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The golden ratio Φ is very important in the modified cosmological model (MCM). In previous
work, we have inserted it artificially rather than showing where it comes from. Where the real
numbers R are extended to the complex numbers C for routine physical applications, we extend the
complex numbers to the hypercomplex numbers ?C and show that Φ is inherent to the transfinite
structure. We formalize the transfinite concept of continuation beyond infinity. We improve upon
previous motivations for deriving general relativity and the fine structure constant in the MCM,
and we propose an origin for the Yang–Mills mass gap.

Consider C-numbers z=x+ iy defined as in reference
[1]. Define

y+ =∞− y , and y− = y +∞ , (1)

and let

z =

{
x+ iy+ for Im(z) > 0

x− iy− for Im(z) < 0
, (2)

where

x∈ [−∞,∞] , and y±∈ [0,∞) , (3)

as in figure 1. The conformal coordinate on the real axis
will be

x̃ = tan−1(x) =⇒ x̃ ∈ [−π/2, π/2] , (4)

and we will develop some things before writing the con-
formal coordinate on the imaginary axis. We include
infinity with the hard brackets so, evidently, we will con-
sider the extension of the extended complex numbers
Ĉ into the hypercomplex numbers ?C. ?C is derived
through the fusion of C with hyperreal numbers R∗ and,
as R∗ is transfinite, ?C is also a transfinite number sys-
tem. It is required to include infinity in anything trans-
finite so we use Ĉ as the foundation. The most relevant
details of ?C appear in [1–4] and we will restate the key
features here.

For the case of Im(z) = 0, included in neither equa-
tion (2) nor definitions (3), we could take the average
of y±→∞ but the idea in hypercomplex analysis is to
require that there is always some infinitesimal imaginary
component. An R-valued number has Im(x) = 0, and a
C-valued number can have Im(z) = 0, but a ?C-valued

number will always have Im(z) ≥ αΦ̂−∞ where α ∈ R,

α 6=0, and Φ̂−∞ is the smallest possible infinitesimal ele-
ment. In ?C, we label each tier of infinitude with Φ̂j . Φ̂0

is the finite tier, Φ̂1 is the first infinite tier (correspond-

ing to ℵ0), Φ̂−1 is infinitesimal, Φ̂−2 is infinitesimal even

with respect to Φ̂−1, etc. We may obtain Im(z)=0 from

a ?C number by considering the sign of α to choose from
y±, and then neglect terms of order Φ̂−j with j ≥ 1.

All of those Φ̂−j terms may have vanishing coefficients
but Φ̂−∞ may not. We refer to the tier of infinitude, a
concept inherent to the hyperreals R∗, as a “level of ℵ”
[2, 3, 5].

Let ?C’s real axis x be the x0 axis of the MCM unit
cell, as in figure 2. Associate y± with χ5

±. χ5
± do not

FIG. 1. To show the similarity with figure 2, the imaginary
axis is in the horizontal direction. The “upper” complex half-
plane is on the right, and the “lower” complex half-plane is
on the left. The origin of z, x, and y is labeled O{z,x,y}.
It is usually the origin of the Im(z) dimension but the new
piecewise definition of y± puts their origins at O{y±}. O{y±}
lie at the points (x, y)=(0,±∞).

FIG. 2. This figure shows the MCM unit cell. Each cube, Σ+
1

and Σ−2 , is spanned by {x0, xi, χ5} ∼ {χ0, χi, χ5}. H is ob-
servable (real) spacetime but the bulk space is unobservable.
There is, therefore, an intuitive picture in which χ5

± are imag-
inary dimensions pointing outside of the universe spanned by
xµ.
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include their boundaries at χ5
±=0 [6] and neither do y±

include their boundaries at y±=∞ (y=0). While it will
be marginally beyond the scope of this paper, we could
make a 5D space (Σ± are both 5-spaces) by adding the
quaternions {i, j,k} to represent the xi spatial degrees
of freedom. The 5D basis of unit vectors spanning Σ±

would be {1̂, î, î, ĵ, k̂} with the bases anchored at O{y±}
respectively. In this way, we could begin to build a con-
nection between the odd spatial properties of half-integer
spin and the Pauli matrices which are isomorphic to the
quaternions.

The initial intention in the MCM was to have a unit cell
of finite width but, in recent work, it has become infinite
in width along the χ5 direction. The infinite width was
introduced to join Σ+

1 to Σ−2 , as in figure 2. To see why
this was required, we must consider the metrics of Σ±

which are two 5-spaces that can, together, support a 10D
string theoretical boundary condition. When we set the
electromagnetic potential 4-vector Aµ= 0, those metrics
are

Σ±AB =

(
ηab 0
0 χ5

±

)
, (5)

with ηµν being the Minkowski metric and capital Latin
indices running from 1 to 5. At any given constant value
of χ5

±, we can use that value as the the parameter of
uniform curvature on a 4D brane (worldsheet) embedded
in the 5D space [3]. When Σ±55 is taken as the hyperboloid
parameter of an embedded hypersurface at each constant
value of χ5

±, we obtain the relationship between the χa±
coordinates (a ∈ {1, 2, 3, 4}) and the xµ± coordinates of
the embedded hyperboloids which define the geometry of
the 4-brane at that value of χ5

±.
χ5
± were originally defined for the unit cell centered on

H, figure 3. Recently, the finite scale of χ5
± was given by

χ5
− ∈ [−1, 0) , and χ5

+ ∈ (0,Φ] , (6)

[3] with Minkowski space H being at the point χ5
± = 0.

The slices of constant χ5
+ are de Sitter space because

χ5
+ > 0 and the slices of constant χ5

− are anti-de Sitter
space because χ5

− < 0. The curvature goes to zero as
χ5
±→0± so we can smoothly connect the slices of Σ± to
H at χ5

±=0 which is the location of H by definition [6].
At large values of |χ5

±|, near ∅ in figure 2, the curvature
is very large and it would be difficult to make a smooth
connection between a topological space with large nega-
tive curvature and one with large positive curvature. For
this reason, we extended the domain of χ5

± as

χ5
− ∈ [−∞, 0) , and χ5

+ ∈ (0,∞] , (7)

so that we might join them on a topological singularity
of infinite curvature at ∅. The purpose of the conformal
coordinates ỹ± will be to restore finiteness to these

intervals so that we may once again use χ5
+ ∈ (0,Φ] to

associate Φ with the increasing level of ℵ defined by
powers of the golden ratio Φ̂j .

GOING BEYOND INFINITY

An ab initio derivation of the free spin-0 particle prop-
agator in QFT yields the expression

D(x− y) =

(
1

2π

)4 ∫
d4k

eik(x−y)

k2 −m2
. (8)

This expression isn’t great for physics because it has poles
where k2 =m2 meaning that we can’t integrate over all
values of k. The common idea is to augment the mass
m2 → m2 + iε so that the pole moves off the real axis
where we can efficiently use the residue formula to solve
for D(x − y). This is allowed in physics because ε is an
infinitesimal and m2 + iε is very nearly equal to m2 (and
we can let ε→0 later.) The resulting expression is

D(x− y) =

(
1

2π

)4 ∫
d4k

eik(x−y)

k2 −m2 + iε
. (9)

To “solve for D(x − y)” means to integrate out the k0

part, which is like the time part of d4x in momentum
space. Defining

A =

(
1

2π

)3 ∫
d3k e−i

~k·(~x−~y) , (10)

in the signature {+ − −−}, we can let k0 be a complex
number z and introduce the relativistic mass-energy

ωk=+

√
~k2 +m2 , (11)

FIG. 3. This figure shows the MCM unit cell centered on
H at χ5

± = 0. H is Minkowski space with coordinates xµ.
ℵ is anti-de Sitter space where the parameter of curvature
that defines the embedded metric of the 4D xµ− coordinates

is directly proportional to χ5
−. Likewise, Ω is de Sitter space

where the parameter of curvature that defines the embedded
metric of the 4D xµ+ coordinates is directly proportional to

χ5
+.
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to rewrite D(x− y) as

D(x− y) =
A
2π

∫
dz

eizt

z2 − ω2
k + iε

. (12)

That ωk has to be specified with a plus sign is indicative
of the idea that the MCM conserves momentum in all
cosmological cases [7, 8] by introducing another universe
Ū with a sign convention such that ωk in Ū uses the

negative square root of ~k2 + m2 if our universe U uses
the positive one.

The residue theorem says

∮
C0

dz f(z) = 2πi
∑
j

Rj , (13)

where Rj are the residues at the poles of f(z) which are
enclosed by the closed contour C0. Regarding D(x− y),
let us define the curve C0 as in figure 4. The contour
encloses the pole in the upper complex half-plane so that

∮
C0

dz f(z) =

∫
C

dz f(z) +

∫
C′
dz f(z) (14)

The path over C is the line integral in equation (12) and
the integral over C ′ is equal to zero because the z2 =∞2

in the denominator dominates along C ′. We have referred
to this path integral many times in this research program,
notably we used the symbol δ(t) to describe that which
moves the pole off the k0 axis in [9].

A general idea in the MCM is to “go beyond infin-
ity” [2–4] and now we will formalize that idea using the

contour integral for reference. The MCM operator M̂3

[9, 10] is defined such that it takes an initial condition in
H1 and returns a final condition on H2:

M̂3 : H1 → Ω→ ℵ → H2 . (15)

Each of these spaces {H1,Ω,ℵ,H2} have their own coor-
dinates [9]: xµ{1}∈H1, xµ+∈Ω, xµ−∈ℵ and xµ{2}∈H2. The

idea in going beyond infinity is to somehow smoothly
evolve a curve parameterized in the coordinates of one
space into a curve parameterized in the coordinates of an-
other where each space has its own origin of coordinates
that is infinitely far away from the others. (If they were
not infinitely far away, then they would have non-trivial
interactions exceeding the “trivial” MCM dark energy in-
teraction [7, 8, 11].) By implementing the imaginary axis
y± of ?C as

y+ =∞− y , with y− = y +∞ , (16)

we have put together everything required to implement a
rigorous transfinite analysis well-suited to these purposes.

Consider the path in figure 5. The sum of the integrals
over C1 and C3 should be exactly equal to the the integral
over C in figure 4. The curve at infinity C ′↔C2 should
contribute nothing. C2 is defined with

y+(x̃) = tan(x̃) , (17)

and it easy to confirm that C1 connects to C2. We may
extract from equations (16)

y =∞− y+ , (18)

which concisely demonstrates the connection. When
tan(x̃=π/2)=∞, y=0 and so C2 is connected to C1. We

FIG. 4. This figure shows the closed contour typically used to
solve equation (12). C0 in equation (13) is a path C along the
entire real axis taken together with another path C′ around
infinity. Since the integral of D(x−y) over C′ is equal to zero,
the closed contour integral in equation (13) is exactly equal
to the line integral over C which is the path in equation (12).

FIG. 5. The path integral over C1∪C2∪C3 should be exactly
equal to the closed contour integral in figure 4.
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have defined y+∈ [0,∞) so it only approaches the connec-
tion point at (x̃, y) = (π/2, 0) but that point contributes
nothing to the integral and everything works out in the
limit. When tan(x̃ = 0) = 0, y =∞ and y+ = 0. Then,
continuing along the tangent curve, we go beyond infinity
by continuing the domain of y+ ∈ [0,∞) to the range of
the tangent function sans the endpoints: y+∈ (−∞,∞).
Since tan(x̃ = −π/2) = −∞, equation (18) gives an in-
teresting, transfinite point at (x, y) = (−π/2, 2∞). Since

y+ is constrained to be y+∈ [0,∞), and 2∞6∈ Ĉ, we will
define the conformal coordinate on y+ as

ỹ+ = tan−1(y+) , with ỹ+ ∈ (−π/2, π/2) .
(19)

Therefore, we can retain the definition y+ ∈ [0,∞) and
let the conformal coordinate be the one that goes beyond
infinity. With equation (19) and

x̃ = tan−1(x) =⇒ x̃ ∈ [−π/2, π/2] , (20)

we have defined the conformal coordinates in ?C. Equa-
tion (19) restores finite width to the MCM unit cell, al-
beit proportional to π instead of the highly desirable Φ.
However, we still have room to make things work out
later with more conformalism.

The semicircle C ′ passes through the point y+ =0 with
zero slope so the tangent curve C2 goes inside the semi-
circle before reaching that point. The slope of tangent
at zero is sec2(0) = 1 so it approaches the line x̃ = 0
from inside the circle. Indeed, making the change of no-
tation y+(x̃)→y+(x) or y+(x̃)→ ỹ+(x̃) shows that C2 is
a straight line. If the semicircle is the curve that defines
z =∞ through z = reiθ then f(z) might not identically
vanish at all points of C2. That could cause an unde-
sirable non-vanishing contribution from the path around
infinity. However, since we have gone all the way to in-
finity along the real axis, and then we will only go back
inside relative to that point, we can say that the integral
vanishes at every point on C2. Considering the z−2 term
that should dominate the value of D(x− y) along C2, let
us examine the ordinary coordinates z = x + iy. Along
C2, we have

x =∞−∆x (21)

and

y =∞− y+ (22)

=∞− tan(x̃) (23)

=∞− tan
[
tan−1(∞−∆x)

]
(24)

= ∆x . (25)

When we plug that into z−2, we see

z−2 =
(
x+ iy

)−2
(26)

=
[(
∞−∆x

)
+ i∆x

]−2
(27)

≈ ∞−2 . (28)

Therefore, the integral along C2 should contribute
nothing because it gets all the way to x = ∞ before
working its way back. This relies on some hokeyness
regarding a radius smaller than infinity being equal
to infinity but this is what we will consider. Since we
have to reach infinity before going onto the hokey curve,
which is the line y+(x) = tan

[
tan−1(x)

]
=x, everything

should be ok.

REMARKS REGARDING GLOBAL CONSISTENCY

We have defined the C2 curve in the conformal coordi-
nate ỹ+ as

ỹ+(x) = tan−1
{

tan
[

tan−1(x)
]}

, (29)

This is somewhat similar to the idea in [10, 12, 13] to
go across the MCM unit cell through the dual tangent
space. Considering figure 6, we see that the quantum
clockwork of M̂3 [9] is such that the Riemann sphere is
created on H1, we apply the inversion map to put the
origin at ∅ (which is like applying the inversion map di-
rectly toH1), then we move to the second sphere through
the point where the spheres are tangent, and then we in-
vert again to get to H2. Comparing to equation (29), we
invert H1 with the inverse tangent function, move to the
other sphere via their point of tangency with the tangent
function, and then invert the second sphere to get H2 as

FIG. 6. To cross the unit cell, we begin in H1, create the
Riemann sphere, permute its poles with the inversion map,
go into the tangent sphere, and then use the inversion map
again to move the origin into H2.
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a plane tangent to the second sphere. Furthermore, the
Riemann sphere is projected onto C at its polar points
giving the surfaces {H1,∅,H2} and it is also projected
onto C as plane passing through its equator. These equa-
torial planes would be Ω on the first sphere and ℵ on the
second.

Nota bene, each period of tangent has two asymptotes,
figure 7, so the range of the pseudo-affine transfinite curve
y+(x̃) is well-suited to take the pseudo-affine parameter
[4, 12, 14–17]

χ5 ≡ χ5
+ ⊗ χ5

∅ ⊗ χ5
− , (30)

used to build smooth curves, or strings, across the MCM
unit cell. To better understand the pseudo-affine curve
y+(x̃), we should put together a tangent and a tangent
inverse to simplify equation (29). The conformal imagi-
nary coordinate ỹ+ along C2 as function of the conformal
real coordinate x̃ = tan−1(x) is

ỹ+(x̃) = tan−1 [tan(x̃)] = x̃ . (31)

Nota molto bene, this is the equation of a straight line
and describes the identically flat shortcut through the
cotangent space exposed so well in [3, 10, 12].

Whereas the tangent is a periodic function, and de-
pending on the nuance, we will need to define the branch
cut of each of the inverse tangent functions which define
the hypercomplex curve around infinity ỹ+(x̃). Since in-
verse tangent has two branch cuts, and two inverse tan-
gents appear in equation (29), we should probably use
one branch for each to define an information channel. If
chosen judiciously, each path around infinity can trans-
late between the periodic domains of the tangent func-
tion which are separated by its asymptotes, as in figure
7. For instance, where tan−1(x)=θ we could make some
convention to move to the next domain when comput-
ing ỹ+ such that tan−1

[
tan(θ)

]
= θ + π. This would be

useful in defining a mechanism for chugging along across
the unit cell from the π̂0-site in H1 to the π̂1-site in H2

[18]. Indeed, the inherent sub-domain of periodicity of
the tangent function has width π so moving to the next
sub-domain is at least qualitatively like the system of
two co-π̂’s which is a fundamental object in the MCM
[7, 8, 11, 18]. (In principle, we want to connect pairs of
co-π̂s to form a circle (with U(1) symmetry), let them
share information, then disconnect them (break the U(1)
symmetry), and then reconnect them to other co-π̂’s such
that information propagates. The twisting mechanism in
[7] gives a good example when co-π̂s are halves of a cir-
cle of circumference 2π.) An application of the tangent
inverse mechanism for θ→θ+π might be to define a new
origin of coordinates, such as that in figure 5, which is
shifted to the left or right instead of directly above the
first origin. Furthermore, where the most important di-
mensionless coupling constant of classical physics 1/4π is
attached to π̂ [19], and the conformal complex numbers

z̃= x̃±iỹ± are such that the real and imaginary axes have
length π, we might speculate that the conformal complex
plane is itself the union of two co-π̂s.

When the complex plane is mapped onto the Riemann
sphere, the desire to go beyond infinity requires us to go
into the tangent space to the Riemann sphere at the po-
lar point opposite the origin of coordinates: conformal
infinity. For each level of ℵ to be self-similar, the ob-
ject of tangency at one sphere’s north pole should be the
south pole of another sphere [2]. The “tangent” function
seems intuitively well-suited to these purposes. When the
complex plane is mapped onto the Riemann sphere, the
upper half of figure 5 (the part that is beyond infinity) lies
inside the “hypercomplexly infinitesimal neighborhood”
around conformal infinity [2]. Therefore, now that we
know how to arrange the coordinates to go past infin-
ity, the methods developed here can be used to further
develop the methods presented in [2]. That paper was
almost completely dedicated to the idea of going beyond
infinity when we argued against the Riemann hypothesis.

The final point of interest that we will raise before
moving on with Φ is that the conformal coordinate ỹ+
pushes beyond infinity in exactly the way required to
accommodate the structure of Φ̂1 and Φ̂2 used to argue
against the Riemann hypothesis in [2]. In the projection
of the complex plane onto the Riemann sphere, using
language from [2], the Φ̂1 region begins at ỹ+ = 0 and

the Φ̂2 region begins at ỹ+ →−π/2. This is the point
y= 2∞ where C2 meets C3 in figure 5. We will not use
the concept of 2∞ here; the domain of y is [−∞,∞].
It is only the conformal coordinate that goes beyond
infinity. Once we have gone beyond infinity, we need to
redefine the magnitude of infinity relative to the new
level of ℵ. Increasing magnitudes of infinity bring us
back to the development of the golden ratio in ?C.

FIG. 7. The tangent function is has a period of width 2π con-
structed from a periodic domain of width π and two lengths
of π/2 separated by asymptotes.
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INCREASING INFINITUDE

How should we define y
{2}
− relative to the new originO2

(figure 5) which is on the level of ℵ Φ̂j+1 relative to Φ̂j on
O1? We know that complex conjugation is an operation
that swaps the upper and lower complex half-planes, and

we want ỹ
{1}
+ →y

{2}
− which, according to

z =

{
x+ iy+ for Im(z) > 0

x− iy− for Im(z) < 0
, (32)

will have the effect of sending the upper complex half-
plane to the lower complex half-plane on the higher level
of ℵ. Since y± has i factored out of it in z = x ± iy± a
simple sign change will suffice to change the orientation
of y±. Physically, we should implement the change of
sign with the phase change eiθ→ ei(θ+π) attendant to a
specular reflection off of the topological singularity at ∅.
We also need to include the notion that infinity relative to
O2 is bigger than infinity relative O1 [3, 5]. Furthermore

y
{1}
+ is not the coordinate that goes beyond infinity; it is

defined on [0,∞). Therefore, we can define bigger infinity

by using the entire interval ỹ
{1}
+ ∈ (−π/2, π/2) to define

the domain of non-conformal y
{2}
− , as in figure 8. If all

of ỹ
{1}
+ ∈ (−π/2, π/2) becomes y

{2}
− in the hypercomplex

conjugation of z{1}= x̃+iỹ
{1}
+ then the point y

{2}
− =0 will

be at O1 and the scale of y
{2}
− is twice that of y

{1}
− . We

use the term “hypercomplex conjugation” to refer to the
sign change together with a rescaling of the magnitude

of infinity. When y
{2}
± is defined as y

{2}
± ∈ [0,∞), in

accordance with the rules of ?C, the ∞ symbol will refer
to the new, bigger infinity. Therefore, for clarity, we
should write

y
{2}
± ∈ [0,∞2) . (33)

If we started at O0 instead of O1 then we could use no-
tation like ∞0≡ℵ0, ∞1≡ℵ1, etc. When we start at O1,
we have something like ∞j≡ℵj−1.

It follows from

Φ̂j → Φ̂j+1 :


∞→ 1

1→ ε

ε→ ε2
, (34)

that “2∞” needs to be like “∞2” if the pattern of the
cases is to hold across every level of ℵ. Even when we
use∞2, we can write that as∞×∞Φ̂j which will become
1 × 1Φ̂j+1 under the rules. Therefore, we will make use
of the∞j notation to describe transfinite infinities which
exceed [−∞,∞]. If we did want to implement a scheme
like ∞2 then we could do so as follows. Where the ra-
dius of curvature is ∞ along a flat path like ỹ+(x̃) = x̃,
which is like the portion of a path inside the identically

flat hypercomplexly infinitesimal neighborhood around a
sphere’s polar point, we might let the curvature kick in at
y=∞ (ỹ+ =0) when the path exits Ĉ along a transfinite
curve whose radius of curvature becomes finite at infin-
ity. This is tantamount to letting the region ỹ+ > 0 be
the hypercomplex neighborhood around the south pole
of a sphere on a higher level of ℵ.

In [2], we discussed how the hypercomplexly infinites-
imal neighborhood around a pole can be a flat region
on an otherwise curved sphere and figure 9 shows the

FIG. 8. In this figure, the poles of D(x − y) are red dots.
The contour around the entire complex plane defined around
the z{2} origin encloses three poles (red dots) rather than the
two that are usually considered. This figure shows that the
Φ̂1 and Φ̂2 levels of ℵ are needed to construct the transfinite
framework [2]; the integral around the whole complex plane
relative to z{1} would not include an extra pole.

FIG. 9. This figure shows an alternative path beyond infinity
which lets infinity grow as its square instead of merely dou-
bling. The path from H to Ω is linear, but the path from Ω
to ∅ accelerates.
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smooth continuation. Aiming for ∞2 makes the path
beyond infinity more complicated than a straight line
but if the only thing that will happen beyond infinity
(before converting to the next Ĉ coordinates) is a
specular reflection from a topological singularity then
there is probably a useful symmetry reduction related to
∅ having no width between Ω and ℵ [3].

MASS

Now we will consider an application. If we draw a
closed contour around the entire complex plane defined
at O2, a circle with radius ∞2, as in figure 8, it will
enclose the two poles of D(x− y) at

z = ±
√
ω2
k + iε , (35)

which sum to zero, and it will also include the pole that
was in the upper complex half-plane relative to O1. Fig-
ure 8 shows why the imbalance below is not offset by
another term above. To get the pole in the lower com-
plex half-plane relative to O3, we would have to use the

conformal coordinate ỹ
{2}
+ to go beyond infinity. Figure 8

also shows that the result for the contour integral in the
upper complex half-plane is preserved in translation from
O1 to O2, and will be at O3, etc. Since the pole residue
is usually associated with a particle’s properties, such as
mass through the relativistic energy ωk, we might extend
this principle into a formal proof of the existence of the
Yang–Mills mass gap. When the sum of the poles over an
entire level of ℵ in the hypercomplex plane is not equal
to zero, there should always be some non-vanishing mass
term. However, detractors of this research program and
others are surely aware that this writer has not yet read
Yang’s and Mills’ 1954 paper so we will not progress in
that direction presently. Instead, we will emphasize the
physical aspects of the theory of infinite complexity which
should manifest in the hypercomplex analysis of z ∈ ?C.
Before doing so, it must be noted that the propagator
and the residue theorem are very important in QFT so
there are probably a lot of other direct applications for
the MCM construction of ?C demonstrated in figure 8.

One such application improves the motivation for the
iε term added to the denominator of D(x − y) through
unsightly, though not invalid reasoning. When z∈C, we
can add and subtract real numbers like m2 because an
R-number is just a C-number with Im(z)=0 and we are
allowed to do analysis with m2∈C. However, there is no
such thing as a ?C-number with Im(z) = 0. Therefore,
it makes no sense to subtract m2 from a ?C-number.
When we make the substitution k0 → z ∈ ?C, we are
compelled to make the complimentary substitution
m2 → m2 + iε because otherwise the operation in the
denominator is ill-defined. This should alleviate the need
to make an artificial substitution which moves the poles
of f(z) off the real axis. This complements the result
of [20] wherein we demonstrated how to alleviate the

artificial substitution of imaginary time during analytic
continuation via Wick rotation: another very important,
though likewise ad hoc, method in QFT.

THE MCM UNIT CELL

Consider the infinite width of the MCM unit cell
needed to derive a topological singularity at χ5

+ =∞ and
that we we want to restore the original definition

χ5
+ ∈ (0,Φ] , (36)

which supports the Φ̂j notation for levels of ℵ. We will
say that the conformal coordinate on χ5

± is χ̃5
± ≡ x5±

where x5± is the de Sitter parameter of curvature in the
de Sitter or anti-de Sitter metric of each respective slice of
constant χ5

±. This means that the location of the topo-
logical singularity ∅ is defined by x5± =∞ rather than
χ5
±=∞ (which allows us to restore χ5

+∈(0,Φ].) We have
reversed the convention for the conformal tilde on χ̃5

±
because the conformal coordinates are the ones used to
create the singularity atx5±=±∞. This is only a matter
of semantics between which one is labeled “conformal.”

Let the relationship between χ5
+ and ỹ+ be

χ5
+ =

π

2
− ỹ+ . (37)

This excludes χ5
+ =0 as required. The conformal complex

plane coordinate ỹ+ =0 is at χ5
+ =π/2, as in figure 10. If

we let the conformal relationship between χ5
± and x5± be

x5± = tan(χ5
±) , (38)

then ∅ will lie at χ5
+ = π/2 and that is not the desired

behavior. We want to put the singularity at χ5
+ = Φ.

We get the singularity at χ5
+ = Φ when the conformal

FIG. 10. The conformal coordinate to the chirological coor-
dinate χ5

± is the de Sitter parameter x5±.
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relationship between the chirological coordinate χ5
+ and

the de Sitter parameter x5+ is

x5+ = tan

(
πχ5

+

2Φ

)
. (39)

Therefore, the complex plane centered on O1 reaches in-
finity at χ5

+ =π/2. The topological singularity at χ5
+ =Φ

lies beyond the boundary of the extended complex plane
Ĉ on the level of ℵ corresponding to O1.

When we place a singularity at χ5
+ =Φ and send a plane

wave past infinity along the conformal coordinate that
goes beyond infinity, and neglecting that entire books
have been written about the nuance of wave and heat
equations in curved space (and neglecting that only the
xµ± spaces are curved, not the identically flat χa± spaces
[3]), then we expect that the wave will reflect off the topo-
logical singularity. Furthermore, where general relativity
says that the singularity will be a sink, not a reflector,
we may consider the loss into a black hole on one level
of ℵ as emission from a white hole on the next, as per
usual in conformal spacetime (with the new level of ℵ
concept added.) As stated above, complex conjugation
is the operation that does reflection along the imaginary
axis. Therefore, using a reflection operator to construct
the black/white hole throughput will be a good opera-

tion to make ỹ
{1}
+ become y

{2}
− . If the sign changes by

reflection, then we should use z=x + iy± instead of the
z=x± iy± used in

z =

{
x+ iy+ for Im(z) > 0

x− iy− for Im(z) < 0
, (40)

because we will have y
{2}
− ∈(−∞, 0].

To consider reflection off the singularity, consider
specular reflection in classical optics. The reflected
wave gains π radians of phase which is exactly what

is required to reverse the sign of ỹ
{1}
+ so that it may

become y
{2}
− . The same can be said for the reflection of

a string wave where ∅ is like a string’s fixed endpoint.

THE ROLE OF Φ IN THE MCM

In equation (39), we’ve just stuck Φ in there, and that
is fine, but it would be better if Φ came out by itself.
To that end, consider our motivations for using Φ. The
first strong evidence for the appropriateness of the golden
ratio in the MCM came in the form of the fine structure
constant [21]

α−1MCM = 2π +
(
Φπ
)3

, (41)

which differs from α−1QED≈ 137 by about 0.4%. Einstein’s

equation is derived in the MCM [9, 18, 22, 23] from some
algebraic operation

M̂3ψ = M̂3φ −→ ∂3t ψ = πΦ2φ , (42)

where ψ is a wavefunction and φ is something. Φ is also
needed to get the dimensionless coupling constant 1/4π
of the Poisson equations for both Newtonian gravity

ρ =
1

4π
∇2φ , (43)

and classical electromagnetism

Jµ =
1

4π
ηµν∂ν∂ρA

ρ , (44)

out of the ontological resolution of the identity

1̂ =
1

4π
π̂ − ϕ

4
Φ̂ +

1

8
2̂− i

4
î . (45)

Without Φ, the coefficient on the π̂ term would be 1/3π
and no physicist ever heard of 3π. So, there is a lot of
evidence that the correct physical theory should have Φ
in it and we would like to get it out without putting it
in.

How should the golden ratio appear? If we can use
the increasing scale of infinity to begin to construct a Fi-
bonacci sequence, such as, for example, that which causes

y
{2}
− to be twice as infinite as y

{1}
+ , as in figure 8, then we

could take the limit of the Fibonacci sequence to infinity
and obtain Φ as the ratio of∞Φ̂j+1 to∞Φ̂j . This makes
perfect sense because

∣∣∞Φ̂j+1
∣∣∣∣∞Φ̂j
∣∣ = Φ . (46)

Taking the limit of an infinitely late place in the Fi-
bonacci sequence is exactly what we have suggested in
[5] when claiming that there is no way for the observer
to determine his absolute level of ℵ. By choosing an arbi-
trary level of ℵ as finite and measuring infinitude relative
to that level, we would choose a point on the golden spi-
ral, figure 11, where the ratio of the length of the sides
of each successive box to the previous one’s has already
reached its asymptotic value Φ. How shall we construct
such a sequence?

What is special about the golden ratio? Whatever it is,
it shows up in figure 11. Let the Φ̂0 box be the ordinary
complex plane. O1 is exactly in center of that box. In the
conformal complex coordinates z̃= x̃+iỹ±, the area of the
complex plane is π2. Therefore, the area of next complex
plane on the higher level of ℵ is Φ2π2. We can get the
critical value πΦ2 [22] from equation (42) by operating on
that area with the operator that projects into the π̂-site
[18]. That operator is
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FIG. 11. This figure captures the “golden” quality of the
golden ratio Φ. The area of each larger box is Φ2 as large as
the area of the previous box.

P̂π ≡ 1̂ =
1

π
π̂ . (47)

If we label the area of the Φ̂j box with Aj then A0 =π2

and we obtain

P̂πA1 = πΦ2π̂ . (48)

This exactly the critical value [22] needed to derive Ein-
stein’s equation but it remains to show why we should
use P̂π or put it in an equality with −iω3ψ. Both issues
are beyond the scope of this paper but we will discuss
them briefly.

We should assume that projecting into the π̂-site
means to change the Φ̂j of a given box to Φ̂0 = 1̂ be-
cause we will have to use finite numbers on the Φ̂0 level
of ℵ to do physics there. When we do this to the Φ̂1

box with P̂πA1, it has the effect of discrete translation
up the golden spiral. In a more formal treatment, we
would project the wavefunction of A1 into the (finite) ba-
sis associated with A0, and then relabel everything, and
that wouldn’t change anything except the renormalized
area because the golden spiral is perfectly self-similar.
This self-similarity imposes the stability of the dynamics
needed to be able to apply M̂3 over and over, and over,
where we keep projecting the next higher box into π̂-site.
The next higher box is either the 2̂-site or the Φ̂-site.
Generally, we could consider two perpendicular spirals [5]

where Φ̂ points into the spiral which has the box labeled
Φ̂1 in its asymptotic limit while 2̂ would point into a new
spiral growing as the Fibonacci sequence {1, 1, 2, ...}.

Where we have proposed that torsion should act
everywhere in the MCM unit cell except for H [13, 19],
that can be a mechanism that twists a curve belonging
to a spiral in the plane of the page onto another spiral
in the perpendicular direction. Since H2 is two levels of
ℵ above H1, there is a lot of intermediate space in which

to do tricky things. Indeed, the level of ℵ only increases
at twice during H→ Ω→∅→ℵ→H so we have some
reason to consider adjacent boxes of the same size where
spirals intersect, as in {1, 1, 2, ...} and {1,Φ,Φ2, ...}.

MCM GENERAL RELATIVITY

To demonstrate the utility of Φ, we will rederive Ein-
stein’s equation from

∂3t ψ = πΦ2φ . (49)

The main hypothesis in the MCM [24] around which our
application of the scientific method is structured is that
equation (49) is true. Using the notation that ψπ̂ ∼∣∣ψ; π̂

〉
and assuming that ψ is plane wave with ∂tψ= iωψ,

we may derive from equation (49)

∂3t |ψ; π̂
〉

= πΦ2
∣∣φ; π̂

〉
(50)

ω3|ψ; π̂
〉

= iπΦ
∣∣φ; π̂

〉
+ iπ

∣∣φ; π̂
〉

(51)

8π3f3|ψ; π̂
〉

= iπ2
∣∣φ; Φ̂

〉
+ π2

∣∣φ; î
〉

(52)

8πf3|ψ; π̂
〉

= i
∣∣φ; Φ̂

〉
+
∣∣φ; î

〉
. (53)

This generates the formulation of gravity where the
present is the sum of contributions from the past and
future [8, 22]: π̂ vectors live in H′ which is the Hilbert

space of states in the present, Φ̂ vectors live in Ω′ which
contains position eigenstates the in future (geometric fi-

nal conditions), and î vectors live in ℵ which is the space
of quantum mechanical initial conditions in the past with
respect to H′. {ℵ′,H′,Ω′} form a Gelfand triple, or a
rigged Hilbert space [3].

After adding 2̂ to the ontological basis [19, 22] in work
that followed the initial reporting of equations (50-53) [9],

we supposed that we should insert
∣∣ψ; 2̂

〉
into equation

(53) but we will not do so here. Instead, consider that
there exist two golden spirals [5] and that their boxes are
labeled with even and odd powers of infinity respectively.
In that case, the general relativity of the π̂-site whose
level of ℵ is Φ̂0 can take contributions from the past ℵ
and future Ω defined in two adjacent boxes of the other
spiral: those labeled Φ̂±1. Indeed, where the intersection
of two spirals might define the {1, 1, 2, ...} portion of a
new golden spiral, the domains

χ5
− ∈ [−1, 0) , and χ5

+ ∈ (0,Φ] , (54)

suggest one box of equal size and one box scaled by Φ.
Regarding Φ̂−1, we don’t want to consider negative levels
of ℵ [13] so perhaps we should put H (the π̂-site) in the

Φ̂1 box with the odd powers of Φ̂. To make this change,
we could say that taking the asymptotic limit of large
boxes requires Φ̂1 as the finite level and that Φ̂0 is like
Φ̂−∞ where there is no lower box in which to define ℵ
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at the î-site. However, that will be irrelevant presently
and we will say H has the even level of ℵ Φ̂0 (and Φ̂−1

is replaced with ϕ̂ [13].) Regarding 2̂, if Φ̂ and î are the

past and future, then what should 2̂ be? We might use a
representation in which {2̂, Φ̂, î} represent contributions
to the geometry of the hypersurface of the present asso-
ciated with spacelike, timelike, and null infinity or the
conformal regions beyond those infinities. Whatever it
is, the application is beyond the scope of this paper.

Einstein’s equation is derived from equation (53) with
three rigorously-defined, mathematically perfect maps

f3
∣∣ψ; π̂

〉
7→ Tµν (55)

i
∣∣φ; Φ̂

〉
7→ Rgµν (56)∣∣φ; î

〉
7→ gµνΛ . (57)

Substituting into equation (53), we get

8πTµν = Rµν + gµνΛ . (58)

This is Einstein’s equation for general relativity as it has
been known for more than one hundred years. Where Tµν
is the stress-energy tensor, we have previously pointed
out that a classical energy density is proportional to the
cube of the frequency [6], as in map (55). Since Tµν is the
stress-energy tensor that says what the energy density is,
it is very good that there is already an energy density law
proportional to the cube of the frequency: Planck’s law.
In units where ~=c=1, Planck’s law is

Bf (f, T ) = 4πf3
1

e2πf/kBT − 1
. (59)

It is chock-full of ontological numbers. Note that the
coefficient 4π is like the coefficient 1/4π of π̂ in the on-
tological resolution of the identity: equation (45). 4π,
therefore, is also like the π̂ map, map (55), associated
with Planck’s law through the cube of the frequency.
Planck’s law tells us how much electromagnetic energy
a perfect blackbody at temperature T will shed at fre-
quency f so the stress-energy tensor Tµν on the right
side of map (55) should be like a slice of the black body
curve at the f whose state is ψ.

Surely we would have cited Planck’s law by name in
every previous MCM derivation of Einstein’s equation [9,
11, 15, 16, 18, 22–25] but this writer had become fixated
on the fifth power of the wavelength in

Bλ(λ, T ) =
4π

λ5
1

e2π/λkBT − 1
, (60)

being somehow related to dim(Σ±). The fifth power of
a quantity is very unusual and not typically observed in
physics. Since frequency and wavelength are related by
the inversion map

f =
1

λ
, (61)

which swaps the poles of the Riemann sphere, one would
expect λ−5 to show up as f5 Bf but it does not. It shows
up as f3. The discrepancy arises because increasing f
or λ go in different directions with respect to increasing
energy and the tails of the energy distribution are uneven.

The point λ= 0 is at f =∞, and vice versa, so there
are a lot of connections to be made with our origins sep-
arated by infinity. Indeed, Planck’s law is the “origin”
in physics of the concept of quantized energy packets.
Therefore, in a devoted physical treatment to appear else-
where, we should consider quantization arising from the
arrangement of various powers of Φ̂ occupying some con-
figuration on two separate golden spirals connected by
coordinates whose origins are infinitely separated, as are
the origins of f and λ in equations (59) and (60). In fact,
where we have proposed to use torsion in the MCM, tor-
sion together with reflection and rescaling can construct
from the curve of the golden spiral a wave with a given
f or λ, or vice versa.

When gravity is an expected interaction between a box
on one spiral and two boxes on the other, as in equation
(53), and it has the same coefficient f3 as Planck’s law,
and the coefficient 4π of Planck’s law is inversely associ-
ated with the π̂ in

∣∣ψ; π̂
〉
, as in map (55) and equation

(59), then it is likely that we can use these relationships
to learn something about quantum gravity. For example,
we have proposed to solve the divergent energy of the
QFT vacuum [8, 11] when the 4D gravitational branes in
the unit cell have no 5D hypervolume. The solution re-
lies on the principle that infinite energy divided by finite
volume in the canonical system is infinite, but infinite
energy divided by zero volume in the MCM system can
be replaced with a derivative dE/dV . We get an energy
from Planck’s law by integrating over some range of f or
λ and in the MCM we will need to integrate dE/dV over
some width of χ5 to obtain a finite answer for the en-
ergy density in hyperspacetime. Since H has no width in
χ5, and the Kaluza–Klein metric Σ±AB only works when
there is no 5D matter-energy, we might integrate over x0

instead of χ5 to get a finite energy density in 4D space-
time. Moreover, Planck introduced his eponymous con-
stant and the concept of quantization specifically to stop
the divergent explosion of the energy density described
by his law.

We have a lot of hints that the maps between the MCM
algebra, equation (49), and Einstein’s equations are well-
motivated. We have demonstrated in equations (50) and
(51) that the magic all comes from the special property of
the golden ratio Φ2 =Φ + 1. Another nice motivation for
gravity can be derived from the Cauchy–Riemann equa-
tions. Since those are inherently true, if we can derive
πΦ2 from them then we won’t need to resort to any inter-
pretive twisting to say why general relativity is natural
to the MCM structure. The hypothesis, equation (49),
will be confirmed.
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When

f(z) ≡ f(x, y) = u(x, y) + iv(x, y) , (62)

with u and v being real-valued functions, the Cauchy–
Riemann equations are

∂xu = ∂yv , and ∂yu = −∂xv . (63)

The wavefunction is a complex-valued function like f(z)
so we may suppose that Ψ is a wavefunction and that

Ψ = ψ + iφ . (64)

This is not far-removed from the origin of φ proposed
in [26]. (Neither is it far-removed from equation (53).)
Since we have chosen x ≡ x0, we can apply ∂2x to a
Cauchy–Riemann equation and use ∂xψ = iωψ to very
nearly obtain the MCM equation as

∂3xψ = ∂2x∂yφ =⇒ ω3ψ = i∂2x∂yφ , (65)

The operator on the LHS has the form required to return
the critical value πΦ2 [22] (up to a phase) if

∂xφ := Φφ , and ∂yφ := πφ . (66)

These conditions are like those we have treated previously
in [15]. Usually ψ is like eikx so it does not fit the form
of equation (62). However, since quaternions have the
property

i2 = j2 = k2 = −1 , (67)

we may use any one of them to make a different sort of
plane wave. It is plain to see that we may define plane
waves as

ψ = ei(ωt−
~k·~x) . (68)

There is some subtle feature which is different than the
imaginary number i when the quaternion triple product
is

ijk = −1 , (69)

so the implications of equation (69) for a set of complex
planes using the imaginary number and/or the quater-
nions will need to be cataloged should we move forward
with ψ := i.

If Im(ψ) returns the part of ψ multiplied by i then we
will have

Im(ψ) = 0 , (70)

and Ψ in the form of equation (62). The quaternion plane
wave preserves equation (65) with an i instead of an i. If
we tried to ignore all of this and write Ψ = φ + iψ with
ψ being a regular plane wave, then it would not work
because plane waves have real and imaginary parts, and
u and v are strictly real in the Cauchy–Riemann equa-
tions. When the plane wave part of Ψ in encoded on ψ,
that leaves us to define φ as a geometric piece which will
have the correct derivatives. In [15], we demonstrated an
operator

∂3χ ≡ ∂+∂∅∂− , (71)

to get the value πΦ2 but, in equation (65), we have two
x derivatives when it is the y derivative that would seem
amenable to representation as ∂±φ := Φφ. Likewise, it
is the periodic domain structure on x would lend itself
more naturally to ∂∅φ := πφ. If we could rotate φ, or

rotate R̂z=z′=χ5 ± ix0, then this would work out. We
will not completely solve all of hypercomplex gravity in
this paper but we will consider the rotation in a later
section after we show the origin of the golden ratio in
the structure of ?C so that it could contribute naturally,
in some way, to ∂yφ=Φφ.

THE MCM FINE STRUCTURE CONSTANT

Not only does MCM general relativity depend on the
golden ratio through its square, MCM quantum theory
depends on its cube through the fine structure constant

α−1MCM =
(
Φπ
)3

+ 2π . (72)

We have considered gravity regarding the temporal
{x0, χ5

±} part of Σ± and, here, we will consider the fine

structure constant regarding the spatial xi ∼ χj part of
Σ±. If αMCM comes from the volume of xi while grav-
ity comes from the Cauchy–Riemann equations of x0 and
χ5 then we would have two nicely distinct sectors. Since
quantum theory mostly deals with states in a timeless
Hilbert space, it is good to consider the timeless spatial
part of Σ± for the origin of α−1MCM. To that end, assign
conformal coordinates

x̃i = tan−1(xi) , (73)

so that the volume of all of space is π3. When space
increases by Φ along the golden spiral, the volume of the

space on the higher level of ℵ will be
(
Φπ
)3

. This is very

nearly α−1MCM. Our goal will be to add to this volume
the volume of the connector between all of space in one
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box and all of space in the next. We have previously
proposed a few ways by which we might obtain the value
2π required for α−1MCM [15, 21] and now we will develop
a better one. We have worked with Aj pertaining to
Einstein’s equation above and now we will work with

V0 = π3 , and V1 = Φ3π3 , (74)

pertaining to the fine structure constant.
We have defined the operation that connects one box to

the next as the inversion of the Riemann sphere. There-
fore, space in one box is connected to space in the next
box through the sphere’s polar point. When we attach xi

to the plane spanned by {x0, χ5} and then use conformal-
ism to send that plane to a sphere, the light cone struc-
ture of spacetime will only be preserved if all of space
terminates at the polar point. When we say “terminates”
there is obviously some nuance because we will continue
space through the termination at conformal infinity as
if through a big bounce [7]. Therefore, when we want
to add to the volume of all of space the volume of the
connective piece, that must be the volume of the bounce
which, incidentally, was non-zero in the progenitive LQC
formulation [7, 8, 11]. Without referring to LQC, we want
to include the volume of the hypercomplex neighborhood
of the polar point in the volume of all of space. If there
is a big bang and a big crunch at the ends of each box
then we are not integrating over everything if we don’t
include them. If we include both of them then we will be
double counting when we exchange bangs and crunches
for cyclic bouncing in the continuation beyond conformal

infinity. Therefore, we should add to
(
Φπ
)3

the volume
of the hypercomplexly infinitesimal neighborhood around
one of the sphere’s poles. This volume vanishes trivially
under ordinary geometric conditions but those neglect
the hypercomplexity.

We will define the connection between adjacent levels
of ℵ such that the connective point is defined according
to the lower level while residing on the upper level. This
embodies what it means for two levels to be connected.
In this way, the Φ̂1 sphere will have its south pole de-
fined on the Φ̂0 level of ℵ and its north pole, which is
defined by the Φ̂1 level, will reside at the south pole of
the Riemann sphere on the Φ̂2 level. This allows us to
avoid double counting while enforcing some concept of
connection between levels of ℵ.

The hypercomplex neighborhood around the pole lies
entirely within the point of tangency between spheres [2].
Therefore, we may use an infinite radius of curvature to
write the area of the hypercomplex neighborhood as a flat
disc. The motivation for the infinite radius of curvature
is that the radius of the Φ̂1 sphere is infinite with respect
to the finite Φ̂0 level of ℵ of its south pole. Therefore,
we can use plane polar coordinates {r, θ} to describe the
area of the disc. Since we want to do a volume integral,
we will add cylindrical polar z′. The non-hypercomplex
volume is

∫
Pole

dV =

∫ 0

0

dz′
∫ 0

0

dr r

∫ 2π

0

dθ = 0 . (75)

We derive the limits on z because the point lies in the
plane and we derive limits on r because the radius of a
point is zero. To extract a non-zero value from equation
(75), consider the relationship between Φ̂0 and Φ̂1. We
have defined ?C such that

Φ̂j → Φ̂j+1 :


∞→ 1

1→ ε

ε→ ε2
, (76)

[2, 3] where the meaning is that

∞Φ̂j = Φ̂j+1 . (77)

Now we will write the hypercomplex volume. On the Φ̂1

level, the volume of the ball is finite:
(
Φπ
)3

. Therefore,
the scale of the pole with respect to a hypercomplex vol-
ume element dV1 is on the order of an infinitesimal, but
it is not zero. We should consider a radius ε instead of
the 0 radius given in equation (75). If the point has a
radius, then it has a height too. By symmetry, the height
is centered on z′=0 and we may write

∫
Pole

dV1 = 2π

∫ ε

−ε
dz′
∫ ε

0

dr r . (78)

Since ε is infinitesimal, the pole still has zero volume
relative to Φ̂1, as expected. To consider the connection
to the lower level, we want to consider the pole’s volume
defined according to Φ̂0. From definition (76), we see

that Φ̂1→ Φ̂0 induces ε→1 so

∫
Pole

dV0 = 2π

∫ 1

−1
dz′
∫ 1

0

dr r = 2π . (79)

This has units of dimensionless volume and we have
greatly improved upon previous efforts [15, 21] to ob-

tain a contribution of 2π to the volume
(
Φπ
)3

. In [15],
we used a π-normalized delta function at a sphere’s two
poles, but that had an implied double counting effect so
the 2π derived here is better. Furthermore, the Riemann
sphere does not include two poles so it is not obviously
globally consistent that we should integrate over two of
them.

Why does this piece contribute to V1 but not A1? The
fact is, we might not need A1 at all to get MCM gen-
eral relativity when πΦ2 comes instead from ∂2y∂x. Even

when we discussed the projection P̂πA1, a great reason
for doing so was not manifest. The formulation based on
the Cauchy–Riemann equations, however, is extremely
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well-motivated and has nothing to do with P̂πA1. What-
ever the outstanding issues are, we have obtained a good
result that the hypercomplex neighborhood around the
polar point has 2π units of dimensionless volume which
are well-suited to addition with a rectangular volume el-

ement
(
Φπ
)3

.
The volume of a periodic box contributes to a physical

lattice theory as its inverse and this is how we aim to
derive αMCM from α−1MCM. In [15], we wrote:

“In the case of a function f on a Bravais

lattice satisfying f(~r+ ~R)=f(~r), the function

can be expanded as follows when ~K are recip-
rocal lattice vectors and f ~K are the Fourier
coefficients.

f(~r) =
∑
~K

f ~K e
i ~K·~r (80)

f ~K =
1

V

∫
C

d~r e−i
~K·~rf(~r) (81)

“The integral
∫
C
d~r is over one unit cell

C and in the case of the cosmological lattice
that should be understood as [Σ+ or Σ−.] In
equation (81), V is the volume of [a] unit cell
in the Bravais lattice of additive periodicity.
[W ]hen it is adapted to to the cosmological
lattice of multiplicative periodicity we can ex-
pect a series of terms like V −N . [This is] ex-
actly like the analytical form of perturbative
expansions in QED. It only remains to show

how the volume could be 2π +
(
Φπ
)3

when

volumes typically look like
(
Φπ
)3

without the
π and the other π added.”

The non-Bravais condition of multiplicative periodicity
is something like f(~rΦ̂j+k) = f(~rΦ̂j)Φ̂k but the details
are not presently relevant. The gist is that since each
lower level of ℵ is contained inside the polar point of
the higher one, they are related by multiplication with Φ̂

instead of addition with ~R. We know that probabilities in
perturbative quantum electrodynamics are defined with
power series in αQED and, when we substitute αMCM, we
can write real-valued quantum mechanical probabilities
as

P [ψ] :=

∞∑
j=1

cj[
2π +

(
Φπ
)3]j . (82)

This will be like equation (81) when V −1→
∑
V −j . So,

here we have a lot of evidence that the golden ratio fits
in very nicely with physics, both in the quantum regime
and the gravitational regime. Perturbative QED works
because αQED is a very small number so it should also
work with αMCM which is similarly small.

Where we have replaced (defined) imaginary zero with

αΦ̂−∞, we might use α−1MCM for that α. It could be the
volume of a hypothetical cell lower than the final cell
all the way at the center of the golden spiral where the
Fibonacci sequence has two ones, as in figure 12, which
would be a good place to connect two spirals. Even when
we invoke the principle that the observer cannot know his
absolute level of ℵ, he does have to choose one box and
call it Φ̂0. That which we have described as the existence
of two spirals might imply that whenever we choose a
box for the π̂-site as Φ̂0, there is attached another box
of the same size, possibly associated with the unitary î-
site. Since αQED is a non-classical constant of quantum
theory, this strongly agrees with our intention to replace
Φ̂−1 with a quantum piece ϕ̂ [13]. When hypercomplex
analysis restricts to only three simultaneous level of ℵ [2],

that gives us reason to define imaginary zero as αΦ̂−2

instead of αΦ̂−∞. Then α−1MCM can be the volume of the
next box on the second spiral which is associated with
the quantum sector of negative powers of Φ̂j .

The empirical fine structure constant αQED is most
famously recognized in Schwinger’s derivation of the
correction to the electronic g-factor. Therefore, in
future work, we should investigate how the correction
is adjusted when αMCM is substituted for αQED in the
derivation of the correction. Does it increase or decrease
the contribution from the higher order corrections?

CONTINUITY AT INFINITY

To see why the level of ℵ increases by two between
adjacent instances of H, consider sin(∞) = 0 [1]. If the

wave continued as Φ̂j→ Φ̂j+1 then, using∞→1, the first
point past infinity would be 1 which is not good for the
wave’s continuity because it truncates the domain [0, 1).

FIG. 12. This figure show a representation of the golden spiral
wherein the ratio of the sides of the successive boxes are not
equal to the golden ratio. In the asymptotic regime where
each successive side is scaled by Φ, as in figure 11, the golden
spiral is perfectly self-similar forever. When one attempts to
construct the golden ratio from scratch, there is a final box
where the spiral terminates.
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However, if the sine wave continues beyond infinity
as Φ̂j → Φ̂j+2, with ∞ → ε, then the wave proceeds
smoothly through infinity. Where does the wave go on
the intermediate level of ℵ? We might say that it went
to “the other spiral” or, more formally, we might invoke
the vanishing width of χ5

∅ across the unit cell. If it has
vanishing width, then the path there is a like a loop,
and the corrections to the electronic g-factor discussed
above are referred to as loop corrections. Whatever the
global phenomena are, the limits of sine and cosine at
infinity [1], and their continuity there, will be a good
foundation on which to lay a more advanced analysis of
the transition into the region beyond infinity.

THE ORIGIN OF Φ IN THE MCM

By now, we have discussed the main applications of
the golden ratio in the MCM and we need to show where
it comes from. If we aim to do so by constructing a
Fibonacci sequence, then we must note that the scheme
in figure 13 (replicated in figure 8) is insufficient. Even
if we added another 1 at the beginning and continued
the pattern of figure 13, we would obtain successive radii
{1, 1, 2, 4, 8, ...}. These are not the Fibonacci numbers
and they will not generate the golden ratio. The problem
is that this scheme neglects the origins of ℵ and Ω. We
need to include the growth of infinity in the ℵ and Ω
coordinates to generate the Fibonacci sequence. When
O1 is in H1, the origin of Ω will be at the point labeled
y=∞ in figure 13, and ∅’s origin will be at y=2∞. This
is labeled O2 but it will be O3 if we include the origin of
Ω between them. Figure 14 shows how these features are
inherent to the system heretofore considered even when
they were not labeled.

Now we will carefully, and tersely, build the Fibonacci
sequence using the conventions in figure 15. This is
the key principle for our construction: hypercomplexity
spans three simultaneous levels of ℵ [2], and we will work
in the convention that the level increases on ∅ and H2.
The rule for defining the increasing scale of infinity will
be to include only one lower level of ℵ within the infi-
nite radius defined for a given level. Then, by symmetry,
we can include a higher level, and then the conformal
coordinate which goes beyond infinity can grab a third
level.

Regarding figure 15, begin at H1. The radius of infin-
ity there, in units of ∞, is self-evidently one. Therefore

ỹ
{1}
+ =0 is one tick mark higher than O1 where it defines

the origin O2 of Ω. For Ω to grab one lower level of ℵ,

y
{2}
− has to reach back the H. However, infinity also has

to grow and it will not grow if it only reaches back one
tick mark. Therefore, it must reach down to the instance
of ℵ below H1 (not pictured in figure 15.) The reader is

invited to envision Φ̂ objects attached to the H and ∅
origins so that is clear what it means to “grab” a lower

level of ℵ. When y
{2}
− is so defined, the radius on Ω is two

units of ∞: ỹ
{2}
− = 0 must be one tick mark below H1,

as indicated in the lower left of the figure. ỹ
{2}
+ has to

have the same scale as ỹ
{2}
− so ỹ

{2}
+ =0 defines the origin

of ∅ two tick marks above Ω, and three higher than H.
This is somewhere between the ỹ{1}=2∞ and ỹ{1}=∞2

values considered earlier for the location of ∅.
How big should infinity be relative to ∅? To grab one

lower level of ℵ it needs to reach back to H1; we must

define ỹ
{3}
− = 0 at H1. Therefore, the radius around ∅

has three units of ∞. ỹ
{3}
+ must have the same scale as

ỹ
{3}
− so ỹ

{3}
+ = 0 defines the origin of ℵ three tick marks

higher than ∅, and five higher than Ω.
How big should infinity be relative to ℵ? If it only

reaches back to ∅ then infinity won’t grow. We must

put ỹ
{4}
− = 0 at Ω. Then the radius around ℵ has five

units of infinity. ỹ
{4}
+ must have the same scale as ỹ

{4}
−

FIG. 13. If we continue the pattern of increasing infinity
shown in figure 8 then we do not obtain Fibonacci numbers.
The radius of the circle around O1 (circle not shown) is ∞.
The radius around O2 is 2∞. Around O3 it is 4∞ and we
clearly will not build the Fibonacci sequence.

FIG. 14. This figure demonstrates that when the Riemann
sphere shares an origin with one complex plane, it can define
another instance of C at height R and a third at height 2R
corresponding to the ∞ and 2∞ of figure 13.
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FIG. 15. This figure demonstrates how infinity grows accord-
ing to the Fibonacci sequence. When we apply the principle
that the observer has no way to detect his absolute level of ℵ,
that will be an instruction to consider the asymptotic behav-
ior when the ratio of one infinity to the next reaches its limit
Φ. A first circle of radius one, not shown but corresponding to
the first big red 1, should be associated with the ϕ̂ piece [13].
The labels on ∞ do not agree with the labels on O because
we have included ℵ and Ω.

so ỹ
{4}
+ =0 defines the origin of H2 five tick marks higher

than ℵ. For infinity onH2 to grab one lower level of ℵ, we

must put ỹ
{5}
− = 0 at ∅≡O3. Then the radius there has

eight units of infinity and it follows by inspection that
infinity will continue to increase as the Fibonacci num-
bers. Therefore, when we impose the physical condition
that the observer cannot know his absolute level ℵ, that
will be an instruction to choose a Φ̂0 in the region where
the ratio of the next infinity to the current one is Φ.

The radius around O5≡H2 is ∞3 so the level of ℵ has
correctly increased by two betweenH1 andH2. Note that
the values {2, 5/3, ...} on the right side of figure 15 will
converge to Φ in the asymptotic limit of the sequence. In
that case, we would see values like Φ∞j for the increasing
scale infinity between the branes on which the level of ℵ
increases.

Figure 15 contains another Fibonacci sequence that we

did not yet describe. The gap between ỹ
{1}
+ =−π/2 and

O3 is one unit of ∞. The gap between ỹ
{2}
+ =−π/2 and

O4 is one unit of ∞. The gap between y
{3}
+ =−π/2 and

O5 is two units of ∞. If we extended the figure to O6,

we would see that the gap between ỹ
{4}
+ =−π/2 and O6

is three units of ∞, and so on. Therefore, the growth
of the unincluded −π/2 endpoint of ỹ± ∈ (−π/2, π, 2)
independently increases according to the golden ratio in

the asymptotic region far from the absolute O1. This
reflects the increasing size of the ε which separates ỹ±
from Im(z)=0 as the level of ℵ increases. Note the good
agreement between this growth of ε and

Φ̂j → Φ̂j+1 :


∞→ 1

1→ ε

ε→ ε2
. (83)

MORE GENERAL RELATIVITY

If the rate of increase of something is Φ then the deriva-
tive of something is Φ. Whatever it is, the derivative with
respect to y is what will give Φ. Therefore, when looking
for general relativity in the Cauchy–Riemann equations,
we might reorient the complex plane as z=χ5 + ix0 (or
it might be the property of our two spirals they their real
and imaginary axes are swapped.) Then, using Ψ=ψ+iφ
to get general relativity, we would use

∂y u = −∂x v , (84)

to obtain

∂3yu = −∂2y∂xv =⇒ ω3ψ = −i∂2y∂xφ . (85)

Now two y derivatives contribute to the critical value
as opposed to the two x derivatives which appeared in
equations (65). We might consider say that the ordinary
wavefunction ψ′ of quantum mechanics is C-valued and
that Ψ is a ?C-valued wavefunction which describes a
total state with ψ and φ in adjacent boxes of a spiral or
one on each of the two expected spirals, or some such
similar thing combining multiple levels of ℵ. If φ isn’t
a state in another box, but is rather the state of the
box, then that would make it very easy to get the correct
derivatives needed to confirm the hypothesis

ω3ψ = iπΦ2φ , (86)

with some variant of the Cauchy–Riemann equations.
What does the other Cauchy–Riemann equation tell

us? If

∂xu = ∂yv =⇒ ∂xψ = ∂yφ , (87)

then either φ doesn’t depend on y or we need to add
x ≡ χ5 to ψ. If φ doesn’t depend on y, that breaks
equation (85) so we need to add χ5 to

ψ = ei(ωt−
~k·~x) . (88)
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For instance, χ5 is dimensionless so we could add it into
the exponent and the use χ5 = 0 in H to get rid of it
later. Whatever the answer is, there is still at least a fair
amount to do to find Einstein’s equation by analysis of
first principles. It may even be the case that the Cauchy–
Riemann equations have new subtleties in ?C such that
all of πΦ2 doesn’t come from Ψ, but rather some or all of
it comes from the adapted Cauchy–Riemann equations
reliant on definitions of higher iterations of x and y in
terms of their lower iterations. For instance, consider a
relationship

ỹ{2}(ỹ{1}) = Φỹ{1} =⇒ ∂y ỹ
{2} = Φ , (89)

such that we would need to add integer labels to the par-
tial derivative operators in the third derivative extension
of the Cauchy–Riemann equations.

As a point of consistency, we showed in [27] that the
energy is conserved when time in H2 is scaled by Φ2

with respect to time in H1. Therefore, the convention
z=χ5 + ix0, wherein time increases as y, is also the con-
vention that conserves energy in [27]. Since Einstein’s
equation expresses conservation of energy, this will be a
very important constraint! Furthermore, when time ex-
pands as y expands, that is the essentially the mechanism
for MCM dark energy [7, 8, 11].

To get π out of the x derivative we might use the
ỹ = tan−1

{
tan

[
tan−1(x)

]}
contraption to move side-

ways instead of straight up as we have done in figure
15. Earlier, we discussed how the inverse tangent can
be used to generate θ→ θ + π and we might add some
more conformalism on top of that. Since y± ∈ [0,∞)
and x ∈ [−∞,∞], and these are connected through
z = reiθ, x should grow too but there is little reason
require that is grows at the same rate as y in the
transfinite region beyond r=∞. Indeed, since we want
the derivative of φ with respect to x to give π, and all of
the domain structure of tan(x) is defined with π, there
is a lot of reason to consider the case when infinity in
the x-direction grows as π. The ratio of one Fibonacci
number the previous one approaches Φ but the ratio
of a diameter to a circumference is always π, so that
is another clue about how to get ∂xφ := πφ. Indeed,
the map from diameters to circumferences was the first
concept in the MCM to capture the concept of infinite
complexity [8, 11]. When that mechanism is synergized
with the new material here, general relativity should
shake out directly, more or less, hopefully. However
it shakes out, gravity is probably like an accelerating

rocket because it comes from the acceleration of H as x
and y expand.

A STRING APPLICATION

We have shown how to get Φ out of ?C without putting
it in first. We have discussed at length the role of Φ the
quantum and gravitational sectors of the MCM, and also
how Φ is integral to the generation of the all-important,
“God-given” coefficient of classical physics: 1/4π. To
finish this paper we will make an application to string
theory which, as a 10D theory, we assume is connected
to the MCM through dim(Σ+∪ Σ−) = 10. The physi-
cal boundary condition imposed by the MCM on ?C is
to put a topological singularity at χ5

+ = Φ. (To resolve
the discrepancy about whether it is x0 or χ5 that grows
by Φ, let the two cases pertain to our two spirals.) Use
the singularity to define a string boundary condition such
that the amplitude of the vibration on the string is con-
strained to vanish at χ5

+ = Φ. Furthermore, set a string
boundary condition, one associated with ψ(∞)=0, that
the amplitude of the vibration vanishes at the conformal
point π/2∼∞. When the amplitude is so constrained, no
amplitude at π/2 or Φ along a string of length π (the con-
formal coordinate ỹ± ∈ (−π/2, π/2)), we induce a quan-
tized spectrum of vibrational modes on the string as re-
quired to do quantum theory with strings. Also note,
when we model the black/white hole throughput with
ψ→eiπψ=−ψ, that is very nearly the operation needed

to change the sign of ỹ
{1}
+ so that it may become y

{2}
− .

The largest mode allowed by these boundary conditions
will have wavelength

λ = 2×
(
Φ− π/2) ≈ 0.09 . (90)

which is small compared to the length L=π of the string.
We have

λ

L
=

2
(
Φ− π/2

)
π

≈ 3% . (91)

This value is interesting because 3% is also the discrep-
ancy between Φ2 and e, and between Φ and π/2. Regard-
ing the former, when eix is an eigenfunction of ∂x, we get
the self-similarity like that afforded to doubly orthogo-
nal levels of ℵ whose relative phase Φ2 is the magical
ingredient to physics in the MCM.
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