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Abstract Traditional explanation for the white dwarf star is based on the ideally degenerate Fermi 

electron gas to produce the pressure against gravity. This theory predicts the upper mass limit of the white 

dwarf is 1.44 times as large as our sun although the Fermi electron gas is treated at the temperature of 

absolute zero. In this research, first we estimate the temperature effect and find the correction only about 

1/100 at 107 K but about 1/10 at 108 K. Some parts of this Fermi electron gas are the relativistic electrons. 

Then we consider that some electrons can escape the gravity resulting in a positive charged star. These 

rest positive charges produce strong repulsive force and the pressure to against gravity. This positive-

charged effect makes the upper mass limit higher than previous value. One demonstration shows that 

when the rest positive charges is 1.406x104 C and the radius of the white dwarf star is the same as Earth, 

its upper mass limit can be 1.98 times as large as our sun.  

Keywords: white dwarf star, degenerate Fermi electron gas, pressure, upper mass limit, Coulomb’s 

interaction 

I. Introduction 

  The white dwarf star has been investigated many years and it was named first in 1922 

[1]. It is thought to be the type of the low to medium mass stars in the final evolution 

stage. The white dwarf star usually has very high density with the mass similar to our 

sun but the volume small like Earth. The reported largest mass seems to be the one 

found in 2007 which is 1.33 times as large as our sun [2]. The early theory to explain 

its mass upper limit is based on the ideally degenerate Fermi electron gas [3-8]. The 

calculation adopts all electrons like free particles occupying all energy levels until to 

Fermi energy as they are at zero temperature. It is surprising that even in the high-

temperature and high-pressure situation, the ideal Fermi gas still works. It makes the 

curiosity to discuss the temperature effect by statistical mechanics. 

Since Einstein proposed General Relativity in 1915, some propitiate metrics have 

been found such as the Schwarzschild metric, the Kerr metric, and the Kerr-Newman 

metric [9-11]. Especially, the Kerr-Newman metric describes the rotating and charged 

star. Some detail problems about the Kerr-Newman black hole have been discussed 

[12,13]. As we know, most stars are rotating and they might be also easily charged 

because the relativistically massive particles escaping the gravity. According to 

statistical mechanics, the relativistic electrons have more possibility to escape gravity 

than helium nuclei at the same high temperature. Because of this factor, we consider 

the positive charged star and consider the Coulomb interaction existing in the rest 

positive charges, and further calculate the pressure produced by these rest charges. The 

Coulomb force also an important one against gravity so the upper mass limit of the 

white dwarf star should be higher. 
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II. The Degenerate Fermi Electron Gas For The White Dwarf Star 

   First, we review the calculation of the upper mass limit for the dwarf star. It adopt 

the ideally degenerate Fermi electron gas and considers the relativistic kinetic energy 

in the calculation [3,4]. Because the electron has spin s= ±
1

2
,  each energy state permits 

two electrons occupied. Each electron has the rest mass me, and its relativistic kinetic 

energy E at momentum p is  

                                                𝐸 = 𝑚𝑒𝑐2 {[1 + (
𝑝

𝑚𝑒𝑐
)

2

]

1 2⁄

}.                                             (1) 

The Fermi electron gas with the total number N and total volume V has total kinetic 

energy 

𝐸0 = 2𝑚𝑒𝑐2 ∑ {[1 + (
𝑝⃑

𝑚𝑒𝑐
)

2

]

1 2⁄

− 1}
|𝑝⃑|<𝑝𝐹

=
2𝑉𝑚𝑒𝑐2

ℎ3
∫ 𝑑𝑝4𝜋𝑝2 {[1 + (

𝑝⃑

𝑚𝑒𝑐
)

2

]

1 2⁄

− 1}
𝑝𝐹

0

,                             (2) 

where h is the Planck’s constant and pF is Fermi momentum defined as 

                                                                𝑝𝐹 = ℎ (
3𝑁

8𝜋𝑉
)

1 3⁄

.                                                    (3) 

Considering the mass mp of a proton and the mass mn of a neutron, the total mass M of 

a white dwarf star mainly consisting of helium nuclei is  

                                          𝑀 = (𝑚𝑒 + 𝑚𝑝 + 𝑚𝑛)𝑁 ≈ 2𝑚𝑝𝑁 ≈ 2𝑚𝑛𝑁.                         (4) 

If we define the parameter 

                                                       𝑥𝐹 ≡
𝑝𝐹

𝑚𝑒𝑐
=

ℎ

2𝑚𝑒𝑐
(

3𝑁

8𝜋𝑉
)

1 3⁄

,                                       (5) 

then Eq. (1) becomes 

                                                         𝐸0 =
8𝜋𝑚𝑒

4𝑐5𝑉

ℎ3
𝑓(𝑥𝐹),                                                  (6) 

where  

                                      𝑓(𝑥𝐹) = ∫ 𝑑𝑥𝑥2[(1 + 𝑥2)1 2⁄ − 1]
𝑥𝐹

0

.                                         (7) 

The pressure produced by the ideal Fermi electron gas is 
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                                        𝑃0 = −
𝜕𝐸0

𝜕𝑉
=

8𝜋𝑚𝑒
4𝑐5

ℎ3
[
1

3
𝑥𝐹

3√1 + 𝑥𝐹
2 − 𝑓(𝑥𝐹)].                 (8) 

It is almost 1000 times larger than the pressure of the helium nuclei [4]. Further 

discussions give the relationship between the radius R and mass M of the star for the 

relativistically high-density Fermi electron gas 

                                                   𝑅̅ = 𝑀̅2 3⁄ [1 − (
𝑀̅

𝑀̅0

)

2 3⁄

]

1 2⁄

,                                             (9) 

where  

                                                                  𝑅̅ = (
2𝜋𝑚𝑒𝑐

ℎ
) 𝑅,                                                  (10) 

                                                                   𝑀̅ =
9𝜋

8

𝑀

𝑚𝑛
,                                                        (11) 

and 

                                                    𝑀̅0 = (
27𝜋

64𝛿
)

3 2⁄

(
ℎ𝑐

2𝜋𝜉𝑚𝑛
2

)
3 2⁄

.                                        (12) 

In Eq. (18), ξ is the gravitational constant and δ is a parameter of pure number. Some 

considerations [4] give the upper mass limit M0 in unit of the mass Msun of our sun 

                                                           𝑀0 ≈ 1.44𝑀𝑠𝑢𝑛,                                                          (13) 

which is also the upper limit for appearance of the white dwarf star.  

III. The Temperature Effect On The Pressure of The Ideal Fermi Electron Gas 

The central temperature of a star is usually about 107 K, and the upper mass limit in 

Eq. (13) is calculated at T=0 which seems to be improved. Then we consider the case 

for T>>0, and the grand partition function in statistical mechanics [4] is 

                                    𝑞(𝑇, 𝑉, 𝑧) = ln 𝛧 = ∑ ln[1 + 𝑧 ∙ 𝑒𝑥𝑝(−𝛽𝐸𝑘)]𝑘 ,            (14) 

where β=1/kBT and z=exp(μβ) with k μ the chemical potential of the Fermi electron gas. 

Since the energy eigenstates are treated as arbitrarily close to each other in a very large 

volume, the grand partition function becomes 

                                    ln 𝛧 = ∫ 𝑑𝐸𝑔(𝐸) ln[1 + 𝑧𝑒𝑥𝑝(−𝛽𝐸)]
∞

0

.                                     (15) 

When it is integrated by parts, then we have  
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                                ln 𝛧 = 𝑔
4𝜋𝑉

ℎ3

𝛽

3
∫ 𝑝3𝑑𝑝

𝑑𝐸

𝑑𝑝

∞

0

1

𝑧−1𝑒𝑥𝑝(𝛽𝐸) + 1
,                             (16) 

where g=2s+1 is the degeneracy factor and  

                                                           𝑝2 =
𝐸2

𝑐2
+ 2𝑚𝑒𝐸.                                                       (17) 

Substituting Eq. (17) into Eq. (16), it gives  

                            ln 𝛧 = 𝑔
4𝜋𝑉𝛽(2𝑚𝑒)3 2⁄

3ℎ3
∫ 𝑑𝐸

𝐸3 2⁄ [1 +
𝐸

2𝑚𝑒𝑐2]
3 2⁄

𝑧−1𝑒𝑥𝑝(𝛽𝐸) + 1

∞

0

.                   (18) 

Using the Taylor series expansion to first-order term, then we have  

   ln 𝛧 ≈ 𝑔
4𝜋𝑉(2𝑚𝑒)3 2⁄

3ℎ3𝛽1 2⁄ ∫ 𝑑(𝛽𝐸)
(𝛽𝐸)3 2⁄ [1 +

3
2

(
1

2𝑚𝑒𝑐2𝛽
) (𝛽𝐸)]

𝑧−1𝑒𝑥𝑝(𝛽𝐸) + 1

∞

0

.                  (19) 

It can be written as 

            ln 𝛧 ≈ 𝑔
4𝜋𝑉(2𝑚𝑒)3 2⁄

3ℎ3𝛽1 2⁄ [𝛤 (
5

2
) 𝑓5 2⁄ (𝑧) +

3

2
(

𝑘𝐵𝑇

2𝑚𝑒𝑐2
) 𝛤 (

7

2
) 𝑓7 2⁄ (𝑧)],           (20) 

where we define 

                                              𝑓𝑛(𝑧) =
1

𝛤(𝑛)
∫ 𝑑(𝛽𝐸)

(𝛽𝐸)𝑛−1

𝑧−1𝑒(𝛽𝐸) + 1

∞

0

.                             (21) 

The corresponding Fermi energy EF is roughly 20 MeV [3] and 1/(2mec2β)~1/1000. The 

chemical potential μ~EF so z=βμ~20000. When z>>1, Eq. (21) approximates [4] 

                                                           𝑓𝑛(𝑧) ≈
(ln 𝑧)𝑛

𝑛!
,                                                         (22) 

so the ratio of the second term to the first term is  

                              
3

2
(

𝑘𝐵𝑇

2𝑚𝑒𝑐2
)

𝛤 (
7
2)

𝛤 (
5
2)

𝑓7 2⁄

𝑓5 2⁄
≈

3

2
(

1

1000
)

5

2
∙

ln 𝑧

(7 2⁄ )
≈

1

100
.                    (23) 

According to the relationship lnΖ=pV/kBT, the result in Eq. (23) means that the 

temperature effect only increase 1/100 in pressure produced by the high-density Fermi 

electron gas when T raises from 0 K to 107 K. When the temperature rises to 108 K, the 

ratio is 1/10 and the second term becomes important. 
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IV. The Improvement of The Upper Mass Limit Considering The Escaping 

Electrons 

  However, above discussions are based on the neutral star condition that the negative 

charges balance the positive charges. The relativistic electrons have possibility to 

escape the gravity of a star much higher than the ions, so the star would very be the 

positive charged star. In the classical statistical mechanics, the Maxwell-Planck velocity 

distribution tells us the most probable, the mean, and the root mean square root  

absolute velocities v*, 〈𝑣〉, and √〈𝑣2〉 in the ideal gas are  

                                                              𝑣∗ = √
2𝑘𝐵𝑇

𝑚
,                                                           (24) 

                                                           〈𝑣〉 = √
8𝑘𝐵𝑇

𝑚𝜋
,                                                             (25) 

and 

                                                           √〈𝑣2〉 = √
3𝑘𝐵𝑇

𝑚
.                                                        (26) 

Although we deal with the indistinguishable quantum particles, in the ultrahigh-

temperature case the classical results still give a good approximation. All those three 

velocities for the Fermi electron gas are very close to c, but they only are 7.3x10-4c, 

8.2x10-4c, and 8.9x10-4c for helium nucleus at the same temperature. According to these, 

many electrons escape the gravitation of the star and the star is reasonably positive 

charged stellar. A similar phenomenon is the well-known solar wind raising from the 

surface of the star and moving outward to the space. 

Then, considering the total negative and positive charges are -Q and Q+ΔQ. 

Supposing the rest positive charges ΔQ distribute homogeneously in the star, then the 

density 𝜌∆Q of the rest positive charges is 

                                                            𝜌∆Q =
∆Q

4
3 𝜋𝑅3

.                                                             (27) 

The self-energy Eself of this charged sphere is 

                                          𝐸𝑠𝑒𝑙𝑓 =
3𝐾(∆Q)2

5𝑅
=

3𝐾(∆Q)2

5
(

3𝑉

4𝜋
)

−
1
3

.                               (28) 
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The pressure PΔQ produced by the rest positive charges is 

                                            𝑃∆𝑄 = −
𝜕𝐸𝑠𝑒𝑙𝑓

𝜕𝑉
=

𝐾(∆Q)2

5
(

4𝜋

3
)

1
3

𝑉−4 3⁄ .                             (29) 

Using Eqs. (2), (10), and (11), then we have  

    𝑃∆𝑄 =
𝐾(∆Q)2

5
(

4𝜋

3
)

1
3

(
3𝑀

8𝜋𝑚𝑛𝑁𝑅3
)

4
3

=
3𝐾(∆Q)2

5𝜋2𝑁

1

9
(

4

9𝜋𝑁
)

1
3

(
2𝜋𝑚𝑒𝑐

ℎ
)

4 𝑀̅4 3⁄

𝑅̅4
. (30) 

This rest-positive-charges pressure also has to be considered into the contribution of 

the total pressure.  

 Next, we combine P0 with PΔQ as the main pressure Pmain against the gravitation in the 

star 

              𝑃𝑚𝑎𝑖𝑛 =
2𝜋𝑚𝑒

4𝑐5

3ℎ3
[
𝑀̅4 3⁄

𝑅̅4
−

𝑀̅2 3⁄

𝑅̅2
+

8𝐾(∆Q)2𝜋

5𝑁ℎ𝑐
(

4

9𝜋𝑁
)

1
3 𝑀̅4 3⁄

𝑅̅4
].                (31) 

Actually, the pressure of the Fermi electron gas has a tiny decrease because of the 

escaping electrons. It has to add a factor (1-ΔQ/Ne) accompanying with P0 where e is 

the charge of a single electron, so the main pressure becomes 

  𝑃𝑚𝑎𝑖𝑛 =
2𝜋𝑚𝑒

4𝑐5

3ℎ3
{(1 −

∆Q

𝑁𝑒
) (

𝑀̅4 3⁄

𝑅̅4
−

𝑀̅2 3⁄

𝑅̅2
) +

8𝐾(∆Q)2𝜋

5𝑁ℎ𝑐
(

4

9𝜋𝑁
)

1
3 𝑀̅4 3⁄

𝑅̅4
}.   (32) 

Using these data, K=8.987x109 N∙m2/C2, h=6.626x10-34 J∙m, c=2.998x108 m/s, and 

N~1033 for our sun [3], the third coefficient can simplify to 

                                       
8𝐾(∆Q)2𝜋

5𝑁ℎ𝑐
(

4

9𝜋𝑁
)

1
3

≈ 1.187 × 10−9(∆𝑄)2.                            (33) 

When ΔQ=2.903x104 C, this coefficient is 1.0. This effect is caused by (2.903 

x104)/(1.602x10-19)=1.81x1023 electrons escaping the star. It only occupies about 10-10 

to 10-9 Fermi electron gas so the ratio (1-ΔQ/Ne) approximates 1.0 in Eq. (32). Similar 

to Eq. (9), we obtain  

                     𝑅̅ = 𝑀̅2 3⁄ {[1 +
8𝐾(∆Q)2𝜋

5𝑁ℎ𝑐
(

4

9𝜋𝑁
)

1
3

] − (
𝑀̅

𝑀̅0

)

2 3⁄

}

1 2⁄

.                         (34) 

Using the conservation of energy between the kinetic energy and the electric potential, 
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we can estimate the maximal number of electrons against the gravity escaping to infinite. 

As we know, the Coulomb’s interaction is much larger than the gravitational interaction, 

so we only consider the Coulomb’s interaction here. The electric potential at infinity is 

zero as a reference. The Fermi energy as the kinetic energy of the escaping electrons is 

used to calculate the maximally positive charges (ΔQ)max of the star, that is,  

(𝛾 − 1)𝑚𝑒𝑐2 ≈ 20𝑀𝑒𝑉 =
𝐾(∆Q)𝑚𝑎𝑥𝑒

𝑅
                                                      

                                =
(8.987 × 109)(∆Q)𝑚𝑎𝑥(1.602 × 10−19)

𝑅
,                                (35) 

where γ is the relativistic factor for the massive particle with velocity v 

                                                                    γ =
1

√1 −
𝑣2

𝑐2

.                                                      (36) 

It further gives the ratio between (ΔQ)max and R 

                                                                  
(∆Q)𝑚𝑎𝑥

𝑅
≈

1

450
.                                                  (37) 

It gives the upper charged limit for a star related to the radius R. The increase of (ΔQ)max 

results in the increase of R. When the kinetic energy of the escaping electrons increases 

twice, the condition in Eq. (37) also increases doubly. If the maximal charge (ΔQ)max 

equal to 2.903x104 C, the radius of the star is about 13060 km, which is twice larger 

than Earth. In this case, Eq. (34) gives the upper limit of 𝑀̅ 

                                                           𝑀̅ = 23 2⁄ 𝑀̅0 = 2.8284𝑀̅0.                                       (38) 

Then we have the new upper mass limit 𝑀0
𝑛𝑒𝑤as it in Eq. (13)  

                                          𝑀0
𝑛𝑒𝑤 = 23 2⁄ × 1.44𝑀𝑠𝑢𝑛 = 4.073𝑀𝑠𝑢𝑛.                              (39) 

If we consider the radius of the white dwarf star matching the astronomical 

investigation roughly equal to Earth [14], then  

                                             (∆Q)𝑚𝑎𝑥 ≈
6328

450
= 1.406 × 104 𝐶.                   (40) 

This result gives  

                                                𝑀̅ = 1.2353 2⁄ 𝑀̅0 = 1.3719𝑀̅0.                                        (41) 

Then we have the new upper mass limit 𝑀0
𝑛𝑒𝑤 is 
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                              𝑀0
𝑛𝑒𝑤 = 1.2353 2⁄ × 1.44𝑀𝑠𝑢𝑛 = 1.98𝑀𝑠𝑢𝑛.                                    (42) 

It means that the upper mass limit can be higher than the old one in Eq. (13) when the 

star is positively charged.  

V. Conclusion 

 In summary, the calculation from statistical mechanics shows that the temperature 

effect is very small at 107 K and the ideally degenerate Fermi electron gas is still good 

enough. However, the Coulomb interaction should be considered because the 

relativistic electrons easily escape gravity to infinite. According to our calculations, the 

maximally positive charges in the star has relationship with the radius. By this condition, 

we can calculate the pressure produced by the rest charges due to the Coulomb force. 

This term is significant and comparable with the degenerate Fermi gas pressure. In our 

demonstration, when the maximally positive charge is 1.406x104 C and the radius is the 

same as Earth, the upper mass limit of the white dwarf is 1.98 times as large as our sun 

which is over the traditionally upper mass limit 1.44 Msun. The contribution of the rest 

charges is significant and even larger than the degenerate Fermi electron gas. The 

calculation results tell us that when we consider the pressure inside the white dwarf star, 

we should not ignore the contribution of the Coulomb’s interaction because some 

relativistic electrons can easily escape the gravity.  
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