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Abstract 

We prove that for every d≥ 2, deciding if a pure, d-dimensional, simplicial complex is 

shellable is NP-hard, hence NP-complete. This resolves a question raised, e.g., by Danaraj 

and Klee in 1978. Our reduction also yields that for every d≥ 2 and k≥ 0, deciding if a pure, 

d-dimensional, simplicial complex is k-decomposable is NP-hard. For d≥ 3, both problems 

remain NP-hard when restricted to contractible pure d-dimensional complexes. Another 

simple corollary of our result is that it is NP-hard to decide whether a given poset is CL-

shellable. 

1 Introduction 

A d-dimensional simplicial complex is called pure if all its facets (i.e., inclusion-maximal faces) have 

the same dimension d. A pure d-dimensional simplicial complex is shellable if there exists a linear 

ordering σ1,σ2,...,σn of its facets such that, for every i ≥ 2, σi ∩(∪j<iσj) is a pure (d−1)-dimensional 

simplicial complex; such an ordering is called a shelling or shelling order. 

For example, the boundary of a simplex is shellable (any order works), but no triangulation of the 

torus is (the condition fails for the first triangle σi that creates a non-contractible 1-cycle). 

The concept of shellings originated in the theory of convex polytopes (in a more general version for 

polytopal complexes), as an inductive procedure to construct the boundary of a polytope by adding the 

facets one by one in such a way that all intermediate complexes (except the last one) are contractible. 

The fact that this is always possible, i.e., that convex polytopes are shellable, was initially used as an 

unproven assumption in early papers (see the discussion in [Gru¨03, pp. 141–142] for a more detailed 

account of the history), before being proved by Bruggesser and Mani [BM72]. 

The notion of shellability extends to more general objects (including non-pure simplicial complexes 

and posets [BW97]), and plays an important role in diverse areas including piecewise-linear 

topology[RS82, Bin83], polytope theory (e.g., McMullen’s proof of the Upper Bound Theorem 

[McM70]), topological combinatorics [Bj¨o95], algebraic combinatorics and commutative algebra 

[Sta96, PRS98], poset theory, and group theory [Bj¨o80, Sha01]; for a more detailed introduction and 

further references see [Wac07, §3]. 

One of the reasons for its importance is that shellability—a combinatorial property—has strong 

topological implications: For example, if a pure d-dimensional complex K is a pseudomanifold1—which 

can be checked in linear time—and shellable, then K is homeomorphic to the sphere Sd (or the ball Bd, 

in case K has nonempty boundary) [DK74]—a property that is algorithmically undecidable for d ≥ 5, 

                                                                    
1 Partially supported by the Czech-French collaboration project EMBEDS II (CZ: 7AMB17FR029, FR: 38087RM). XG is partially 

supported by IUF. MT is partially supported by the GACR grant 16-01602Y.ˇ 
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by a celebrated result of Novikov [VKF74, Nab95]. More generally, every pure d-dimensional shellable 

complex is homotopy equivalent to a wedge of d-spheres, in particular it is (d − 1)-connected. 

1.1 Results 

From a computational viewpoint, it is natural to ask if one can decide efficiently (in polynomial time) 

whether a given complex is shellable. This question was raised at least as early as in the 1970’s [DK78a, 

DK78b] (see also [KP03, Problem 34]) and is of both practical and theoretical importance (besides 

direct consequences for the experimental exploration of simplicial complexes, the answer is also closely 

related to the question there are simple conditions that would characterize shellability). Danaraj and 

Klee proved that shellability of 2-dimensional pseudomanifolds can be tested in linear time [DK78a], 

whereas a number of related problems have been shown to be NP-complete [EG96, LLT03, JP06, 

MF08, Tan16] (see Section 1.2), but the computational complexity of the shellability problem has 

remained open. Here, we settle the question in the negative and show that the problem is intractable 

(modulo P 6= NP).2 

Theorem 1. Deciding if a pure 2-dimensional simplicial complex is shellable is NP-complete. 

Here, the input is given as a finite abstract simplicial complex (see Section 2).3 

Remark 2. The problem of testing shellability is easily seen to lie in the complexity class NP (given a 

linear ordering of the facets of a complex, it is straightforward to check whether it is a shelling). Thus, 

the nontrivial part of Theorem 1 is that deciding shellability of pure 2-dimensional complexes is NP-

hard. 

It is easy to check that a pure simplicial complex K is shellable if and only if the cone {v} ∗ K is 

shellable, where v is a vertex not in K (see Section 2). Thus, the hardness of deciding shellability easily 

propagates to higher-dimensional complexes, even to cones. 

Corollary 3. For d ≥ 3, deciding if a pure d-dimensional complex is shellable is NP-complete even when 

the input is assumed to be a cone (hence contractible). 

Moreover, our hardness reduction (from 3-SAT) used in the proof of Theorem 1 (see Section 3) 

turns out to be sufficiently robust to also imply hardness results for a number of related problems. 

Hardness of k-decomposability. Let d ≥ 2 and k ≥ 0. A pure d-dimensional simplicial complex K is k-

decomposable if it is a simplex or if there exists a face σ of K of dimension at most k such that (i) the 

link of σ in K is pure (d − |σ|)-dimensional and k-decomposable, and (ii) deleting σ and faces of K 

containing σ produces a d-dimensional k-decomposable complex. This notion, introduced by Provan 

and Billera [PB80], provides a hierarchy of properties (k-decomposability implies (k + 1)-

decomposability) interpolating between vertex-decomposable complexes (k = 0) and shellable 

complexes (shellability is equivalent to d-decomposability [PB80]). The initial motivation for 

considering this hierarchy was to study the Hirsch conjecture on combinatiorial diameters of convex 

polyhedra, or in the language of simplicial complex, the diameter of the facet-adjacency graphs of pure 

simplicial complexes: at one end, the boundary complex of every d-dimensional simplicial polytope is 

                                                                    
2 For basic notions from computational complexity, such as NP-completeness or reductions, see, e.g., [AB09]. 
3 There are a several different ways of encoding an abstract simplicial complex—e.g., we can list the facets, or we can list all of its 

simplices—, but since we work with complexes of fixed dimension, these encodings can be translated into one another in polynomial 

time, so the precise choice does not matter. 
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shellable [BM72], and at the other end, every 0-decomposable simplicial complex has small diameter 

(it satisfies the Hirsch bound [PB80]). 

Theorem 4. Let d ≥ 2 and k ≥ 0. Deciding if a pure d-dimensional simplicial complex is k-decomposable 

is NP-hard. For d ≥ 3, the problem is already NP-hard for pure d-dimensional simplicial complexes 

that are cones (hence contractible). 

Hardness of CL-shellability of posets. Another notion related to shellability is the CL-shellability of 

a poset, introduced in [BW82]. The definition of CL-shellability is rather technical, so we do not 

reproduce it here, but simply note that a simplicial complex is shellable if and only if the dual of its face 

lattice is CL-shellable [BW83, Corollary 4.4]. Since for any fixed dimension d, the face lattice has 

height d + 2 and can be computed in time polynomial in the size of the d-complex we get: 

Corollary 5. For any fixed d ≥ 4, deciding CL-shellability of posets of height at most d is NP-hard. 

1.2 Related Work on Collapsibility and Our Approach 

Our proof of Theorem 1 builds on earlier results concerning collapsibility, a combinatorial analogue, 

introduced by Whitehead [Whi39], of the topological notion of contractibility.4 A face σ of a simplicial 

complex K is free if there is a unique inclusion-maximal face τ of K with σ ( τ. An elementary collapse 

is the operation of deleting a free face and all faces containing it. A simplicial complex K collapses to 

a subcomplex L ⊆ K if L can be obtained from K by a finite sequence of elementary collapses; K is 

called collapsible if it collapses to a single vertex. 

The problem of deciding whether a given 3-dimensional complex is collapsible is NP-complete 

[Tan16]; the proof builds on earlier work of Malgouyres and Franc´es [MF08], who showed that it is 

NP-complete to decide whether a given 3-dimensional complex collapses to some 1-dimensional 

subcomplex. By contrast, collapsibility of 2-dimensional complexes can be decided in polynomial time 

(by a greedy algorithm) [JP06, MF08]. It follows that for any fixed integer k, it can be decided in 

polynomial time whether a given 2-dimensional simplicial complex can be made collapsible by deleting 

at most k faces of dimension 2; by contrast, the latter problem is NP-complete if k is part of the input 

[EG96].5 

Our reduction uses the gadgets introduced by Malgouyres and Franc´es [MF08] and reworked in 

[Tan16] to prove NP-hardness of deciding collapsibility for 3-dimensional complexes. However, these 

gadgets are not pure: they contain maximal simplices of two different dimensions, 2 and 3. Roughly 

speaking, we fix this by replacing the 3-dimensional subcomplexes by suitably triangulated 2-spheres 

and modifying the way in which they are glued. Interestingly, this also makes our reduction robust to 

subdivision and applicable to other types of decomposition. 

Collapsibility and shellability. Furthermore, we will use the following connection between shellability 

and collapsibility, due to Hachimori [Hac08] (throughout, ˜χ denotes the reduced Euler characteristic). 

Theorem 6 ([Hac08, Theorem 8]). Let K be a 2-dimensional simplicial complex. The second barycentric 

subdivision sd2 K is shellable if and only if the link of each vertex of K is connected and there exists 

χ˜(K) triangles in K whose removal makes K collapsible. 

                                                                    
4 Collapsibility implies contractibility, but the latter property is undecidable for complexes of dimension at least 4 (this follows from 

Novikov’s result [VKF74], see [Tan16, Appendix A]), whereas the problem of deciding collapsibility lies in NP. 
5 We remark that building on [EG96], a related problem, namely computing optimal discrete Morse matchings in simplicial complexes (which 

we will not define here), was also shown to be NP-complete [LLT03, JP06]. 
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At first glance, Hachimori’s theorem might suggest to prove Theorem 1 by a direct polynomial-time 

reduction of collapsibility to shellability. However, for 2-dimensional complexes this would not imply 

hardness, since, as mentioned above, collapsibility of 2-dimensional complexes is decidable in 

polynomial time [JP06, MF08]. Instead, we will use the existential part of Hachimori’s theorem (“there 

exists ˜χ(K) triangles”) to encode instances of the 3-SAT problem, a classical NP-complete problem. 

2 Background and Terminology 

We include here a brief summary of the main notions that we use (except for the notions already defined 

in the introduction, such as pure, shellable, and collapsible simplicial complexes and free faces and 

elementary collapses). 

Simplicial complexes. A (finite) abstract simplicial complex is a collection K of subsets of a finite set 

V that is closed under under taking subsets, i.e., if σ ∈ K and τ ⊆ σ, then τ ∈ K. The elements v ∈ V are 

called the vertices of K (and often identified with the singleton sets {v} ∈ K), and the elements of K are 

called faces or simplices of K. The dimension of a face is its cardinality minus 1, and the dimension of 

K is the maximum dimension of any face. This is a purely combinatorial description of a simplicial 

complex and a natural input model for computational questions. 

For the purposes of exposition, in particular for describing the gadgets used in the reduction, it will 

be more convenient to use an alternative, geometric description of simplicial complexes: A (finite) 

geometric simplicial complex is a finite collection K of geometric simplices (convex hulls of affinely 

independent points) in Rd (for some d) such that (i) if σ ∈ K and τ is a face of σ, then τ also belongs to 

K, and (ii) if σ1,σ2 ∈ K, then σ1 ∩σ2 is a face of both σ1 and σ2. The polyhedron of a geometric simplicial 

complex K is defined as the union of simplices contained in K, S
σ∈K σ. We also say that K triangulates 

X ⊆ Rd if X is the polyhedron of K. Note that a given polyhedron usually has many different 

triangulations. 

There is a straightforward way of translating between the two descriptions (see, e.g. [Mat07, Chapter 

1]): On the one hand, for every geometric simplicial complex K there is an associated abstract simplicial 

complex, namely the collection of sets of vertices of the simplices of K (considered as finite sets, 

neglecting their geometric position). Conversely, for any given abstract simplicial complex K, there is 

a geometric simplicial complex whose associated abstract simplicial complex is (isomorphic to) K: For 

a sufficiently large d, pick affinely independent points pv ∈ Rd, one for each vertex v of K, and let the 

simplices of the geometric complex be the convex hulls of the point sets {pv : v ∈ σ}, for all σ ∈ K. 

For the rest of the article we work in the setting of geometric simplicial complexes (except for the 

definition of joins, see below, which is simpler for abstract simplicial complexes),with the 

understanding that a geometric simplicial complex is simply a convenient way to describe the associated 

abstract simplicial complex. (In particular, we will not care about issues such as coordinate complexity 

of the geometric complex.) 

Links, subdivisions, and joins. Let K be a (geometric) simplical complex. The link of a vertex v in K 

is defined as lkK v := {σ ∈ K: v 6∈ σ and conv({v} ∪ σ) ∈ K}. 

A subdivision of a complex K is a complex K0 such that the polyhedron of K coincides with the 

polyhedron of K0 and every simplex of K0 is contained in some simplex of K. 

We will use a specific class of subdivision, called barycentric subdivision. Given a nonempty 

simplex σ ∈ Rd, let bσ denote its barycenter (we have v = bv for a vertex v). The barycentric subdivsion 

of a complex K in Rd is the complex sdK with vertex set {bσ : σ ∈ K \ {∅}} and whose simplices are of 
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the form conv(bσ1,··· ,bσk) where σ1 ( σ2 ( ... ( σk ∈ K \ {∅}. The `th barycentric subdivision of K, denoted 

sd` K, is the complex obtained by taking successively the barycentric subdivision ` times. 

The join K ∗ L of two (abstract) simplicial complexes with disjoint sets of vertices is the complex K 

∗ L = {σ ∪ τ : σ ∈ K,τ ∈ L}. In particular, note that {∅} ∗ K = K. For ̀  ≥ 0, let ∆` denote the ̀ -dimensional 

simplex;6 we extend this to the case ` = −1, by using the convention that ∆−1 = {∅} is the abstract 

simplicial complex whose unique face is the empty face ∅. Note that, for a pure simplicial complex K, 

an ordering σ1,σ2,...,σn of the facets of K is shelling if and only if the ordering ∆` ∪ σ1,∆` ∪ σ2,...,∆` ∪ σn 

is a shelling of ∆` ∗ K. 

Reduced Euler characteristic. The reduced Euler characteristic of a complex K is defined as 

dimK 

χ˜(K) = X (−1)ifi(K) 

i=−1 

where fi(K) is the number of i-dimensional faces of K and, by convention, f−1(K) is 0 if K is empty and 

1 otherwise. 

3-SAT problem. For our reduction, we use the 3-SAT problem (a classical NP-hard problem). The 3-

SAT problem takes as input a 3-CNF formula φ, that is, a Boolean formula which is a conjunction of 

simpler formulas called clauses; each clause is a disjunction of three literals, where a literal is a variable 

or the negation of a variable. An example of 3-CNF formula is 

φ0 = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4). 

The size of a formula is the total number of literals appearing in its clauses (counting repetitions). The 

output of the 3-SAT problem states whether φ is satisfiable, that is, whether we can assign variables 

true or false so that the formula evaluates as true. The formula φ0 given above is satisfiable, for example 

by setting x1 to true, x2 to false and x3 and x4 arbitrarily. 

3 The Main Proposition and its Consequences 

The cornerstone of our argument is the following construction: 

Proposition 7. There is an algorithm that, given a 3-CNF formulaφ, produces, in time polynomial in 

the size of φ, a 2-dimensional simplicial complex Kφ with the following properties: 

(i) the link of every vertex of Kφ is connected, 

(ii) if φ is satisfiable, then Kφ becomes collapsible after removing some χ˜(Kφ) triangles, 

(iii) if an arbitrary subdivision of Kφ becomes collapsible after removing some χ˜(Kφ) triangles, then 

φ is satisfiable. 

The rest of this section derives our main result and its variants from Proposition 7. We then describe the 

construction of Kφ in Section 4 and prove Proposition 7 in Sections 5 to 8. 

Hardness of shellability. Proposition 7 and Hachimori’s theorem readily imply our main result: 

                                                                    
6 Considered as a simplicial complex consisting of all faces of the simplex, including the simplex itself; as an abstract simplicial complex, ∆` 

consists of all the subsets of an (` + 1)-element set. 
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Proof of Theorem 1. Let φ be a 3-CNF formula and let Kφ denote the 2-dimensional complex built 

according to Proposition 7. Since the link of every vertex of Kφ is connected, Theorem 6 guarantees that 

sd2 Kφ is shellable if and only if there exist ˜χ(Kφ) triangles whose removal makes Kφ collapsible. Hence, 

by statements (ii) and (iii), the formula φ is satisfiable if and only if sd2 Kφ is shellable. Taking the 

barycentric subdivision of a two-dimensional complex multiplies its number of simplices by at most a 

constant factor. The complex sd2 Kφ can thus be constructed from φ in polynomial time, and 3-SAT 

reduces in polynomial time to deciding the shellability of 2-dimensional pure complexes.  

Hardness of k-decomposability. Note that statement (iii) in Proposition 7 deals with arbitrary 

subdivisions whereas Theorem 6 only mentions the second barycentric subdivision. This extra elbow 

room comes at no cost in our proof, and yields the NP-hardness of k-decomposability. 

Proof of Theorem 4. Assume without loss of generality that k ≤ d. Let φ be a 3-CNF formula and Kφ the 

complex produced by Proposition 7. We have the following implications:7 

φ is satisfiable ⇒ Kφ is collapsible after removal of some ˜χ(Kφ) triangles 

 ⇒ sd2 Kφ is shellable 

 ⇒(b) sd3 Kφ is vertex-decomposable 

 ⇒(c) ∆d−3 ∗ sd3 Kφ is vertex-decomposable 

 ⇒(a) ∆d−3 ∗ sd3 Kφ is k-decomposable 

 ⇒(a) ∆d−3 ∗ sd3 Kφ is shellable 

 ⇒(d) sd3 Kφ is shellable 

 ⇒ sdKφ is collapsible after removal of some ˜χ(Kφ) triangles 

 ⇒ φ is satisfiable 

The first and last implications are by construction of Kφ (Proposition 7). The second and second to last 

follow from Theorem 6, given that Proposition 7 ensures that links of vertices in Kφ are connected. The 

remaining implications follow from the following known facts (where ⇒(x) to mean that the implication 

follows from observation (x)): 

(a) if K is k-decomposable, then K is k0-decomposable for k0 ≥ k, 

(b) if K is shellable, then sdK is vertex-decomposable [BW97], 

(c) K is vertex-decomposable if and only if ∆` ∗ K is vertex decomposable [PB80, Prop. 2.4], 

(d) K is shellable if and only if ∆` ∗ K is shellable (c.f. Section 2). 

Since the first and last statement are identical, these are all equivalences. In particular, φ is satisfiable if 

and only if ∆d−3 ∗sd3 Kφ is k-decomposable. Since this complex can be computed in time polynomial in 

the size of Kφ, which is polynomial in the size of φ, the first statement follows. For d ≥ 3, ∆d−3 ∗sd3 Kφ is 

contractible so the second statement follows.  

                                                                    
7 In the case d = 2, we use the convention that ∆−1∗ L = L for any simplicial complex L. 
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4 Construction 

We now define the complex Kφ mentioned in Proposition 7. This complex consists of several building 

blocks, called gadgets. We first give a “functional” outline of the gadgets (in Section 4.1), insisting on 

the properties that guided their design, before moving on to the details of their construction and gluing 

(Sections 4.2 and 4.3). 

We use the notational convention that complexes that depend on a variable u are denoted with round 

brackets, e.g. f(u), whereas complexes that depend on a literal are denoted with square brackets, e.g. 

f[u] or f[¬u]. 

4.1 Outline of the construction 

The gadgets forming Kφ are designed with two ideas in mind. First, every gadget, when considered 

separately, can only be collapsed starting in a few special edges. Next, the special edges of each gadgets 

are intended to be glued to other gadgets, so as to create dependencies in the flow of collapses: if an 

edge f of a gadget G is attached to a triangle of another gadget G0, then G cannot be collapsed starting 

by f before some part of G0 has been collapsed. 

Variable gadgets. For every variable u we create a gadget V(u). This gadget has three special edges; 

two are associated, respectively, with true and false; we call the third one “unlocking”. Overall, the 

construction ensures that any removal of ˜χ(Kφ) triangles from Kφ either frees exactly one of the edges 

associated with true or false in every variable gadget, or makes Kφ obviously non-collapsible. This 

relates the removal of triangles in Kφ to the assignment of variables in φ. We also ensure that part of 

each variable gadget remains uncollapsible until the special unlocking edge is freed. 

Clause gadgets. For every clause c = `1 ∨ `2 ∨ `3 we create a gadget C(c). This gadget has three special 

edges, one per literal `i. Assume that `i ∈ {u,¬u}. Then the special edge associated with `i is attached to 

V(u) so that it can be freed if and only if the triangle removal phase freed the special edge of V(u) 

associated with true (if ̀ i = u) or with false (if ̀ i = ¬u). This ensures that the gadget C(c) can be collapsed 

if and only if one of its literals was “selected” at the triangle removal phase. 

Conjunction gadget. We add a gadget A with a single special edge, that is attached to every clause 

gadget. This gadget can be collapsed only after the collapse of every clause gadget has started (hence, 

if every clause contains a literal selected at the triangle removal phase). In turn, the collapse of A will 

free the unlocking special edge of every variable gadget, allowing to complete the collapse. 

Notations. For any variable u, we denote the special edges of V(u) associated with true and false by, 

respectively, f[u] and f[¬u]; we denote the unlocking edge by f(u). For every clause c = `1 ∨`2 ∨`3, we 

denote by f[`i,c] the special edge of C(c) associated with `i. We denote by fand the special edge of the 

conjunction gadget A. The attachment of these edges are summarized in Table 1. 

gadget special 

edges 

attached to freed by 

 f[u] - triangle deletion 

V(u) f[¬u] - triangle deletion 

 f(u) A freeing fand 
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 f[u2,c] V(u2) freeing f[u2] 

C(u2 ∨ ¬u4 ∨ u9) f[¬u4,c] V(u4) freeing f[¬u4] 

 f[u9,c] V(u9) freeing f[u9] 

A fand every clause 

gadget 

collapsing all clause 

gadgets 

Table 1: Summary of the gadgets’ special edges and their attachments. 

Flow of collapses. Let us summarize the mechanism sketched above. Assume that φ is satisfiable, and 

consider a satisfying assignment. Remove the triangles from each V(u) so that the edge that becomes 

free is f[u] if u was assigned true, and f[¬u] otherwise. This will allow to collapse each clause gadget in 

order to make fand free. Consequently, we will be able to collapse A and make all unlocking edges f(u) 

free. This allows finishing the collapses on all V(u). 

On the other hand, to collapse Kφ we must collapse fand at some point. Before this can happen, we 

have to collapse in each clause c = `1 ∨ `2 ∨ `3 one of the edges f[`i,c]. This, in turn, requires that f[`i] has 

been made free. If we can ensure that f[¬`i] cannot also be free, then we can read off from the collapse 

an assignment of the variables that must satisfy every clause, and therefore φ. (If `i = u, then we set u to 

true, if `i = ¬u, then we set u to false. If there are unassigned variables after considering all clause, we 

assign them arbitrarily.) 

4.2 Preparation: modified Bing’s houses 

Our gadgets rely on two modifications of Bing’s house, a classical example of 2-dimensional simplicial 

complex that is contractible but not collapsible. Bing’s house consists of a box split into two parts (or 

rooms); each room is connected to the outside by a tunnel through the other room; each tunnel is 

attached to the room that it traverses by a rectangle (or wall). The modifications that we use here make 

the complex collapsible, but restricts its set of free faces to exactly one or exactly three edges. 

One free edge. We use here a modification due to Malgouyres and Franc´es [MF08]. In one of the 

rooms (say the top one), the wall has been thickened and hollowed out, see Figure 1. We call the 

resulting polyhedron a Bing’s house with a single free edge, or a 1-house for short. Two special elements 

of a 1-house are its free edge (denoted f and in thick stroke in Figure 1) and its lower wall rectangle 

(denoted L and colored in light blue in Figure 1). We only consider triangulations of 1-house that 

subdivide the edge f and the lower wall L. We use 1-houses for the following properties: 

 

Figure 1: Bing’s house modified to be collapsible with exactly one free edge f. 

f 

L 
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Lemma 8. Let B be a 1-house, f its free edge and L its lower wall. In any triangulation of B, the free faces 

are exactly the edges that subdivide f. Moreover, B collapses to any subtree of the 1-skeleton of B that is 

contained in L and shares with the boundary of L a single endpoint of f. 

The first statement follows from the fact that the edges that subdivide f are the only ones that are not 

part of two triangles; see [MF08, Remark 1]. The second statement was proven in [Tan16, Lemma 7] 

for certain trees, but the argument holds for arbitrary trees; we spell them out in Appendix A. When 

working with 1-houses, we will usually only describe the lower wall to clarify which subtree we intend 

to collapse to. 

Remark 9. We note that there exist smaller simplicial complexes that have properties analogous to those 

of the 1-house. The smallest such example is obtained by a slight modification of the dunce hat; has 

seven vertices and thirteen facets and is described as the first example in [Hac00, Section 5.3].8 For the 

purposes of exposition, however, we prefer to work with 1-houses, which allows us to use some of their 

properties proved in [MF08, Tan16]. Moreover, the construction of the 1-house is similar to the 

construction of another gadget, the 3-house discussed below, and we currently do not know how to 

replace the latter by a smaller complex. 

Three free edges. We also use the Bing’s houses with three collapsed walls introduced in [Tan16]; we 

call them 3-houses for short. These are 2-dimensional complexes whose construction is more involved; 

we thus state its main properties, so that we can use it as a black box, and 

refer the reader interested in its precise definition to [Tan16, §4]. Refer to 

the figure on the right (which corresponds to Figure 9 in [Tan16]). The 

3house has exactly three free edges f1,f2,f3, and has three distinguished 

paths p1,p2,p3 sharing a common vertex v and such that each pi shares 

exactly one vertex with fi and no vertex with fj for j 6= i. In addition, itf3 

contains an edge e incident to v so that the union of p1,p2,p3,f1,f2,f3 and e 

forms a subdivided star with four rays. 

Let C denote the 3-house as described above. In [Tan16], the polyhedron of C is described in detail 

but no triangulation is specified. We are happy with any concrete triangulation for which Lemma 10 

below holds; we can in addition require that the paths p1, p2 and p3 each consist of two edges.9 

Lemma 10 ([Tan16, Lemma 8]). In any subdivision of C, the free faces are exactly the edges that 

subdivide f1, f2 and f3. Moreover, C collapses to the 1-complex spanned by e,p1,p2,p3 and any two of 

{f1,f2,f3}. 

4.3 Detailed construction 

Section 4.1 gave a quick description of the intended functions of the various gadgets. We now flesh 

them out and describe how they are glued together. 

Triangulations. For some parts of the complex, it will be convenient to first describe the polyhedron, 

then discuss its triangulation. Our description of the triangulation may vary in precision: it may be 

                                                                    
8 More precisely, the complex has vertices {1,2,...,7}, facets {125,126,127,134,145,167,234,235,236,247,356,457,567}, and its only 

free edge is 13, contained in a unique facet 134. A computer search confirmed that this (along with with four other triangulations of 
the modified dunce hat) is indeed a minimal example. 

9 The value two is not important here; what matters is to fix some value that can be used throughout the construction. 

e 

f 1 

p 1 

f 2 

p 2 

p 3 
v 
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omitted (if any reasonable triangulation works), given indirectly by the properties it should satisfy, or 

given explicitly (for instance to make it clear that we can glue the gadgets as announced). 

Conjunction gadget. The conjunction gadget A is a 1-house. We let 

fand denote its free edge and vand one of the endpoints of fand. We further 

triangulate the lower wall so that vand has sufficiently high degree, 

allowing to assign every variable u to an internal edge f(u) of the 

lower wall incident to vand. See the lower left wall on the right picture. 

Any triangulation satisfying these prescriptions and computable in 

time polynomial in the size of φ suits our purpose. 

Variable gadget. The variable gadget V(u) associated with the variable u has four parts. 

1. The first part is a triangulated 2-sphere S(u) that consists of two disks D[u] and D[¬u] sharing 

a common boundary circle s(u). The circle s(u) contains a distinguished vertex v(u). The disk 

D[u] (resp. D[¬u]) has a distinguished edge f[u] (resp. f[¬u]) that joins v(u) to its center. 

s(u)  

2. The second part is a 2-complex O(u) that consists of two v(u) 

“boundary” circles sharing a vertex. The vertex is identified with 

the vertex v(u) of S(u). One of the circles is identified with s(u). 

The other circle is decomposed into two arcs: one is a single edge 

named b(u), the other is a path with two edges which we call p(u). 

The vertex common to b(u) and p(u), distinct from v(u), is 

identified with the vertex vand of the conjunction gadget. 

3. The third part is a 1-house B(u) intended to block the edge b(u) 

∈ O(u) from being free as long as the conjunction gadget has 

not been collapsed. The free edge of B(u) is identified with the 

edge f(u) in the conjunction gadget A and the edge b(u) ∈ O(u) 

is identified with an edge of the lower wall of B(u) that shares 

the vertex vand with f(u). 

4. The fourth part consists of two complexes, X[u] and X[¬u]. Let   

` ∈ {u,¬u} and refer to the figure on the right. The complex X[`] f[`] v(u) 

is a 1-house whose free edge is identified with the edge f[`] from D[`], and whose lower wall 

contains a path identified with p(u). Hence, p(u) is common to X[u], X[¬u] and the second part 

O(u). For every clause ci containing the literal `, we add in the lower wall a two-edge path p[`,ci] 

extended by an edge f[`,ci]; the path p[`,ci] intersects p(u) in exactly vand (in particular, these paths 

and edges form a subdivided star centered at vand). 

Clause gadget. The clause gadget C(c) associated with the clause 

∪ s ( u ) = 

D [ u ] D [ ¬ u ] 

f [ u ] f [ ¬ u ] 
v ( u ) v ( u ) 

s ( u ) 

f and v and 

... 

L 

A 

s ( u ) b ( u ) 

p ( u ) 

v and 

O ( u ) 

f ( u ) v and 

v ( u ) 

b ( u ) 

L 

B ( u ) 
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C(c) c = `1 ∨ `2 ∨ `3 is a 3-house where: 

• the edges fi of C are identified with the edges f[`i,c] in X[`i]; 

• the paths pi of C are identified with the paths p[`i,c] in X[`i]; f[`3,c] 

• the vertex v of C is identified with the vertex vand; and 

• the edge e of C is identified with the edge fand. f[`2,c] 

Putting it all together. Let φ be a 3-CNF formula with variables u1,u2,...,un 

and clauses c1,c2,...,cm. The complex Kφ is defined as 

. 

To verify the proofs in Sections 5 to 8, it may be useful to be able to quickly identify for a given 

vertex, edge or path which 2-complexes contain it. We provide this in Table 2. 

5 Connectedness of links 

In this section, we prove Proposition 7(i), i.e. that the link of every vertex in the complex Kφ of Section 

4 is connected. By construction, the complex Kφ is covered by the following subcomplexes: A, 

S(u)∪O(u), B(u), X[`] and C(c), where u ranges over all variables, ` ranges over all literals and c ranges 

over all clauses. We first argue that in each subcomplex, the link of every vertex is connected. We then 

ensure that these subcomplexes are glued into Kφ in a way that preserves the connectedness of the links. 

object quantifier in complexes 

vand 1 occurence A, O(u), B(u), X[`], C(c) 

v(u) every variable u D[u], D[¬u], O(u), B(u), X[u], X[¬u] 

fand 1 occurence A, C(c) 

f(u) every variable u A, B(u) 

f[`] every literal ` D[`], X[`] 

b(u) every variable u O(u), B(u) 

p(u) every variable u O(u), X[u], X[¬u] 

s(u) every variable u O(u), D[u], D[¬u] 

f[`,c] pairs (`,c), ` ∈ c X[`], C(c) 

p[`,c] pairs (`,c), ` ∈ c X[`], C(c) 

Table 2: Containments of vertices, edges and paths in 2-complexes. 

K φ = A ∪ 

 

 
 

n 
[ 

i =1 
S ( u i ) ∪ O ( u i ) ∪ B ( u i ) ∪ X [ u i ] ∪ X [ ¬ u i ] 

| { z } V ( u i ) 

 

 
 

∪ 

 

 

m 
[ 

j =1 
C ( c j ) 

 

 

p ( u ) v and 

L 

X [ ̀ ] 

··· 

p [ ̀ 1 ,c ] f and 

p [ ̀ 3 ,c ] v and 

p [ ̀ 2 ,c ] 

f [ ̀ 1 ,c ] 
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Links within the subcomplexes. The proof is straightforward 

but rather pedestrian. Let us start with the 1-house B. Most 

points have a link homeomorphic to K3, so connectedness is 

immediate. For the remaining points, depicted on the left, the 

links are homeomorphic to one of K2, K4, K2,3 and K2 · K3, the 

graph obtained by gluing K2 and K3 at a vertex. This settles the 

cases of the subcomplexes A, B(u) and X[`]. 

A similar analysis for the subcomplex S(u)∪O(u) reveals that the 

links are homeomorphic to one of K2, K3, K2,3 and the ‘bull graph’, 

that is the graph on 5 vertices formed from the triangle and two 

edges attached to it at different vertices. 

Last, a careful inspection of the construction in [Tan16] of the 3-house yields that the link of every 

vertex is homeomorphic to one of K2, K3, K2,3, K2 · K3, K2,4 or the graph obtained from a triangle by 

gluing three other triangles to it, one along each edge. This covers the subcomplexes C(c). 

Links after gluing. We now argue that if v is a vertex shared by two of our subcomplexes C and C0, 

then there is an edge incident to v and common to C and C0. This ensures that the links of v in C and C0 

share at least a vertex, so the connectedness of lkC∪C0 v follows from that of lkC v and lkC0 v. If v is 

shared by subcomplexes C1,C2,...Ck, we can apply this idea iteratively by finding a sequence of edges 

e1,e2,...,ek−1 where ei is common to Ci and at least one of C1,C2,...,Ci−1. 

Let us first examine v(u) for some variable u. This vertex is common to S(u) ∪ O(u), B(u), X[u] and 

X[¬u]. The connectedness of lkKφ v(u) follows from the existence of the following edges incident to v(u): 

• b(u), common to S(u) ∪ O(u) and B(u), 

• p(u), common to S(u) ∪ O(u), X[u] and X[¬u]. 

Let us next examine vand. This vertex is common to all our subcomplexes, that is to A, B(u), S(u) ∪ 

O(u), X[`] and C(c) for all variable u, literal `, and clause c. The connectedness of lkKφ vand follows from 

the existence of the following edges incident to vand: 

• the edges f(u), common to A and B(u), 

• the edges b(u), common to B(u) and S(u) ∪ O(u), • the edges p(u), common to S(u) ∪ O(u), X[u] 

and X[¬u] 

• fand, common to A and every C(c). 

The remaining vertices shared by two or more of our subcomplexes are defined as part of an edge 

common to these subcomplexes. The connectedness of the links in Kφ of these vertices is thus 

immediate. This completes the proof of Proposition 7(i). 

K 3 

K 2 

K 2 , 3 

K 2 , 3 

K 2 · K 3 

K 4 

bullgraph 

K 2 , 3 

K 2 

K 3 

K 3 
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6 Reduced Euler characteristic of Kφ 

In this section, we compute the reduced Euler characteristic of Kφ, preparing the proofs of Proposition 

7(ii)–(iii) in the following sections. By inclusion-exclusion, for any simplicial complexes K1 and K2 we 

have: 

 χ˜(K1 ∪ K2) = χ˜(K1) + χ˜(K2) − χ˜(K1 ∩ K2). (6.1) 

In particular, if both K2 and K1 ∩ K2 are contractible, then ˜χ(K1 ∪ K2) = χ˜(K1). 

Proposition 11. χ˜(Kφ) equals the number of variables of φ. 

Proof. First, let us observe that the subcomplexes A, B[u], X[`] and C(c) (for all variables u, literals ` 

and clauses c) are contractible. Indeed each of them is either a 1-house or 3-house which are collapsible 

by Lemmas 8 and 10, thereby contractible. In addition, each of the aforementioned subcomplexes is 

attached to the rest of the complex in contractible subcomplexes (trees). 

Therefore, by the claim following Equation (6.1), we may replace each of these gadgets (in any 

order) with the shared trees without affecting the reduced Euler characteristic. That is, ˜χ(Kφ) = χ˜(K0) 

where 

K0 := fand ∪ [(f(u) ∪ S(u) ∪ O(u)) ∪ [ (f[`,c] ∪ p[`,c]) 

 u (`,c):`∈c 

where the first (big) union is over all variables u, and the second is over all pairs (`,c) where a literal ` 

belongs to a clause c. 

By collapsing the pendent edges and paths, we get ̃ χ(K0) = χ˜(K00) 

where 

. 

Finally, for every variable u we have ˜χ(O(u) ∪ S(u)) = 1 as O(u) 

∪ S(u) is homotopy equivalent to the 2-sphere. For any distinct 

variables u,u0, the complexes O(u) ∪ S(u) and O(u0) ∪ S(u0) share only 

a vertex, namely vand. Equation (6.1) then yields that ˜χ(Kφ) = χ˜(K00) 

is the number of variables. 

 

Remark 12. It is possible, with slightly more effort, to show that Kφ is homotopy equivalent to K00, hence 

to a wedge of spheres, one for each variable. This also implies Proposition 11 but for our purpose, 

computing the reduced Euler characteristic suffices. 

7 Satisfiability implies collapsibility 

In this section we prove Proposition 7(ii), i.e. that if φ is satisfiable, then there exists a choice of ˜χ(Kφ) 

triangles of Kφ whose removal makes the complex collapsible. 

Literal `(u). Let us fix a satisfying assignment for φ. For every variable u, we set `(u) to u if u is true in 

our assignment, and to ¬u otherwise. 

v and 

O ( u 1 ) 

O ( u 2 ) 

O ( u n ) 

S ( u n ) 

S ( u 2 ) 

S ( u 1 ) 

K 0

0 
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Triangle removal. For every variable u, we remove a triangle from the region D[`(u)] of the sphere 

S(u). Proposition 11 ensures that this removes precisely ˜χ(Kφ) triangles, as announced. 

Constrain complex. It will be convenient to analyze collapses of Kφ locally within a subcomplex, 

typically a gadget. To do so formally, we use constrain complexes following [Tan16]. Given a simplicial 

complex K and a subcomplex M of K, we define the constrain complex of (K,M), denoted Γ(K,M), as 

follows: 

Γ(K,M) := {ϑ ∈ M : ∃η ∈ K \ M s.t. ϑ ⊂ η}. 

Lemma 13 ([Tan16, Lemma 4]). Let K be a simplicial complex and M a subcomplex of K. If M collapses 

to M0 and Γ(K,M) ⊆ M0 then K collapses to (K \ M) ∪ M0. 

Collapses. We now describe a sequence of collapses enabled by the removal of the triangles. Recall 

that we started from the complex 

 

where u1,u2,...,un and c1,c2,...,cm are, respectively, the variables and the clauses of φ. We then removed a 

triangle from each D[`(u)]. 

(a) The removal of a triangle of D[`(u)] allows to collapse that subcomplex to s(u) ∪ f[`(u)]. This frees 

f[`(u)]. The complex becomes: 

 . 

(b) We can then start to collapse the subcomplexes X[`(u)]. We proceed one variable at a time. Assume 

that we are about to proceed with the collapse of X[`(u)] and let K denote the current complex. 

Locally, X[`(u)] is a 1-house with free edge f[`(u)]. Moreover, Γ(K,X[`(u)]) is the tree T(u) formed 

by the path p(u) and the union of the paths p[`(u),c] ∪ f[`(u),c] for every clause c using the literal 

`(u). Lemma 8 ensures that X[`(u)] can be locally collapsed to T(u), and Lemma 13 ensures that K 

can be globally collapsed to (K \X[`(u)])∪T(u). We proceed in this way for every complex X[`(u)]. 

The complex becomes: 

 . 

(c) The collapses so far have freed every edge of f[`(ui),c]. We now consider every clause cj in turn. Put 

cj = (`1 ∨`2 ∨`3) and let K denote the current complex. The assignment that we chose is satisfying, so 

at least one of `1, `2 or `3 coincides with `(ui) for some i; let us assume without loss of generality that 

`1 = `(ui). The edge f[`1,c] is therefore free and Lemma 10 yields that locally, C(cj) collapses to the 

tree T(cj) = fand ∪p[`1,c]∪p[`2,c]∪p[`2,c]∪f[`2,c]∪f[`3,c]. Moreover, Γ(K,C(cj)) = T(cj) so Lemma 13 

ensure that K can be globally collapsed to (K \ C(cj)) ∪ T(cj). After proceeding in this way for every 

complex C(cj), the complex becomes: 

 . 

(d) The collapses so far have freed the edge fand. We can then proceed to collapse A. Locally, Lemma 

8 allows to collapse A to the tree T = f(u1) ∪ f(u2) ∪ ... ∪ f(un). (From this point, we expect the reader 
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to be able to check by her/himself that Lemma 13 allows to perform globally the collapse described 

locally.) The complex becomes: 

 . 

(e) The collapses so far have freed every edge f(ui). Thus, Lemma 8 allows to collapse each complex 

B(ui) to its edge b(ui). This frees the edge b(ui), so the complex O(ui) can in turn be collapsed to 

s(ui) ∪ p(ui). At this point, the complex is: 

. 

(f) The collapses so far have freed every edge s(ui). We can thus collapse each D[¬`(ui)] to f[¬`(ui)]. 

This frees every edge f[¬`(ui)], allowing to collapse every subcomplex X[¬`(ui)], again by Lemma 

8, to the tree formed by the path p(ui) and the union of the paths p[¬`(ui),c] ∪ f[¬`(ui),c] for every 

clause c using the literal ¬`(ui). 

At this point, we are left with a 1-dimensional complex. This complex is a tree (more precisely a 

subdivided star centered in vand and consisting of the paths p(ui), the paths p[`,c] and some of the edges 

f[`,c]). As any tree is collapsible, this completes the proof of Proposition 7(ii). 

8 Collapsibility implies satisfiability 

In this section we prove Proposition 7(iii), i.e. we consider some arbitrary subdivision Kφ
0 of Kφ, and 

prove that if Kφ
0 becomes collapsible after removing some ̃ χ(Kφ) triangles, then φ is satisfiable. We thus 

consider a collapsible subcomplex  obtained by removing ˜χ(Kφ) triangles from . 

Notations. Throughout this section, we use the following conventions. In general, we use hats (for 

example Kb) to denote subcomplexes of Kφ
0 . Given a subcomplex M of Kφ, we also write M0 for the 

subcomplex of Kφ
0 that subdivides M. 

Variable assignment from triangle removal. We first read our candidate assignment from the triangle 

removal following the same idea as in Section 7. This relies on two observations: 

• The set of triangles removed in Kb contains exactly one triangle from each sphere S0(u). Indeed, 

since Kb is collapsible and 2-dimensional, it cannot contain a 2-dimensional sphere. Hence, every 

sphere S0(u) had at least one of its triangles removed. By Proposition 11, χ(Kφ) = χ(Kφ
0 ) equals 

the number of variables of φ, so this accounts for all removed triangles. 

• For any variable u, any removed triangle in S0(u) is either in D0[u] or in D0[¬u]. We give u the 

true assignment in the former case and the false assignment in the latter case. 

The remainder of this section is devoted to prove that this assignment satisfies φ. It will again be 

convenient to denote by `(u) the literal corresponding to this assignment, that is, `(u) = u if u was 

assigned true and `(u) = ¬u otherwise. 

Analyzing the collapse. Let us fix some collapse of Kb. We argue that our assignment satisfies φ by 

showing that these collapses must essentially follow the logical order of the collapse constructed in 
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Section 7. To analyze the dependencies in the collapse, it is convenient to consider the partial order that 

it induces on the simplices of Kb: σ ≺ τ if and only if in our collapse, σ is deleted before τ. We also write 

σ ≺ Mc for a subcomplex Mc of Kb if σ was removed before removing any simplex of Mc. 

The key observation is the following dependency: 

Lemma 14. There exists an edge e of A0 such that e ≺ D0[¬`(u)] for every variable u. b
 b 

Proof. We first argue that for every variable u, there exists an edge ) such that 

)]. To see this, remark that the complex D0[¬`(u)] ∪ O0(u) is fully contained in Kb 

since 

the triangle removed from S0(u) belongs to D0[`(u)]. It thus has to be collapsed. Since this complex is a 
disk, the first elementary collapse in D0[¬`(u)]∪O0(u) has to involve some edge ) of its boundary. 
This boundary is b0(u) ∪ p0(u), so it contains no edge of D0[¬`(u)]. It follows that We 
next claim that ). Indeed, remark that every edge in p0(u) belongs to two triangles of 
X0[¬`(u)]. By Lemma 8, any collapse of X0[¬`(u)] must start by an elementary collapse using an edge 
of f0[¬`(u)] as a free face. Any edge of f0[¬`(u)] is, however, contained in two triangles of D0[¬`(u)] and 
thus cannot precede D0[¬`(u)] in ≺. It follows that We can now identify e. Observe that 
b0(u) ⊂ B0(u). As B0(u) is a 1-house, Lemma 8 ensures that b 

the first edge removed from B0(u) must subdivide f0(u). Hence, there is an edge eb2(u) ⊂ f0(u) such that 

eb2(u) ≺ eb1(u). Since f0(u) ⊂ A0, another 1-house, the same reasoning yields an edge eb3(u) in fand
0

 such that eb3(u) ≺ eb2(u). Let eb denote the first edge removed from A0 among all edges eb3(u). 

At this point, we have for every variable u eb≺ eb2(u) ≺ eb1(u) ≺ D0[¬`(u)], as announced. Let 

e denote the edge of A0 provided by Lemma 14, i.e. satisfying e ≺ D0[¬`(u)] for every variable u. b

 b 

We can now check that the variable assignment does satisfy the formula: 

• Consider a clause c = (`1 ∨ `2 ∨ `3) in φ. The complex C0(c) is a 3-house, so Lemma 10 restricts its 

set of free edges to the f0[`i,c]. Hence, there is i ∈ {1,2,3} and an edge ] such that

). Note that, in particular, as the edge fand also belongs to C(c) and must be 

freed before collapsing A0 (by Lemma 8). 

• The subcomplex f0[`i,c] is contained not only in C0(c), but also in X[`i] which is a 1-house with 
free edge f[`i]. By Lemma 8, the first elementary collapse of X[`i] uses as free face an edge 
that subdivides f0[`i]. In particular, ] and  

• Let u be the variable of the literal `i, that is, `i = u, or `i = ¬u; in particular `i ∈ {`(u),¬`(u)}. 

 From )] it comes that ) cannot belong to D0[¬`(u)]. Yet,  

belongs to f0[`i]. It follows that `i 6= ¬`(u) and we must have `i = `(u). The definition of `(u) thus 

ensures that our assignment satisfies the clause c. 

Since our assignment satisfies every clause, it satisfies φ. 
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A Collapsing a 1-house 

In this section we prove the second statement of Lemma 8 (recalled below). We use an auxiliary lemma: 

Lemma 15. A triangulation of a topological disk collapses to any tree contained in its 1-skeleton. 

Proof. Let K be a triangulation of a topological disk (that is, the polyhedron of K is homeomorphic to a 

2-dimensional disk) and T a tree contained in the 1-skeleton of K. While there is an edge of K that is 

free and not in T, we collapse such an edge. Let K0 denote the resulting complex. 

Let us first argue that K0 contains no triangle. Let c denote the (possibly empty) Z2-chain obtained 

by summing the triangles of K0. The 1-chain ∂c is a 1-cycle by definition and it is supported on T. 

Indeed, every edge in K0 is contained in zero, one or two triangles and any edge contained in exactly 

one triangle and not in T could be used as a free face to further collapse K0. Since a tree does not contain 

any nontrivial 1-cycle, it follows that ∂c is empty. In K, any nonempty 2-chain has a non-empty 

boundary. It follows that c is empty and K0 is indeed 1-dimensional. 

Since K0 is a collapse of K, it must be contractible. Hence, K0 is a tree and, by construction, it contains 

T. The statement follows since a tree always collapses to any of its sub-trees.  

We can now prove the announced statement: that a 1-house with free edge f and lower wall L collapses 

to any subtree t of the 1-skeleton of B that is contained in L and shares with the boundary of L a single 

endpoint of f. 

Proof of Lemma 8. We apply Lemma 15 repeatedly. First, we collapse the lower wall L to the tree 

formed by t and the subcomplex of B triangulating (∂L) \ f. Next, we collapse the lowest floor, except 

for the edges that belong to walls that are still present. We proceed to collapse every wall that used to 

be attached to the lowest floor. The resulting complex is already a disk with t attached to it. We collapse 

the disk to the attachment point and are done.  


