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Abstract 
Depending on its dimension, space that can be represented by number systems exists in many 

shades. The quaternionic number system provides 64 shades of space. 

Quaternionic number space 
Due to their four dimensions, quaternionic number systems exist in many versions that differ in the 

way that coordinate systems can sequence them. Cartesian coordinate systems can sequence the 

spatial part of quaternionic number systems in eight independent versions. In each of these versions 

the coordinate along the tree imaginary axes runs up or down and together that creates 23 choices. 

Since also the scalar real axes can be run up or down, this number of shades increases by a factor of 

two. After establishing a Cartesian coordinate system, it is possible to also start a polar coordinate 

system. This can be done by letting the polar angle run up or down over π radians or by starting the 

azimuth to run up or down over 2π radians. This extends the number of shades to 64. Silently we 

assumed that all eight cartesian coordinate systems share the same axis system, such that apart 

from running up or down the axes themselves are parallel to each other. Nature appears to apply 

these 64 shades of space for the platforms on which it installs its elementary particles. Each 

different shade corresponds to a type of elementary particle. The platforms all float relative to a 

selected background platform as a function of the scalar part of the quaternions. This scalar part 

can be interpreted as a progression parameter. Thus, half of shades float forward with 

progression and the other half float backward with progression. The particles that float 

backwards are called antiparticles. The symmetries of the spatial part of the quaternions are 

specified in relation to the background shade. By accounting the differences in up or down 

direction, a short list of numbers results. 

3, 2, 1,0, 1, 2, 3− − − + + +  

After dividing by 3 results the list of electric charges that corresponds to the shades of the 

elementary particles.  
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The “partially” charged particles don’t have isotropic symmetry. This is indicated by color charges. 

The “color” can have one of six values. The antiparticles get anti-colors. The forward floating particles 

get RGB colors. 

The polar coordinate system relates to the spin properties of the particles. Starting with the polar 

angle results in half-integer spin. Starting with the azimuth results in integer spin values. 

Hilbert spaces 
Separable Hilbert spaces differ from a vector space in the fact that they define an inner product for 

each vector pair. The inner product values act as superposition coefficients in linear combinations of 

vectors. Each linear combination is again member of the separable Hilbert space. Linear operators 



describe the linear map of the Hilbert space onto itself. The linear map of a normalized vector onto 

itself delivers an eigenvalue and makes the vector an eigenvector. Not all normalized vectors are 

eigenvectors. Linear operators manage an eigenspace that is spanned by the eigenvectors. For a 

normal operator, the eigenvectors are mutually orthogonal and form a base of the separable Hilbert 

space. A special operator is the reference operator that applies the set of rational quaternions of the 

selected version of the quaternionic number system that specify the inner products as its eigenspace. 

This operator manages the private parameter space of the Hilbert space. 

The quaternionic separable Hilbert space selects the values of its inner product from the same shade 

of the quaternionic number space. They can act as repositories that store dynamic geometric data in 

the eigenspaces of normal operators. Multiple separable Hilbert spaces can share the same 

underlying vector space. One of these separable Hilbert spaces acts as background platform. It 

provides the background parameter space of the system. All other separable Hilbert space in the 

system float with their private parameter space over the background parameter space. Every 

member of this system is countable. 

Restrictions 
Infinite dimensional separable Hilbert spaces can only cope with number systems, whose members 

form a division ring. In a division ring all non-zero members own a unique inverse. This means that 

infinite separable Hilbert spaces can only cope with real numbers, complex numbers and 

quaternions. 

Defined operators and fields 
Together with the private parameter space, which is managed by the reference operator, and a 

quaternionic function, a category of defined operators can be generated. The defined operator 

applies the eigenvectors of the reference operator and the corresponding parameter values to create 

new eigenvalues that together with the corresponding target values of the function form the 

eigenspace of the defined operator. This eigenspace is a sampled continuum that represents a field 

that is described by the quaternionic function.  The parameter space can be considered as a flat 

continuum. 

Continuums 
Every infinite dimensional separable Hilbert space owns a unique non-separable Hilbert space that 

embeds its separable companion. Operators in this non-separable Hilbert space exist that own a 

continuum as eigenspace. The continuum is described by a quaternionic function that applies the 

private parameter space of the non-separable Hilbert space. That parameter space is a flat 

continuum. It encloses the private parameter space of the companion separable Hilbert space. 

Embedding 
The companion non-separable Hilbert space of the background platform embeds that platform in a 

natural way. However, embedding a platform that applies a different shade of space is no straight 

forward operation. That embedding occurs only under very special conditions. The embedding occurs 

point-wise and the embedded quaternion must be colorless. This means that the symmetry 

differences with the background platform must isotropic. For example, the electrons embed in the 

embedding continuum of the non-separable Hilbert space, but this event causes a spherical pulse 

response. Quarks cannot embed in this continuum and must first combine into baryons or mesons to 



form colorless results that can be embedded in the continuum. This phenomenon is known as color 

confinement. Thus, perceivable embedding must involve the creation of a spherical pulse response. 

This pulse response is a spherical shock front that integrates into the Green’s function of the 

embedding field. The green’s function owns a small spatial volume, which is added to the field, but 

according to the dynamics of the shock front the local deformation by the injection of this volume 

quickly fades away by spreading over the full field. Only a recurrently regenerated dense and 

coherent swarm of such pulse responses can produce a significant and persistent deformation of the 

embedding field. This is exactly what occurs at the average location of an embedding elementary 

particle. This embedding is simple for electrons, but quarks must first superpose into hadrons before 

the superposition can deform the embedding field. Neutrinos don’t break the symmetry, but quite 

probably cause isotropic discrepancy via the difference of the handiness of the product rule. This all 

bases on the idea that only isotropic triggers can cause spherical shock fronts and only spherical 

shock fronts can deform the embedding field.  

Gravity 
The stochastic hopping path forms the required dense and coherent hop landing location swarm, 

which a location density distribution describes. The convolution of the Green’s function of the field 

and this location density distribution describes the resulting deformation of the embedding field. At 

some distance of the center of the swarm this deformation again gets the shape of the Green’s 

function. Consequently, the deformation can be described there by the shape  

m
f
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=  

Where m  relates to the mass of the particle and r  equals the distance to the center of the hop 

landing location swarm. This function owns a singularity at its center. This is a false impression. If the 

location density distribution has the shape of a Gaussian distribution, then the function ( )f r  has the 

shape of a perfectly continuous function. 
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( )ERF r  is the well-known error function. 

The factor m  only relates to the mass of the particle. In fact, it is a mass capacity.  It depends on the 

density of the swarm and on the rate at which the swarm is regenerated. As is indicated above, the 

deformation caused by each of the pulse responses fades away quickly and must be regenerated at 

an enough rate to cause a persistent deformation. A private stochastic process is responsible for the 

swarm density and the regeneration rate. The process is a combination of a Poisson process and a 

binomial process. The binomial process id implemented by a spatial point spread function that equals 

the location density distribution of the swarm. It equals the Fourier transform of the characteristic 

function of the stochastic process. 

Modules 
Elementary particles are elementary modules. Together they constitute all other modules that occur 

in the system. Some modules constitute modular systems. Also, modules are controlled by a private 

stochastic process and also this process owns a characteristic function. In composed modules, the 

characteristic function is a dynamic superposition of the characteristic functions of the components. 



The superposition coefficients act as displacement generators. In this way they determine the 

internal locations of the components. The module as a whole owns a displacement generator that 

attaches as a gauge factor to the characteristic function of the module. In this way the movement of 

every module is controlled. This also holds for elementary modules. Thus, the characteristic function 

of the composed modules controls the binding of its components. Besides of that it is clear that 

superposition occurs in Fourier space and not in configuration space.  

More details 
More details are contained in “Structure of physical reality” ; 

http://dx.doi.org/10.13140/RG.2.2.10664.26885 
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