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“The two red vectors revealed as -e2 + e3 and e1 + -e2.”

Abstract

As a demonstration of the coherence of Geometric Algebra’s (GA’s)

geometric and algebraic concepts of bivectors, we add three geometric

bivectors according to the procedure described by Hestenes and Macdonald,

then use bivector identities to determine, from the result, two bivectors

whose outer product is equal to the initial sum. In this way, we show

that the procedure that GA’s inventors defined for adding geometric

bivectors is precisely that which is needed to give results that coincide

with those obtained by calculating outer products of vectors that are

expressed in terms of a 3D basis. We explain that that accomplishment is

no coincidence: it is a consequence of the attributes that GA’s designers

assigned (or didn’t) to bivectors.
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1 Introduction

Many doubts about 3D Geometric Algebra (GA3) can be avoided by recognizing

that it is an attempt to express spatial relations in the form of variables that can

be manipulated via well-defined operations. The developers of GA3 identified,

as sufficient for that purposes, the set of real numbers plus the objects that we

call vectors, bivectors, and trivectors. Those objects and their properties, along

with the operations that can be effected upon them, are described in sources

such as [1] and [2].

We are interested here in the GA operation known as “addition of bivectors”.

As a definition of that operation, [1] and [2] give a geometric procedure that

may well strike students as arbitrary, with no obvious motivation or justification.

However, we will demonstrate that that definition is one of the things that makes

GA3 “fit together”. We will make that demonstration by effecting the sum

e1e2 + e2e3 + e3e1 (Fig. 1) according to the procedure given by [1] (p. 25) and

[2] (p. 74), then commenting upon the result. We’ll assume that the reader has

some familiarity with basics of GA3, but we’ll begin by reviewing key properties

of bivectors.



Figure 1: The three bivectors that we’ll “add” according to the procedure

by which that operation is defined. We’ve drawn oriented arcs to show each

bivector’s “sense”. The vectors e1, e2, and e3 are the basis vectors of GA3.

Because they are mutually perpendicular, the outer product ei ∧ ej of any two

of them (that is, such that i 6= j) is equal to their geometric product eiej .

1.1 Review of Bivectors and How to Add Them

Let’s begin by clearing-up a potential source of confusion: the term “bivector”

can refer either to the outer product of two vectors (for example, a ∧ b) or to

an oriented portion of a plane. Sometimes, a single bivector is considered in

both ways within a single sentence, as in “The next step requires us to reshape

bivector a ∧ b into the product c ∧ d.” The conceptual leaps in that sentence

include (1) imaging the product a ∧ b as a rectangle that measures ‖a‖ by ‖b‖,
then (2) reshaping that rectangle into one with dimensions ‖c‖ by ‖d‖, and

finally (3) interpreting the new rectangle as the product c ∧ d.

Some terminology that might

prove useful: geometric bivectors

and algebraic bivectors.

To help avoid confusions, we might wish at times to refer to the oriented

segment of a plane as a geometric bivector, and to the outer product of two

vectors as an algebraic bivector.

1.2 Bivectors’ Properties

GA’s inventors assigned to bivectors only such attributes as seemed most likely

to facilitate formulation and solution of problems that have geometric content.

The attribute “location” was not necessary, nor was “shape”. Thus, geometric

bivectors are defined as equal to each other if they have the same area, are

parallel to each other, and have the same sense (Fig. 2).
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Figure 2: An algebraic bivector does not have unique factorizations. An equiva-

lent statement is that the corresponding geometric bivector does not possess the

quality of “shape”. Thus, if B1 and B2 lie in parallel planes, then they are equal

according to the postulates of GA3 because they have the same area and sense.

We’ll wish, sometimes, to express those criteria according to observations

made by Macdonald ([2]). For example (p. 98),

[The algebraic bivector (2e1) ∧ (3e2)] represents an area of 6 in the

plane with basis {2e1, 3e2}. The area has neither a shape nor a

position in the plane. Thus the [algebraic] bivector (6e1) ∧ (e2)]

represents the same area in the same plane, even though it represents

a different rectangle.

See also Fig. 2

From the preceding passage, we can deduce two criteria for the equality of

any pair of algebraic bivectors: a ∧ b and c ∧ d:

1. c and d must be linear combinations of a and b. This criterion ensures

that the corresponding geometric bivectors are parallel.

2. ‖a∧b‖ = ‖c∧d‖ This criterion ensures that the areas of the corresponding

geometric bivectors are equal.

The dual of a multivector M in

GA3 is MI−1
3 , where

I−1
3 = -e1e2e3 = e3e2e1.

What, then, of the bivectors’ sense? From Macdonald’s discussion (p. 106) of

duals of multivectors, we can deduce that two bivectors have the same sense if

and only if their duals are equal. That is, if (a ∧ b) I−1
3 = (c ∧ d) I−1

3 . After
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further thought, we can see that that direction of a bivector’s dual (which is

a vector) depends upon the bivector’s norm as well as the bivector’s plane.

Therefore,

Two bivectors B1 and B2 are equal if and only if their duals are

equal.

Although that statement will prove useful to us later, the equality of bivectors’

areas and of their directions of rotation will often prove useful in themselves.

These criteria for equality would take much less convenient forms if GA’s

inventors had included shape and location among the attributes of bivectors. An

important consequence of these criteria is that given any geometric bivector G

and any vector p that is parallel to it, we can write the corresponding algebraic

bivector G as the outer product of p and some vector s that is perpendicular to

p. How can we identify s? We begin by recognizing that because p ⊥ s, G = ps.

Thus,

s = p−1G.

1.3 The Geometric Procedure for Adding Bivectors

Fig. 3 is an adaptation of the diagram used by [1] (p. 25) and [2] (p. 74) to

define and illustrate the procedure. To help us understand how to apply that

procedure, we’ll arrive at Fig. 3 starting from a situation in which M1 and M2

have arbitrary shapes (Fig. 4).

Our first step is to identify a vector (w) that is common to both bivectors

(Fig. 5).

Here, we are already switching

between thinking of M1 as a

geometric bivector and as an

algebraic one.

Next, we find the vector u such that u is perpendicular to w, and u∧w = M1.

This step enables to draw M1 as u∧w, which is equal to uw because u ⊥ w (Fig.

6). Similarly, we find the vector v, perpendicular to w, such that v ∧w = M2,

so that we can draw M2 as v ∧w, which is equal to vw.

Having drawn both bivectors according to the above-mentioned factoriza-

tions, we position u and v as required to sum those vectors, while leaving the

orientations of M1 and M2 unchanged (Fig. 7)

Now, we construct the vector u + v (Fig. 8).

To finish, we draw the rectangle corresponding to the factorization (u + v)∧
w, which is equal to (u + v)w because (u + v) ⊥ w. Considered as an algebraic

bivector, the “sum” M1+M2 is that product. As a geometric bivector, M1+M2

is the corresponding section of the plane (Fig. 9). We should emphasize that

the product (u + v) ∧w is just one factorization of the bivector defined as the

“sum” of M1 and M2.
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Figure 3: An adaptation of the illustration used by [1] and [2] in explaining the

addition of bivectors. M1 and M2 are the bivectors that are to be added. Vector

w is common to both. The vector u is perpendicular to w, and is such that

u ∧w = M1. Similarly, v is perpendicular to w, and is such that v ∧w = M2.

The result (M1 + M2) of the procedure is outer product of the vectors u + v

and w.

Figure 4: The starting point from which we will arrive at the arrangement shown

in Fig. 3. Bivectors M1 and M2 are shown with arbitrary shapes. The circles

with arrows shown the sense of the two bivectors; the circles look like ellipses in

this diagram because of the viewing angle.
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Figure 5: Bivectors M1 and M2 are still shown with arbitrary shapes, but we

have now identified and drawn a vector w that is common to both bivectors.

Figure 6: Bivector M1 drawn according to the factorization u∧w, and bivector

M2 drawn according to the factorization v ∧w.

Figure 7: After moving M2 as needed to bring u and v into the position needed

to find the vector sum u + v. The two bivectors are joined along their common

vector w.
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Figure 8: Showing the vector sum u + v.

Figure 9: Final step: Draw the rectangle for the outer product (u + v) ∧ w.

That product is one factorization of the bivector that is defined as the “sum”

M1 + M2. We’ve now arrived at the diagram shown in Fig. 3.
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Figure 10: The result of the initial steps in adding geometric bivectors e1e2 and

e2e3. We identified e2 as the vector common to both, and therefore drew e2e3
as -e3e2.

2 Adding Our Three Unit Bivectors

As mentioned in the Introduction, we wish now to use the bivector-addition

procedure to find the single bivector that is equal to the sum e1e2 + e2e3 + e3e1.

Because the addition of bivectors is both commutative and associative, we could

do that addition in any order. Nevertheless, we’ll to it in the order in which

it is written. That is, as (e1e2 + e2e3) + e3e1. As we did when reviewing the

procedure in the previous section, we will alternate between thinking of bivectors

as geometric ones and algebraic ones.

2.1 Adding e1e2 and e2e3

Note that we could use any

scalar multiple of e2 as our w.

To use the procedure that we saw in the previous section, we first need to

identify some vector w that is common to both e1e2 and e2e3. Clearly, e2 is

one such vector. We also need to identify the vector u such that u ∧ e2 = e1e2,

with u ⊥ e2. That vector is e1. Next, we need to find the vector v such that

v ∧ e2 = e2e3, with v ⊥ e2. That vector is -e3 (Fig. 10).

Now, we move the two bivectors into the position needed for adding the

vectors e1 and -e3 (Fig. 11).

After constructing the vector e1+-e3, we finish by constructing the rectangle

corresponding to the product (e1 + -e3)∧ e2, which is also (e1 + -e3) e2 because

e1 + -e3 and e2 are perpendicular (Fig. 12).
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Figure 11: After moving e1e2 and -e3e2 into the position needed for adding the

vectors e1 and -e3 .

Figure 12: After constructing the vector e1 + -e3, we finish by constructing the

rectangle corresponding to the product (e1 + -e3)∧e2, which is also (e1 + -e3) e2
because e1 + -e3 and e2 are perpendicular.
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Figure 13: As the vector w that is common to (e1 + -e3) ∧ e2 and e3 ∧ e1, we

will use e1 + -e3.

2.2 Adding (e1 + -e3) ∧ e2 and e3 ∧ e1

Again, we begin by identifying some vector w that is common to the two

bivectors that we wish to add. We’ll use e1 + -e3 (Fig 13). Therefore, we’ll need

to rewrite (e1 + -e3) ∧ e2 as the outer product of some vector u with e1 + -e3,

where u is perpendicular to e1 + -e3:

u ∧ (e1 + -e3) = (e1 + -e3) ∧ e2.

The vectors w, u, and v in this

section are not the same as in

the previous.

By inspection, we can see that u is -e2.

Using the vector e1 + -e3 as our w will also require us to “reshape” the

bivector e3e1. Put more correctly, we need to draw that geometric bivector as

the rectangle corresponding to the outer product of some vector v with e1 + -e3,

where v and e1 + -e3 are perpendicular:

v ∧ (e1 + -e3) = e3e1

v (e1 + -e3) = e3e1

v = e3e1 [e1 + -e3]
−1

v = e3e1

[
e1 + -e3

2

]
v =

e1 + e3
2

.

With the bivector (e1 + -e3) ∧ e2 rewritten as e2 ∧ (e1 + -e3), and e3e1

“reshaped” as

[
e1 + e3

2

]
∧ [e1 + -e3] (Fig. 14), we finish by constructing the

vector -e2 +
e1 + e3

2
=

e1 + -e2 + e3
2

, and finally the bivector

[
e1 + -e2 + e3

2

]
∧

[e1 + -e3] (Fig. 15).
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Figure 14: After “rewriting” the bivector (e1 + -e3) ∧ e2 as e2 ∧ (e1 + -e3), and

“reshaping” e3e1 as

[
e1 + e3

2

]
∧ [e1 + -e3].

Figure 15: After adding the vectors -e2 and
e1 + e3

2
to give

e1 + -e2 + e3
2

, then

drawing the bivector

[
e1 + -2e2 + e3

2

]
∧ [e1 + -e3], which is the final result.
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Figure 16: Our result for the sum e1e2 + e2e3 + e3e1, along with our frame of

reference.

3 Examining the Result

Let’s present the bivector that we identified as the sum e1e2 +e2e3 +e3e1 along

with the frame of reference. 16. Now, compare that result to the rhombic bivector

shown in Fig. 17. Both bivectors in contain the vectors

[
e1 + -2e2 + e3

2

]
and

[e1 + -e3]. They also have the same magnitude (area) and sense (rotation).

Therefore, according to the postulates of GA, the two bivectors are equal.

Yes, we can also demonstrate

that equality by simply

expanding

(-e2 + e3) ∧ (e1 + -e2). We’ll

do that in a moment.

Examining the rhombic bivector, we see that it is the plane segment for the

outer product of the two red vectors shown in Fig. 18. Further examination shows

that those vectors are -e2 + e3 and e1 + -e2. Thus, the rhombic bivector is the

plane segment for the product (-e2 + e3)∧(e1 + -e2). We have now demonstrated

that the algebraic bivector corresponding to the geometric bivector drawn in

Fig. 16, which we obtained by effecting the sum e1e2 + e2e3 + e3e1, is equal

to the product (-e2 + e3) ∧ (e1 + -e2). As another way of demonstrating that

(-e2 + e3) ∧ (e1 + -e2) and e1e2 + e2e3 + e3e1 are the same algebraic bivector,

let’s calculate their respective duals.

We’ll begin with the dual of (-e2 + e3) ∧ (e1 + -e2). For reasons that we

will explain during the Discussion, we will calculate that dual in a way that does

not require us to expand the product.

In GA3, the dual of a bivector is a vector. Therefore, we can write that

[(-e2 + e3) ∧ (e1 + -e2)] I−1
3 = 〈[(-e2 + e3) ∧ (e1 + -e2)] I−1

3 〉1.

Next, per [2] (p. 101), we write (-e2 + e3)∧(e1 + -e2) as 〈(-e2 + e3) (e1 + -e2)〉2,
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Figure 17: A bivector for comparison with our result for the sum e1e2+e2e3+e3e1
(Fig. 16). The arrow on the end of the arc indicates this bivector’s sense of

rotation. This bivector, which is in the shape of a rhombus, has the same

magnitude (area) and sense (rotation) as that shown in Fig. 16. Like that

bivector, it also contains the vectors

[
e1 + -2e2 + e3

2

]
and [e1 + -e3]. Therefore,

according to the postulates of GA, the bivector shown in this Figure and that

in Fig. 16 are equal.

14



Figure 18: Demonstration that the bivector shown in Fig. 17 is that which

corresponds to the exterior product of the two red vectors.
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Figure 19: The two red vectors from 18 revealed as -e2 + e3 and e1 + -e2.

Therefore, this rhombic bivector is the geometric bivector for the product

(-e2 + e3) ∧ (e1 + -e2).
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which is (-e2 + e3) (e1 + -e2)− (-e2 + e3) · (e1 + -e2):

[(-e2 + e3) ∧ (e1 + -e2)] I−1
3 = 〈[(-e2 + e3) (e1 + -e2)− (-e2 + e3) · (e1 + -e2)] I−1

3 〉1
= 〈(-e2 + e3) (e1 + -e2) I−1

3 〉1 − 〈(-e2 + e3) · (e1 + -e2) I−1
3︸ ︷︷ ︸

=0

〉1

= 〈(-e2 + e3) (e1 + -e2) (-e1e2e3)〉1
= 〈(-e2e1 + e2e2 + e3e1 + -e3e2) (-e1e2e3)〉1
= 〈(-e2e1 + e2e2 + e3e1 + -e3e2) (-e1e2e3)〉1
= 〈e2e1e1e2e3〉1 + 〈-e2e2e1e2e3〉1 + 〈-e3e1e1e2e3〉1 + 〈e3e2e1e2e3〉1

= e3 + 0 + e2 + e1

= e1 + e2 + e3.

Finding the dual of e1e2 + e2e3 + e3e1 is more straightforward:

(e1e2 + e2e3 + e3e1) (-e1e2e3) = e1 + e2 + e3.

Because their duals are equal, so are e1e2 + e2e3 + e3e1 and (-e2 + e3) ∧
(e1 + -e2). That equality can be further confirmed by simply expanding (-e2 + e3)∧
(e1 + -e2).

4 Discussion

Let’s begin by reviewing what we’ve done thus far. We added the geometric

bivectors e1e2, e2e3, and e3e1 according to the procedure described by [1] and [2].

That procedure required us to “reshape” and “relocate” those bivectors—steps

that GA’s inventors made permissible by excluding shape and location as

attributes of geometric bivectors. Using said procedure, we found that the result

of e1e2 + e2e3 + e3e1 is the geometric bivector that corresponds to the algebraic

bivector

[
e1 + -2e2 + e3

2

]
∧ [e1 + -e3].

By reshaping that geometric bivector, we found that it is equal to the

geometric bivector (-e2 + e3)∧ (e1 + -e2). Then, we confirmed that (-e2 + e3)∧
(e1 + -e2) is equal to the sum e1e2 + e2e3 + e3e1 by showing that the dual of

e1e2 + e2e3 + e3e1 is equal to that of (-e2 + e3) ∧ (e1 + -e2). Importantly, we

calculated the dual for (-e2 + e3) ∧ (e1 + -e2) in a way that did not require us

to expand that outer product. Only after we established the equality of the two

bivectors via their duals did we expand the product (-e2 + e3) ∧ (e1 + -e2) to

show that it is indeed equal to the algebraic bivector e1e2 + e2e3 + e3e1.

The significance of what we have done is not that we added the geometric

bivectors e1e2, e2e3, and e3e1 and ended up with the algebraic bivector e1e2 +

e2e3 + e3e1. Instead, the significance is that the procedure for adding geometric

bivectors is precisely that which is needed to give results that coincide with

those obtained by calculating outer products of vectors that are expressed in
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terms of a 3D basis. That accomplishment is no coincidence: it is a consequence

of the attributes that GA’s designers assigned (or didn’t) to bivectors.

References

[1] D. Hestenes, 1999, New Foundations for Classical Mechanics, (Second

Edition), Kluwer Academic Publishers (Dordrecht/Boston/London).

[2] A. Macdonald, Linear and Geometric Algebra (First Edition) p. 126,

CreateSpace Independent Publishing Platform (Lexington, 2012).

18


	Introduction
	Review of Bivectors and How to Add Them
	Bivectors' Properties
	The Geometric Procedure for Adding Bivectors

	Adding Our Three Unit Bivectors
	Adding bold0mu mumu eeAMacdonaldeeee1bold0mu mumu eeAMacdonaldeeee2 and bold0mu mumu eeAMacdonaldeeee2bold0mu mumu eeAMacdonaldeeee3 
	Adding  (bold0mu mumu eeAMacdonaldeeee1+-bold0mu mumu eeAMacdonaldeeee3)bold0mu mumu eeAMacdonaldeeee2 and bold0mu mumu eeAMacdonaldeeee3bold0mu mumu eeAMacdonaldeeee1

	Examining the Result
	Discussion

