hyperbolic metric. In this case, let’s take the
previous formula:

T— L

VI @) f( z)d$\/fg (2)g(x)dz’
In order to find a formula for cosh, let’s add a weight function in order to define the cosh as precedent:

/ £ (2)g(z)Gp. dw
cosh(f,g) =

VI @) f(@)G, dm\/f 9* (2)g(2)Gr, du’
The weight function G, will define the transformation of Cartesian coordinates to hyperbolic. Let’s calculate
the first term:

d(u,v)
*(2)g(x)G dxz/*xx —~dzx
[ r@e@Gn.ie = [ @5
On hyperbolic coordinates:
x=ve" and y =ve ", so u = ln\/% and v = /zy

o) _ | 55 EZ 2

U, _ Ox 81/ _ 1 1 x 1 7\ __ 1

day) — | 00 ov |T| 1T 1 [z —1<*\/j+*\/j)—27.ﬁ

(z,y) g 2f 2\/; z\/y "yVz=z Ty
dx

cosh(f. ) x/f =/f*()()

Now, taking the change. 2 = Rcoshaand y = Rsinha, as it’s considered the variable x (single variable),
let’s fix R =z (xw)and y = y( ) so dz = Rsinhada

J £ @)9(@)Grodz = [ [*(@)gle) gr bS8 = 3 [ f*(a)g(a) Vigh(a)da

Followmg the same procedure, the cosh for those functions is given by:




J *(@)g(a)y/tgh (a)da

cosh(f, g) =

VI £ (@) f(@)/igh(@)dan/ [ g*(a)a(0)/tgh (a)da



4 Variationals

In this section it will be shown a method to find the extremal (stationary) functions for a functional J when
considering a g depending on coordinates. For a Riemann manifold a geodesic is defined as a trajectory where

the translation preserves the velocity field of the trajectory.
The functionalﬁof the length of the trajectory ~(t)is given by:

dw dx
9i;(@ dt dt

Let’s call the Lagrangian £ = L(gij, ..., %, .., t), where the components of the tensor g;;will be functions of
x;. Following the Lagrange formulation for continuous systems, and applying the Hamilton’s principle, let’s see

how to find the differential equations:
61 =6 [Ldx=0

" / Z OL Dgiy  N~OLOT 0L D (Ogi,
da ™ 0g;; O <9zt O 89,5\ O \ Ox;
\J i 0

*2 oL Og;; OL Ox oL 0 [(0g;.;
dar _ ¥ o J _
dox % de 891'7]' Oa + ort Oa + ) (Bag”) 0 < ox; ) 0

x1
T4

Integrating by parts:

bostaye ()i (o ) S

So

da
d

~S

Q

d [ o 0gi;
_Z/ 39” % 8(6897;;) 8O¢j_0

As it must be 0 for any choose of xjand x5, the equation of extremals of the function £ considering the

functions g;; will be given by:

o a [ o \_,
0gi;  dx; 3(85—;’;

The above system of differential equations is called the Euler’s equations for a differential.
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