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Abstract Traditional explanation for the white dwarf star is based on the ideally 

degenerate Fermi electron gas to produce the pressure against gravity. This theory 

predicts the upper mass limit of the white dwarf star is 1.44 times as large as our sun 

although the Fermi electron gas is calculated at the temperature T of absolute zero. In 

this research, first considering the electron-electron interaction in the high-density 

Fermi electron gas at T=0 K, this interaction causes the pressure 2/137 time less than 

the original value. However, the pressure of the Fermi electron gas should have 

something to do with temperature at 107 K. Then we estimate the temperature effect 

using statistical mechanics and find the total pressure depends on temperature weakly 

at the given particle number N and volume V. According to this, the relationship 

between radius and mass of the white dwarf star is obtained and it mainly depends on 

temperature, electron mass, and proton mass. An unknown parameter δ=69.50 is 

calculated by using an example of a white dwarf star with the mass of our sun and the 

radius of Earth. Because the temperature effect is weak at 107 K, the relationship 

between mass M and radius R of the white dwarf star mainly depends on Fermi energy 

and neutron mass. This relationship is useful for estimating the inner temperature of a 

white dwarf star. The lowest limit of M/R3 depends on neutron mass, electron mass, and 

temperature. 

Keywords: white dwarf star, degenerate Fermi electron gas, pressure, upper mass limit, electron-electron 

interaction 

I. Introduction 

  The white dwarf star has been investigated many years and it was named first in 1922 

[1]. It is thought to be the type of the low to medium mass stars in the final evolution 

stage. The white dwarf star usually has very high density with the mass similar to our 

sun but the volume small like Earth. The reported largest mass seems to be the one 

found in 2007 which is 1.33 times as large as our sun [2]. The early theory to explain 

its mass upper limit is based on the ideally degenerate Fermi electron gas [3-7]. The 

calculation adopts all electrons like free particles occupying all energy levels until to 

Fermi energy as they are at zero temperature. It is surprising that even in the high-

temperature and high-pressure situation, the ideal Fermi gas still works. It makes the 

curiosity to discuss the temperature effect by statistical mechanics. 

Since Einstein proposed General Relativity in 1915, some appropriate metrics have 

been found such as the Schwarzschild metric, the Kerr metric, and the Kerr-Newman 

metric [8-11]. Especially, the Kerr-Newman metric describes the rotating and charged 

star. Some detail problems about the Kerr-Newman black hole have been discussed 

[12,13]. As we know, most stars are rotating and they might be also easily charged 
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because the relativistically massive particles escaping the gravity. According to 

statistical mechanics, the relativistic electrons have more possibility to escape gravity 

than helium nuclei at the same high temperature. Because of this factor, we consider 

the positive charged star and the Coulomb interaction existing in the rest positive 

charges, and further calculate the pressure produced by these rest charges. The Coulomb 

force also an important one against gravity so the upper mass limit of the white dwarf 

star should be higher. 

II. The Degenerate Fermi Electron Gas For The White Dwarf Star 

   First, we review the calculation of the upper mass limit for the dwarf star. It adopt 

the ideally degenerate Fermi electron gas and considers the relativistic kinetic energy 

in the calculation [3,4]. Because the electron has spin s= ±
1

2
,  each energy state permits 

two electrons occupied. Each electron has the rest mass me, and its relativistic kinetic 

energy E at momentum p is  

                                             𝐸𝑘 = 𝑚𝑒𝑐2 {[1 + (
𝑝

𝑚𝑒𝑐
)

2

]

1 2⁄

− 1}.                                     (1) 

The Fermi electron gas with the total number N and total volume V has total kinetic 

energy 

𝐸0 = 2𝑚𝑒𝑐2 ∑ {[1 + (
𝑝⃑

𝑚𝑒𝑐
)

2

]

1 2⁄

− 1}
|𝑝⃑|<𝑝𝐹

=
2𝑉𝑚𝑒𝑐2

ℎ3
∫ 𝑑𝑝4𝜋𝑝2 {[1 + (

𝑝⃑

𝑚𝑒𝑐
)

2

]

1 2⁄

− 1}
𝑝𝐹

0

,                             (2) 

where h is the Planck’s constant and pF is Fermi momentum defined as 

                                                                𝑝𝐹 = ℎ (
3𝑁

8𝜋𝑉
)

1 3⁄

.                                                    (3) 

Considering the mass mp of a proton and the mass mn of a neutron, the total mass M of 

a white dwarf star mainly consisting of helium nuclei is  

                                          𝑀 = (𝑚𝑒 + 𝑚𝑝 + 𝑚𝑛)𝑁 ≈ 2𝑚𝑝𝑁 ≈ 2𝑚𝑛𝑁.                         (4) 

If we define the parameter 

                                                       𝑥𝐹 ≡
𝑝𝐹

𝑚𝑒𝑐
=

ℎ

2𝑚𝑒𝑐
(

3𝑁

8𝜋𝑉
)

1 3⁄

,                                       (5) 

then Eq. (1) becomes 
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                                                   𝐸0 =
8𝜋𝑚𝑒

4𝑐5𝑉

ℎ3
[𝑓(𝑥𝐹) −

1

3
𝑥𝐹

3] ,                                        (6) 

where  

                                             𝑓(𝑥𝐹) = ∫ 𝑑𝑥𝑥2[(1 + 𝑥2)1 2⁄ ]
𝑥𝐹

0

.                                            (7) 

The pressure produced by the ideal Fermi electron gas is [4] 

                                        𝑃0 = −
𝜕𝐸0

𝜕𝑉
=

8𝜋𝑚𝑒
4𝑐5

ℎ3
[
1

3
𝑥𝐹

3√1 + 𝑥𝐹
2 − 𝑓(𝑥𝐹)].                     (8) 

It is almost 1000 times larger than the pressure of the helium nuclei [4]. Further 

discussions give the relationship between the radius R and mass M of the star for the 

relativistically high-density Fermi electron gas 

                                                   𝑅̅ = 𝑀̅2 3⁄ [1 − (
𝑀̅

𝑀̅0

)

2 3⁄

]

1 2⁄

,                                             (9) 

where  

                                                                  𝑅̅ = (
2𝜋𝑚𝑒𝑐

ℎ
) 𝑅,                                                  (10) 

                                                                   𝑀̅ =
9𝜋

8

𝑀

𝑚𝑛
,                                                         (11) 

and 

                                                    𝑀̅0 = (
27𝜋

64𝛿
)

3 2⁄

(
ℎ𝑐

2𝜋𝐺𝑚𝑛
2

)
3 2⁄

.                                      (12) 

In Eq. (18), G is the gravitational constant and δ is a parameter of pure number. Some 

considerations [4] give the upper mass limit M0 in unit of the mass Msun of our sun 

                                                           𝑀0 ≈ 1.44𝑀𝑠𝑢𝑛,                                                          (13) 

which is also the upper limit for appearance of the white dwarf star.  

III. The Correction of The Electron-Electron Interaction For The White Dwarf 

Star 

The ideally Fermi electron gas has been widely discussed in solid state physics. The 

ground state energy of non-relativistically high-density Fermi electron gas has been 

calculated by the Hartree-Fock approximation [14,15] and the energy per electron at 
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T=0 is  

                           
𝐸𝐻𝐹

𝑁
=

2.21

𝑟𝑠
2

−
0.916

𝑟𝑠
+ 0.0622 ln 𝑟𝑠 −  0.096 (

𝑅𝑒𝑑𝑏𝑒𝑟𝑔

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
),             (14) 

where EHF is the total energy of the Fermi electron gas, and rs is defined by using the 

Bohr radius aB 

                                                                   
𝑉

𝑁
=

4

3
𝜋𝑟𝑠

3𝑎𝐵
3 .                                                       (15) 

The first two terms are dominate terms and the ratio of the first term to the second one 

is proportional rs or N1/3. As N increases, the first term increases faster than the second 

one. Actually, the calculation of the first term at the right-hand side in Eq. (14) should 

use Eq. (6) because of the relativistic electrons. Considering xF>>1 in the relativistic 

region, then Eq. (6) becomes 

                                              
𝐸0

𝑁
≈

2𝜋𝑚𝑒
4𝑐5

ℎ3

𝑉

𝑁
𝑥𝐹

4 (1 −
4

3𝑥𝐹
+

1

𝑥𝐹
2).                                 (16) 

The second term consider the Feynman diagram of the oyster type, so this correlation 

energy E1 is [14,15] 

      
𝐸1

𝑁
= −

2

𝑁
×

1

2
× [

𝑉

(2𝜋)3
]

2

×
4𝜋𝐾𝑒𝑒2

𝑉
×

16𝜋4

ℎ4
∬

𝑑3𝑝⃑1𝑑3𝑝⃑2

|𝑝⃑1 − 𝑝⃑2|2

𝑝⃑𝐹

𝑝⃑1,𝑝⃑2=0⃑⃑⃑

 

                           = −
3

2𝜋
(

2𝜋𝐾𝑒𝑝𝐹𝑎𝐵

ℎ
) (

𝑒2

2𝑎𝐵
) = −

3𝑚𝑒𝑐𝐾𝑒𝑒2

2ℎ
𝑥𝐹 ,                               (17) 

where Ke is the Coulomb’s constant. Using Eqs. (16) and (17), the pressure PHF of the 

Fermi electron gas at T=0 is 

𝑃𝐻𝐹 = −
𝜕𝐸𝐻𝐹

𝜕𝑉
                                                                                                                           

           =
2𝜋𝑚𝑒

4𝑐5

3ℎ3
(𝑥𝐹

4 − 𝑥𝐹
2 − 2

2𝜋𝐾𝑒𝑒2

ℎ𝑐
𝑥𝐹

4) =
2𝜋𝑚𝑒

4𝑐5

3ℎ3
(𝑥𝐹

4 − 𝑥𝐹
2 −

2

137
𝑥𝐹

4),   (18) 

where 2πKee
2/hc is the fine structure constant [16-19]. It means that the electron-

electron interaction causes the pressure about 2/137 time less than the original value.  

IV. The Temperature Effect On The Pressure of The Ideal Fermi Electron Gas 

The central temperature of a star is usually about 107 K, and the upper mass limit in 

Eq. (13) calculated at T=0 should be improved. Otherwise, it cannot reflect how the 

relationship between the radius and mass of the white dwarf star varies with temperature. 
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Then we consider the case for T>>0, and the grand partition function in statistical 

mechanics [4] is 

                                    𝑞(𝑇, 𝑉, 𝑧) = ln 𝛧 = ∑ ln[1 + 𝑧 ∙ 𝑒𝑥𝑝(−𝛽𝐸𝑘)]𝑘 ,            (19) 

Where Ek is the kinetic energy, β=1/kBT, and z=exp(μβ) with μ the chemical potential 

of the Fermi electron gas. Since the energy eigenstates are treated as arbitrarily close to 

each other in a very large volume, the grand partition function becomes 

                                               ln 𝛧 = ∫ 𝑑𝐸𝑔(𝐸𝑘) ln[1 + 𝑧𝑒𝑥𝑝(−𝛽𝐸𝑘)]
∞

0

.                     (20) 

Integrating it is by parts, then we have [4] 

                                   ln 𝛧 = 𝑔
4𝜋𝑉

ℎ3

𝛽

3
∫ 𝑝3𝑑𝑝

𝑑𝐸𝑘

𝑑𝑝

∞

0

1

𝑧−1𝑒𝑥𝑝(𝛽𝐸𝑘) + 1
,                      (21) 

where g=2s+1 is the degeneracy factor and  

                                                               𝑝2 =
𝐸𝑘

2

𝑐2
+ 2𝑚𝑒𝐸𝑘 .                                                 (22) 

Substituting Eq. (22) into Eq. (21) and considering mec
2>>β, it gives  

                                  ln 𝛧 = 𝑔
4𝜋𝑉𝛽

3ℎ3𝑐3
∫ 𝑑𝐸𝑘

𝐸𝑘
3 [1 +

2𝑚𝑒𝑐2

𝐸𝑘
]

3 2⁄

𝑧−1𝑒𝑥𝑝(𝛽𝐸𝑘) + 1

∞

0

.                                (23) 

Using the Taylor series expansion to the first-order term, then we have  

                    ln 𝛧 ≈ 𝑔
4𝜋𝑉

3ℎ3𝑐3𝛽3
∫ 𝑑(𝛽𝐸𝑘)

(𝛽𝐸𝑘)3 [1 + 3 (
𝛽𝑚𝑒𝑐2

𝛽𝐸𝑘
)]

𝑧−1𝑒𝑥𝑝(𝛽𝐸𝑘) + 1

∞

0

.                       (24) 

It can be written as 

                        ln 𝛧 ≈ 𝑔
4𝜋𝑉

3ℎ3𝑐3𝛽3
[𝛤(4)𝑓4(𝑧) + 3 (

𝑚𝑒𝑐2

𝑘𝐵𝑇
) 𝛤(3)𝑓3(𝑧)],                      (25) 

where we define 

                                          𝑓𝑛(𝑧) =
1

𝛤(𝑛)
∫ 𝑑(𝛽𝐸𝑘)

(𝛽𝐸𝑘)𝑛−1

𝑧−1𝑒(𝛽𝐸) + 1

∞

0

.                               (26) 

The corresponding Fermi energy EF is roughly 20 MeV [3] and 1/(2mec2β)~1/1000. The 

chemical potential μ~EF so z=exp(βμ)~exp(20000). When z>>1, the approximation of 
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Eq. (16) [4] is 

                                                           𝑓𝑛(𝑧) ≈
(ln 𝑧)𝑛

𝑛!
,                                                          (27) 

so the ratio of the first term to the second term is  

                              3 (
𝑚𝑒𝑐2

𝑘𝐵𝑇
)

𝛤(3)

𝛤(4)

𝑓3(𝑧)

𝑓4(𝑧)
≈ 3 (

𝑚𝑒𝑐2

𝑘𝐵𝑇
)

1 3⁄

ln 𝑧 4⁄
≈

1

100
.                          (28) 

According to the relationship lnΖ=pV/kBT, the pressure causing by the Fermi electron 

gas is  

                𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
 𝑔𝑎𝑠

≈
8𝜋(𝑘𝐵𝑇)4

3ℎ3𝑐3
[𝛤(4)𝑓4(𝑧) + 3 (

𝑚𝑒𝑐2

𝑘𝐵𝑇
) 𝛤(3)𝑓3(𝑧)].                     (29) 

  Then we calculate particle number N(T, V, z) using the similar way in statistical 

mechanics. It gives  

𝑁(𝑇, 𝑉, 𝑧) = g
4𝜋𝑉

ℎ3
∫ 𝑝2𝑑𝑝

1

𝑧−1𝑒𝑥𝑝(𝛽𝐸𝑘) + 1

∞

0

                                                               

                       = g
2𝜋𝑉

ℎ3𝑐3
∫ 𝑑𝐸𝑘

𝐸𝑘
2 (1 +

2𝑚𝑒𝑐2

𝐸𝑘
)

1 2⁄

(1 +
𝑚𝑒𝑐2

𝐸𝑘
)

𝑧−1𝑒𝑥𝑝(𝛽𝐸𝑘) + 1

∞

0

.                             (30) 

Using Taylor series expansion to the first-order term, then we have  

               𝑁(𝑇, 𝑉, 𝑧) ≈ 𝑔
2𝜋𝑉

ℎ3𝑐3𝛽3
∫ 𝑑(𝛽𝐸𝑘)

(𝛽𝐸𝑘)2 [1 + 2 (
𝛽𝑚𝑒𝑐2

𝛽𝐸𝑘
)]

𝑧−1𝑒𝑥𝑝(𝛽𝐸𝑘) + 1

∞

0

.                  (31) 

Further calculation gives 

                𝑁(𝑇, 𝑉, 𝑧) ≈
4𝜋𝑉(𝑘𝐵𝑇)3

ℎ3𝑐3
[𝛤(3)𝑓3(𝑧) + 2 (

𝑚𝑒𝑐2

𝑘𝐵𝑇
) 𝛤(2)𝑓2(𝑧)].                 (32) 

Combing Eq. (29) with Eq. (32), it gives the relationship between Pelectron gas, T, V, and 

N, that is,  

                       𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
𝑔𝑎𝑠

≈
2𝑁𝑘𝐵𝑇

3𝑉
[
𝛤(4)𝑓4(𝑧) + 3 (

𝑚𝑒𝑐2

𝑘𝐵𝑇
) 𝛤(3)𝑓3(𝑧)

𝛤(3)𝑓3(𝑧) + 2 (
𝑚𝑒𝑐2

𝑘𝐵𝑇
) 𝛤(2)𝑓2(𝑧)

].                    (33) 

Further rearrangement gives 
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    𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
𝑔𝑎𝑠

≈
2𝑁𝑘𝐵𝑇

3𝑉
[
𝛤(4)𝑓4(𝑧)

𝛤(3)𝑓3(𝑧)
] {

1 + 3 (
𝑚𝑒𝑐2

𝑘𝐵𝑇
) [

𝛤(3)𝑓3(𝑧)
𝛤(4)𝑓4(𝑧)

]

1 + 2 (
𝑚𝑒𝑐2

𝑘𝐵𝑇
) [

𝛤(2)𝑓2(𝑧)
𝛤(3)𝑓3(𝑧)

]
}               

                         ≈
2𝑁𝑘𝐵𝑇

3𝑉
[
3

4
(ln 𝑧)] [

1 + 3 (
𝑚𝑒𝑐2

𝑘𝐵𝑇
) (

4
3 ln 𝑧

)

1 + 2 (
𝑚𝑒𝑐2

𝑘𝐵𝑇
) (

3
2 ln 𝑧

)
]                                  

                     ≈
2𝑁

3𝑉
(

3

4
𝜇) [1 +

1

3
(

𝑚𝑒𝑐2

𝜇
)]                                                          

                     ≈
𝑁

2𝑉
{𝐸𝐹 [1 −

𝜋2

12
(

𝑘𝐵𝑇

𝐸𝐹
)

2

]} {1 +
1

3
(

𝑚𝑒𝑐2

𝐸𝐹
) [1 +

𝜋2

12
(

𝑘𝐵𝑇

𝐸𝐹
)

2

]}.        (34) 

Here we use the relationship [4] 

                                                        𝜇 ≈ 𝐸𝐹 [1 −
𝜋2

12
(

𝑘𝐵𝑇

𝐸𝐹
)

2

].                                            (35) 

It explicitly tells us that the total pressure depends on temperature weakly at the given 

particle number N and volume V. The pressure of the Fermi electron gas should have 

something to do with temperature as we see in Eq. (34). 

 After obtaining the pressure of the degenerate Fermi electron gas varying with 

temperature, then we can estimate the relationship between mass and radius of the white 

dwarf star. The relationship between V and R is  

                                                                   𝑉 =
4

3
𝜋𝑅3.                                                            (35) 

Using Eqs (4), (10), (11), and (35), it gives [3] 

                
𝑁

𝑉
≈

3𝑀

8𝜋𝑚𝑛𝑅3
= (

3

8𝜋𝑚𝑛
) (

8𝑚𝑛

9𝜋
) (

2𝜋𝑚𝑒𝑐

ℎ
)

3 𝑀̅

𝑅̅3
= (

8𝜋𝑚𝑒
3𝑐3

3ℎ3
)

𝑀̅

𝑅̅3
.         (36) 

The equilibrium condition [3] is  

                              (
8𝜋𝑚𝑒

3𝑐3𝑘𝐵𝑇

3ℎ3
) (

1

2
ln 𝑧) [1 +

1

3
(

𝑚𝑒𝑐2

𝑘𝐵𝑇 ln 𝑧
)]

𝑀̅

𝑅̅3
= 𝐾′

𝑀̅2

𝑅̅4
,             (37) 

where  

                                              𝐾′ =
𝛿

4𝜋
𝐺 (

8𝑚𝑛

9𝜋
)

2

(
2𝜋𝑚𝑒𝑐

ℎ
)

4

.                                            (38) 
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In Eq. (38), δ is a parameter of pure number and G is the gravitational constant [4]. 

Substituting Eq. (38) into Eq. (37), then we have  

      
𝑀̅

𝑅̅
=

4𝜋𝑘𝐵𝑇

𝛿𝐺
(

27

64𝑚𝑛
2

) (
ℎ

2𝜋𝑚𝑒𝑐
) (

1

2
ln 𝑧) [1 +

1

3
(

𝑚𝑒𝑐2

𝑘𝐵𝑇 ln 𝑧
)]               

                         = (
27

64𝛿𝐺
) (

2ℎ

𝑚𝑛
2𝑚𝑒𝑐

) [
1

2
𝑘𝐵𝑇 ln 𝑧] [1 +

1

3
(

𝑚𝑒𝑐2

𝑘𝐵𝑇 ln 𝑧
)].                       (39) 

Further arrangement gives 

                                 
𝑀

𝑅
= (

3

2𝛿𝐺𝑚𝑛
) [

1

2
𝑘𝐵𝑇 ln 𝑧] [1 +

1

3
(

𝑚𝑒𝑐2

𝑘𝐵𝑇 ln 𝑧
)].                          (40) 

It explicitly tells us that the relationship between M and R mainly depends on T and mn. 

For example, a white dwarf star with mass M=Msun=1.99x1030 kg and a radius 

R=6.378x106 m the same as earth is used in Eq. (40). Then some constants [20], 

G=6.67259x10-11 m-3∙kg-1∙s-2, mn=1.67493x10-27 kg, kB=1.38066x10-23 J∙K-1, 

T=1.16x107 K, and z=exp(20000.0), are also substituted into Eq. (40), and we have 

                                                     
𝑀

𝑅
=

2.169 × 1025

𝛿
= 3.12 × 1023,                             (41) 

which gives δ=69.50. This is a reasonable value and Eq. (40) can help us to estimate 

the inner temperature of a white dwarf star. Because the ratio of M/R is real, then 

according to Eqs. (35) and (40), it gives 

                                                              1 −
𝜋2

12
(

𝑘𝐵𝑇

𝐸𝐹
)

2

≥ 0.                                               (42) 

The nonrelativistic Fermi energy is [3,4] 

                                    𝐸𝐹 =
ℎ2

2𝑚𝑒
(

3𝑁

8𝜋𝑉
)

2 3⁄

≈
ℎ2

2𝑚𝑒
(

3𝑀

64𝜋2𝑚𝑛𝑅3
)

2 3⁄

,                         (43) 

where Eq. (36) is used. Then substituting Eq.(43) into Eq. (42), we obtain 

                                                                𝐸𝐹 ≥
𝜋𝑘𝐵𝑇

2√3
.                                                             (44) 

Eq. (44) gives a new limit for M/R3, that is  

                                                     
𝑀

𝑅3
≥

64𝜋2𝑚𝑛

3
(

𝜋𝑚𝑒𝑘𝐵𝑇

√3ℎ
)

3 2⁄

.                                      (45) 

This ratio depends on neutron mass, electron mass, and importantly, temperature.  
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V. Conclusion 

 In summary, the calculation from statistical mechanics shows that the temperature 

effect is at 107 K and the ideally degenerate Fermi electron gas has to be corrected at 

high temperature. First the electron-electron interaction is considered at T=0. The 

calculation considers the relativistic electrons and the result shows that this effect 

causes the pressure is 2/137 time less than the original value. Because the electron gas 

is at very high temperature about 107 K, the temperature effect has to be considered and 

the pressure needs to be calculated by statistical mechanics. Then from the deduction, 

the pressure produced by the Fermi electron gas depends on temperature weakly at the 

given particle number N and volume V, and it is reasonable for Fermi electron gas at 

107 K. Finally, from the equilibrium condition, we obtain the relationship between M 

and R which mainly depends on T and mn. An example of a dwarf star uses the mass of 

our sun and the radius of Earth to calculate an unknown parameter δ=40.255. Because 

the dependence of temperature is weak at 107 K, the relationship between mass and 

radius of the white dwarf star mainly depends on Fermi energy and neutron mass. This 

relationship can help us to estimate the inner temperature of a white dwarf star. The 

lowest limit of M/R3 depends on neutron mass, electron mass, and importantly, 

temperature. 
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