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The emerging use of visualization techniques in pathology and microbiol- 

ogy has been accelerated by machine learning (ML) approaches towards 

image preprocessing, classification, and feature extraction in an increasingly 

complex series of datasets. Modern Convolutional Neural Network (CNN) 

architectures have developed into an umbrella of vast image reinforcement 

and recognition methods, including a combined classification-localization of 

single/multi-object featured images. As a subtype neural network, CNN cre- 

ates a rapid order of complexity by initially detecting borderlines, edges, and 

colours in images for dataset construction, eventually capable in mapping 

intricate objects and conformities. This paper investigates the disparities 

between Tensorflow object detection APIs, exclusively, Single Shot Detector 

(SSD) Mobilenet V1 and the Faster RCNN Inception V2 model, to sample 

computational drawbacks in accuracy-precision vs. real time visualization 

capabilities. The situation of rapid ML medical image analysis is theoretically 

framed in regions with limited access to pathology and disease prevention 

departments (e.g. 3rd world and impoverished countries). Dark field mi- 

croscopy datasets of an initial 62 XML-JPG annotated training files were 

processed under Malaria and Syphilis classes. Model trainings were halted 

as soon as loss values were regularized and converged. 

Additional Key Words and Phrases: Convolutional Neural 

Network,Single Shot Detector, Regional Convolutional Neural Network, 

Machine Learning, Visualization-Localization 

 

Introduction 

This medical object detection project explores and compares the 
benefits and costs in utilizing the SSD (Single Shot Detector) 
MobileNet and the Faster R-CNN Tensorflow Models as it pertains 
to detecting blood-borne pathogens- specifically Malaria and 
Syphilis in dark field microscopy images. Further, the paper will 
analyze the real-world practicality of utilizing both of these models 
in object detection challenges in addition to both models’ capacities 
in detecting sample slides from Malaria and Syphilis cultures. The 
authors propose a cost-benefit system to assess the performance of 
two distinct models in various settings. The Faster R-CNN model’s 
training process requires about half the time as needed to create a 
checkpoints and detect loss values in the images versus the SSD 
MobileNet architecture. In addition, Faster-RCNN marks a higher 
accuracy in detecting a greater number of cells as opposed to the 
SSD MobileNet. Although an assessment of precision and accuracy 
is required in both API models, the practical real time nature of the 
framework must be considered by observing the graphical 
compactness, efficiency, and lightness of each model in a limited 
environment (i.e. 3rd world setting). The communicability and 
variance of infectious diseases, such as Malaria and Syphilis, create 
a public health problem by making onsite medical intervention 
difficult. Further, the microheterogeneity of Malaria complicates 
the process of rapid human-controlled pathology diagnoses in local 
clinical laboratories. 

 

CNN: Feed-forward artificial neural networks used for image visualization 

R-CNN: Regional CNN deployed by Tensorflow for Object Detection  

Single Shot Detector: Uses only one or a few training images for final detection. 

The infeasibility of the“human eye” feature extraction alone is 
apparent as a full determination and processing of sample information 
can require up to 7 days in the case of unexpected complications in 
tissue-blood analysis. Although existing feature segmentation 
techniques facilitate the visualization of histology samples, there is a 
growing gap in diagnosis due to the lack of specificity and machine-
confirmed confidence/percentile scores. In the scope of a limited 3rd 
world environment, the ideal of accessibility and functionality is 
questioned in models such as Faster RCNN Inception v2 and SSD 
Mobilenet v1 due to their inherent graphical capabilities in FPS rate 
and real time motion detection. Utilizing a deployable object detection 
model that can be integrated into common IoT (Internet of Things) or 
system architectures would minimize the accessibility gap for a multi 
diagnostic app. However, the concept of a Cognitive Domain in the 
pathology treatment process must be attained by preserving detection 
accuracy, specificity, and sensitivity. 

 

GPU (Graphical Processing Unit) tests on the R-CNN and Mobilenet 

Tensorflow models reveal distinct parameters and characteristics: 

Faster R-CNN preserves suitable precision and accuracy, however, 

demands more processing time whilst operating at a low FPS rate, 

making real time object detection difficult. The SSD Mobilenet 

architecture (v1-v2) creates an opportunity for moderate accuracy 

and average precision coupled with high scalability, FPS rates, real 

time capabilities, and low processing times. The SSD Mobilenet 

versions-series offers high deployability on low-CPU/GPU graded 

devices, including smartphones, Raspberry pies, and other other 

low-performance motherboards and computers by offering minimal 

overconsumption in the image processing procedure. Common 

operating system platforms including Android and IOS function with 

the Mobilenet architecture due to high scalability and compactness 

in CPU consumption. Although the pretrained Faster R-CNN 

Inception model offers critical image detection accuracies, a 

combination of low scalability, inaccessibility, and graphics 

limitations creates an unpromising use of the model. The SSD 

Mobilnet architecture demands additional training to suffice the loss-

accuracy values of the R-CNN model, however, offers practicality, 

scalability, and easy accessibility on smaller devices which reveals 

the SSD model as a promising candidate for further assessment. 

 

Pathology Diagnosis: The Cognitive Domain  
 

The Cognitive Domain establishes the analytical process in a 

pathology diagnosis through a walkthrough of various strategies and 
tools in the collection and manipulation of data and clinical-
microscopy findings. The strategies allow a deduction of biological 
and clinical data to determine objective solutions. However, an 
overarching mechanism, known as metacognition, is exerted over 
these hypotheses and  
is checked/evaluated in relation to the data collection. Metacognition 
is defined as a direct-active control over one’s thought process (Pena 

& Andrade-Fiho, 2009). Although the Cognitive Domain is a clinical 
laboratory ideal, human performance complications can cause missed 



 

 

details during analysis and confirmation. More importantly, personal 
biases  
during the pathology investigations can cause low specificity and 
false-positives or false-positives during the diagnostics process. 
Integrating an ML approach ensures that specificity and biases are 
continuously regulated in the training process by using constant 

hyperparameters that prevent anomalies and complications during the 
machine evaluation. The traditional Cognitive Domain is 
demonstrated in figure 1. 

 

 

 

 
 

 

 

 

 

 

Figure 1.0: The Cognitive Domain 
The Cognitive Domain magnifies strategies that pathologists can use 
to draw preliminary hypotheses and deduction based on radiologic, 
microscopic, and clinical data. A default (given) procedure of pattern 
recognition is followed throughout the tissue-blood analysis by 
allowing the pathologists to extract features from the image and 

relate this to other biological samples. Multiple branching or 
arborization allows a breakdown of incoming data, while the 
exhaustive strategy is a rushed and uncoordinated approach towards 
massive data analysis. 

 
The Cognitive Domain reveals a human oriented investigation in the 
pathology prognosis process, however, the efficacy of the system is 
not universal and is sacrificed due to natural human error. Moreover, 
the backbone of the Cognitive Domain takes advantage of 
metacognition to create an efficient toolkit and guideline of strategies 

to be utilized during the investigation. The Cognitive Domain uses a 
given premise that rationale and full-scale objectivity and 
understanding is maintained throughout the procedure, however, this 
is simply not the case: In a typical cancer diagnostic procedure, 
involving histologic analysis, nearly 1 million cases go undiagnosed 
in the process (American Cancer Society, 2018). Although this 
massive inflation in a lack of detection may seem non-unique in 
relation to pathology classification, continued complications and 

inconsistencies in histology practice exacerbate a trusting diagnostic 
process for the patient. The inconsistencies in cancer-histology 
detection represent a growing population pool of misdiagnosed 
diseases due to complex image features human simply cannot learn 
and apply. 

 

Convolutional Neural Network (CNN) and Image Processing 

 
Prior to considering Faster R-CNN, it is necessary to briefly 
introduce the basis of Convolutional Neural Networks since this 
model uses this neural network as a framework. Convolutional 
Neural Networks have been effective in image recognition and object 
detection. There are four essential components of the neural network: 
Convolutional Step, ReLU, Pooling and Fully Connected Layer. The 

Convolution Step extracts features from the input image and learns 
the image features using matrices of input data while allowing to 

cultivate the spatial relationship of each feature within the image- this 
will produce a feature map. Non-Linearity(ReLU) is then introduced 
by replacing all negative pixel values in the feature map by zero in 
order to insert non-linearity. As a result, the network will learn to 
process inputs in a non-linear fashion that is similar to how data is 

conveyed in the real world. 

 
Pooling reduces the dimensionality of the feature map, however it 
retains the important information of each in addition to minimizing 

overfitting by reducing the number of parameters and computations in 
the network. The final stage is the input approaching the Fully 
Connected Layer, which is a Multi-Layer Perceptron which utilizes a 
softmax activation function in the output layer to ensure that the 
outputs are probabilities that add up to 1. The softmax function does 
this by taking a vector of arbitrarily valued scores and minimizing it to 
a vector of values explicitly between 0 and 1. As one of the classes 
approaches a value of 1, this would create a positive inference for the 
detection class, leaving all other negative values near 0 to indicate a 

fail. At this stage in the process, the output represents high-level 
features of the input image. The objective of the Fully Connected 
Layer is to utilize the features to classify the input image into different 
classes dependent upon the training data (Britz, 2015). 

 
Figure 1.1: Typical feature extraction in a CNN passing through 
pooling layers, reaching the final neural network. 

 

 
 

Tensorflow Object Detection API 

 
Surfacing as a popular toolkit of machine learning technologies in 
early-mid 2017, the Tensorflow object detection API, released by 

Google, is an open source framework for object detection related 
tasks used for training both Single Shot Detector (SSD) and 
regional-Convolutional Neural Network (R-CNN) models from their 
model zoo (Mustamo 2018). The Tensorflow API was essentially 
purposed to offer scalability and potential for device deployment by 
Google. More importantly, Google prepared Tensorflow tools with 
necessary support for leading methods such as Multibox/SSD, and 
Fast/Faster R-CNN, which will be discussed further in this paper. 

The object detection API was created with an order/hierarchy of 
levels ranging from deployment to simple box operations. A low 
level API generally consists of box operations, Box representations, 
Target Assignment, and Visualization operations. A high level API 
is comprised of the heart-core structure of meta-architectures 
including SSD, Faster R-CNN, etc. Eventually, serving and 
deployment on technologies such as Jupyter Notebook and android 
is reached once training and visualization has been finalized. Figure 
1.1 reveals an example output from the Jupyter Notebook object 

detection demo application. 
 
Figure 1.1: .IPYNB Demo Detection with Faster RCNN 

Proposals 



 

. 
 

Faster R-CNN Tensorflow Model 

 
Building on the foundation of Convolutional Neural Networks, the 
Faster R-CNN essentially utilizes the CNN computed features and 

the Region Proposal Network half of the model by using the features 
collected to detect bounding boxes that have a probability of 
containing the object(s) of interest by obtaining bounding boxes, 
labels assigned to the boxes and probabilities (objectiveness score) 
for each label and box. The architecture for the model is as follows: 
Region Proposal Network, Anchors, Training/Loss, Region of 
Interest (RoI) Pooling, and Region Based CNN. Region Proposal 
Networks take an image as input and output rectangular object 

proposals, which are the regions believed to contain the object, with 
an objectiveness score. This is done by sliding a small network over 
the convolutional feature map output created by the last 
convolutional layer. The network then takes a sliding spatial window 
of the input convolutional feature map and the sliding window is then 
mapped to a lower-dimensional feature using ReLU. The newly 
created feature is then inputted into fully connected layers of a box-
regression layer and a box-classification layer. This creates a single, 
unified network for object detection. Anchors are fixed sized 

reference bounding boxes within the window placed uniformly 
throughout the original image and the anchors are both Translational-
Invariant, meaning that the functions and the proposals of that anchor 
are translative to varying locations of an object within the image 
 
Multi-Scale anchors classify and regress bounding boxes with 
reference to anchor boxes of varying scales and aspect ratios to 
address multiple scales and sizes of the images. 
In training the Region Proposal Network (RPN), a class label of 
either being an object or not is assigned to each anchor. A positive 
label is assigned to anchors with the highest Intersection-over-

Union overlap with a ground truth box or with an overlap with a 
value >0.7 with any ground truth box, indicating an object has been 
detected. A negative label is assigned if the IoU ratio is <0.3 for all 
ground-truth boxes, indicating there is no object detected. The RPN 
is able to be trained through backpropagation and stochastic 

gradient descent.  To train the network, each mini-batch derives 
from a single image that contains many positive and negative 
example anchors in order to compute the loss function and to obtain a 
near 1:1 ratio (Ren et. al, 2016). 
 
The Region of Interest Pooling (RoI Pooling) uses convolutional 
neural networks to detect multiple objects in an image by performing 

max pooling on inputs of varying sizes to obtain a fixed-size feature 
maps of the image by dividing the region proposal into equal sized 
sections, finding the largest value of each section and copying the max 
values into the output buffer. (deepsense ai). This layer takes an input 
of a fixed-size feature map obtained from a deep convolutional 
network with several convolutions and max pooling layers. It also 

takes an input of a Region of Interests x 5 matrix that represents a list 
of regions of interests, where the first column represents the image 
index and the four are coordinates of the corners of the region. Figure 
1.2reveals a simplified CNN-associated process diagram of the Faster 
R-CNN model: 

 
The benefits of implementing a Faster RCNN Tensorflow model is 
that the training interval in which it takes in order to create a 
checkpoint file along with acceptable loss values is decreased by 

half the time as opposed to using the SSD MobileNet Tensorflow 
model. In addition, it also detects a higher amount of objects per 
image as well as increased accuracy for detection in comparison. 
However, the model is not able to be of use in real time object 
detection analysis (i.e. mobile smartphones) due to lacking the 
depthwise and pointwise convolutional layers, which also 
contributes to a slower detection rate. 
 

SSD (Single Shot Detector) Mobilenet v1 Architecture 

 
The Single Shot Detector Mobilenet architecture model is derived 

from depth wise separable convolutions, defined as a form of 
factorized convolutions which factor a standard convolution into a 
depthwise convolution and a 1X1 convolution known as a 
pointwise convolution. The Mobilenet model applies a default single 
filter to each neural input channel to begin feature extraction. 
Following a depthwise convolution, a 1X1 pointwise convolution 
follows to combine the outputs of the depthwise convolution. The 
depthwise convolution will eventually split the resulting outputs into 

two layers, a separate layer for filtration and a layer for 
combination. The mixture of both output filtration and combination 
minimizes the model size reducing computational power demands 
(Howard et al, 2017).  Moreover, depthwise convolution maximizes 
model efficiency by preventing GPU overconsumption on less 
demanding devices (e.g. mobile devices and laptops). However, a 
reduction in GPU consumption also creates a lack of usage 
equilibrium, which hinders the training model causing slow progress 
and intervals. Figure 1.3below exhibits the consecutive and 

systematic pooling layers of the SSD Mobilenet model and the 
compression/condensing of pointwise and depthwise outputs which 
provides the small scale nature of the Mobilenet architecture. 



 

 

 
 
The networking integrity of the Mobilenet system uses default 
mechanisms such as a batchnorm and ReLU nonlinearity operation 
(excluding the final fully connected layer possessing no non-
linearity and utilizes a softmax layer for classification) for dataset 
processing. The compact nature of the SSD Mobilenet framework is 
associated with a reduction in both parameters and Mult-adds. 
Although the neural network structure of SSD Mobilenet is 
notorious for minimal accuracy in relation to the Faster R-CNN 

Inception models, an intensively trained Mobilenet model can 
equate accuracy and precision on output object detection. 
Nevertheless, preliminary average precision scores (mAP) on small 
background objects reveal reduced values in relation to the 
inception models. Table 1.0 exhibits the pretrained COCO-
Tensorflow models and their relationships in speed (ms) and 
mAP(^1): 

 

Coco Model Name Speed (ms) mAP^[1] 

SSD Mobilenet V1 30 21 

SSD Mobilenet V2 31 22 

SSD Lite mobilenet v2 27 22 

SSD inception v2 42 24 

Faster RCNN Inception v2 58 28 

Faster RCNN ResNet 50 89 30 

Faster RCNN ResNet 50 Low Proposals 64 30 

RFCN-ResNet 101 92 30 

Faster RCNN ResNet 101 106 32 

Faster RCNN ResNet 101 Low Proposals 82 32 

Faster RCNN Inception ResNet Atrous V2 620 37 

Faster RCNN Inception ResNet Atrous v2 Low 

Proposals 

241 37 

+ 

 

1833 43 

Faster RCNN Nas Low Proposals 540 43 

 
Table 1.0 (above) and Figure 1.4 (below): Relationships between 
typical object detection API models and their associated speeds and 

measures of average precision. The models of interest, SSD Mobilenet 
and Faster RCNN Inception, exhibit the most compatibility for future 
deployment with a coupling of efficiency and precision. 

 

Prevalence of Plasmodium Malariae and Treponema Pallidum 

Particularly in 3rd world impoverished countries, the onset generation 
of devastating diseases has critically impacted communities by 

establishing communicability into waterways, sewers, and the 
common plumbing systems of undeveloped neighborhoods and towns. 
Although mobile medical departments have emerged in regions South 
of the African Sahara, immediate and handheld attention is scarce in 
households. Ultimately, individuals with ambiguous symptoms have 
minimal resource and awareness in detecting parasitic and onset 
disease types. More importantly, local pathology departments do not 
ensure full scale access to the broad community which translates into 

delayed diagnostic times and disruptions in quality medical 
intervention. Nearly 90% of present-day Malaria cases are rampant in 
Africa south of the Sahara. Further, in regions of free flowing Malaria 
transmission, both young children and pregnant women are vulnerable 
as a potential disease group being at risk of high morbidity and 
mortality. Children experiencing an initial Malaria infection 
experience behavioral-physical symptoms in their first year or two of 
life.  
 
The upsurge of Malaria in the young demographic is partly caused by 

inherent limitations in regional Obstetric departments and little 
mechanisms for on-birth diagnosis. Malaria creates cellular 
dysfunction and results in death by establishing an infection during 
pregnancy, an Acute Febrile illness, or Chronic repeated infection. An 
infection during pregnancy results in low birth weight during preterm 
delivery, whereas an Acute Febrile illness (a rapid onset of fevers, 
headaches, chills or muscle-joint pain) escalates Cerebral malaria 
causing a combination of respiratory distress and hypoglycaemia 

(World Health Organization, 2013). Chronic exposure and repeated 
infections result in severe anaemia leading to eventual death in 
children. According to the World Health Organization, outpatient 
clinical visits in Sub-Saharan-South Africa have been climbing the 
rungs by nearly 60% in regions including Malawi, UR Tanzania, 
Uganda, and Zambia since its emergence in 1985-2000. Increasing 
facilitation and global health initiative has been organized in regions 
resulting in the inhibited spread of Malaria across generations, 

however, little disruptive medical-technology implications have arose 
from 21st century clinical involvement in Africa. 
 

 

 
Figure 1.5- Source: Routine health information system data, 
ARFO, for under-fives, Against Malaria Foundation 

 
The other hand of disease control is associated with Syphilis, or 
Treponema Pallidum. Syphilis is underlined as an infectious disease 

transmittable through sex or vertically during a child’s pregnancy. The 



 

physiologic and psychologic map of Syphilis is characterized by 
periods of activity and latency, erratic systemic involvement, and a 
progression to acute complications in patients remaining untreated or 
having been inadequately treated. The diagnostic cycle for Syphilis is 
simply divided into both a recent case and a late case: A recent case 
is marked within a one year living period, whereas, following a one 

year bacterial presence, a late diagnosis is apparent. The current form 
of on point and personal diagnosis is a lookout for skin lesions, 
typically indicating primary Syphilis. However, skin lesions further 
delay the 1 year diagnostic stage by allowing the bacteria to 
continually replicate and eventually revealing skin lesions. 
Ultimately, superficial imaging techniques do not suffice immediate 
and real time diagnostic reports personally for both the patient and 
physicians in the region. 

Dark Field Microscopy: Live Blood Analysis and 

Accessibility 

In broad terms, dark field microscopy is critical in the diagnosis of 
vital blood which is critical as an important holistic universal medical 
examination process carried out by clinics around the world. 
Although dark field microscopy reveals the internal environment (e.g 
the behavior of blood plasma, blood volume, and content), the 
macroscopic influences of small protein molecules in the human 
body from which microorganisms can arise are imaged on the 

sample. During dark field investigations, a drop of fresh blood is 
examined under the microscope without staining and the blood taken 
from the patient is put directly onto the slide and covered with a glass 
coverslip. Avoiding contamination and maintaining relative 
sterilization, the slide is examined immediately under 1200x 
magnification. The blood is ultimately exposed to severe stress in 
slide preparation through a lack of oxygen, non-circulation and 
exposure to intense light (Rau 2016). More importantly, dark field 

microscopy reveals the early and indirect signs and tendencies 
towards internal body conditions: By revealing the circulatory, and 
degenerative malign illnesses in the blood, doctors can use this as a 
precursor in a full case investigation/diagnosis. Due to the compact 
and non-staining requirement of dark field microscopes, immediate 
accessibility is maximized without strict laboratory preparation. 
Recent investigations  in 2015 underlined the use of dark microscopy 
imaging with high power LED illumination, in contrast to traditional 
image staining techniques and halogen lamps. High power and 

energy efficient LED light bulbs have continually replaced halogen 
lamps, enhancing darkfield applications marking darkfield 
microscopy as an increasingly accessible imaging option. Figure 1.5 
below reveals a high contrast imaging of Treponema Pallidum under 
a traditional dark field microscope. 
 

 
 
Figure 1.5: High contrast dark field imaging of Treponema Pallidum 

(Syphilis) blood sample. The image exhibits the potential for clear-
sharp extraction of the specimen for diagnosis. 

Disease Control in Impoverished 3rd World Countries 
Health systems in developing countries typically have two objectives 

in mind to enhance social, economic, and medical advantages in the 
area: a.) improving the level and distribution of health outcome in the 
population and b.) to protect individuals from financial risks that are 
frequently very substantial and cause impoverished lifestyles (World 
Health Organization, 2000). Common financial risks are caused by 
illness-related loss of income and the drastic expenditures on 
treatment and care. However, much of this loss can be ameliorated by 
preventing illness or its progression by using new medical-financial 

architectures in the region. This paper centralizes both Malaria and 
Syphilis as a disease demographic, with a 90% prevalence in South 
Africa, however, also takes advantage of visualization techniques in a 
compact and easy diagnosis of human diseases. According to the 
Global Burden of Disease Study in 2010, diseases including Malaria 
and Syphilis, have been surprisingly masqueraded and unmentioned 
by local medical communities and departments in South African 
countries. This continued lack of awareness is partly rooted from the 

dense population pool (South- Sub Saharan Africa) experiencing this 
disease and the lack of regulation, assessment and modern diagnostic 
tools. 
Common financial risks are caused by illness-related loss of income 
and the drastic expenditures on treatment and care. However, much of 
this loss can be ameliorated by preventing illness or its progression by 
using new medical-financial architectures in the region. This paper 
centralizes both Malaria and Syphilis as a disease demographic, with a 
90% prevalence in South Africa, however, also takes advantage of 

visualization techniques in a compact and easy diagnosis of human 
diseases. According to the Global Burden of Disease Study in 2010, 
diseases including Malaria and Syphilis, have been surprisingly 
masqueraded and unmentioned by local medical communities and 
departments in South African countries. This continued lack of 
awareness is partly rooted from the dense population pool (South- Sub 
Saharan Africa) experiencing this disease and the lack of regulation, 
assessment and modern diagnostic tools. 

 

Proposal and Rationale: Real time Object Detection in 

Disease Diagnostics 
The objective in deploying use of object detection algorithm models 
in disease diagnostics is to utilize the Faster R-CNN model in order to 
detect Malaria and Syphilis in a hospital setting, due to the blood 
samples via dark field microscopy needing to be analyzed as 
frozen/still images. In addition, this model provides a significantly 
higher precision and accuracy rate when being able to detect every 
instance of the pathogens in each image. As seen on the figures and 
graphs of the Data Analysis portion  
 
The plan to utilize the SSD MobileNet model is for the model to be 

used in an mobile Android application as to detect pathogens in real 
time. Theoretically, the rationale is to create a Raspberry Pi device 
connected to a microscope that is able to gather blood samples and for 
the SSD MobileNet model to accurately detect instances of the 
pathogens in these samples. This would be of benefit as it 
Unfortunately, the accuracy in which the model detects each 
individual instance of the objects is significantly less than the Faster 
R-CNN model as shown in the figures and graphs on the Data 

Analysis portion of this paper. Therefore, it is ideal to utilize the SSD 
MobileNet model in order to accomplish this goal.  
 



 

 

Methods and Protocols for Faster R-CNN Inception V2 COCO 

Model  and SSD MobileNet V1  

Before considering the methodology, a brief overview of the 
Tensorflow Object Detection API and data collection methods are 
overviewed:  
 

1. Install TensorFlow-GPU v1.5, CUDA v9.0 and cuDNN v7 

2. Download official Tensorflow Object Detection API 
repository from GitHub and setup the Tensorflow directory 
in the Windows C:/ drive 

3. Download the Faster-RCNN-Inception-V2-COCO and 
SSD Mobilenet V1 models from the official Tensorflow 
model zoo and place inside of the \object_detection folder  

4. Set up the Anaconda virtual environment and install 
packages: anaconda protobuf, pillow, lxml, Cython, 
jupyter, matplotlib, pandas, opencv-python 

5. Configure PYTHONPATH  environment variable to point 
to the correct directories in \models-masters 

6. Compile Protobufs and run setup.py in the Anaconda 

Command Prompt in order to create a name _pb2.py file 
from every name.proto file in the \protos folder  

7. Test the Tensorflow Object Detection API to verify it has 
been set up successfully by launching the 
object_detection_tutorial.ipynb script with Jupyter  

8. Gathered 31 images of Syphilis and 31 images of Malaria 
and saved into the images folder of the object detection 
directory  

9. Open folder of images in the LabelImg software and create 
a new edited folder in LabelImg in order to hold the new 
.xml files once all of the verification boxes were saved in 
each image containing the every instance of the object of 
interest 

10. Generate the training data by converting the .xml to .csv 
files in order to be read by the object detection classifier  

11. Create a label map that tells the trainer what each object is 

defined by mapping class names (Malaria and Syphilis) to 
class ID numbers (Malaria:1, Syphilis: 2) and save the map 
as a .pbtxt file  

12. Configure the object detection training pipeline. This is 
done by changing the number of classes to 2, changing the 
fine tune checkpoint to contain the Faster RCNN Inception 
V2 COCO model, changing the number of examples to 62 
images and updating the eval_input_reader section, 

specifically the input_path and label_map_path to contain 
the directory of the test.record input path and the 
labelmap.pbtxt in the label map path.  

13. Initiate training  
14. Export the inference graph and modify the last saved 

checkpoint value post-training  
15. Modify image path in python config file via idle to a newly 

saved image  
16. Run command from Anaconda Prompt 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 
 

Methodology 

 
Implementing the Faster RCNN Inception V2 2018 and the SSD 
Mobilenet V1 2017 Models 
 
Prior to initiating data collection and training, establishing a 
Tensorflow and Anaconda environment with default Python package 
imports (e.g. Numpy, Anaconda’s Protobuf, lxml, Cython, and 
Opencv) was necessary. Following package construction, the object 
detection model was then downloaded from the Tensorflow Model 
Zoo, a holding repository for all current models in both object 
detection and image classification. In this case, both the Faster-
RCNN-Inception-V2-COCO  and SSD Mobilent V1 2017 models 
were packaged and installed into the directories for testing. 
 
Additionally, the official Tensorflow/models repository was extracted 
in order to obtain the correct files needed to work with the model. 
After importing packages and setting up the environment for training, 
we had tested the setup in order to verify that it was successful by 

running an object detection tutorial in the Jupyter notebook. In order 
to train our object detector, we had created our custom file of dark 
field microscopy images of Syphilis and Malaria. In addition, we had 
created verification boxes of every instance of the targeted objects in 
each image to be created into a .xml file for training, using LabelImg. 
We had focused on a small number of images, resulting in a total of 
31 for Syphilis and 31 for Malaria. The .xml files were then converted 
to .csv files in order to be read by Tensorflow. We then made our own 

label map with two classes: class 1 for Malaria and class 2 for Syphilis 
in order to train the classifier to detect these objects. The last method 
was to configure the object detection training pipeline. Since the 
pipeline defines which model and what parameters will be used for 
training. In the configuration file, the num_classes, 
fine_tune_checkpoints, num_examples were altered in addition to the 
train_input_reader and eval_input_reader sections to fit our custom 
path directories. After this has been completed, the model was then 

trained through the Anaconda command prompt. The live data 
indicating loss values was then recorded via Tensorboard. 

 

 

 
 

 

 

 

 

 

 

 



 

Data Analysis: SSD Mobilenet V1 Training Loss Scalars 

 

 

 
 

Figures 1.6-1.9: Automated Tensorflow Object Detection API 

data was collected throughout the global steps as seen in the 
command prompt. Total loss parameters, as acknowledged in the 
CNN background, are ultimately summation functions of the biases 
and weights of the trained neural network (which result from the 
Softmax function and its counterparts). Although exponential loss 
decay is not comparable to the drastic decrease in the Faster RCNN 
Inception model, the SSD Mobilenet model maintained a high 
speed of ~30 ms for full image analysis. Based on the Single Shot 

approach of the neural mobile network, training and loss values did 
not converge at low values immediately. Loss value convergence 
occurred around 8,000 steps near a value of 4.00. Nevertheless, the 
SSD architecture allowed realtime analysis of images (e.g. an 
OpenCV webcam window which detected live images). Thus, 
although loss value, in proportion to precision, was lower for the 
SSD Mobilenet model, immediate image visualization was easier. 

Data Analysis: SSD Mobilenet V1 Training Loss Scalars 
 

 

 

 
 

 
 

Figures 2.0-2.3: The Faster RCNN Inception V2 model reveals 

exceptional loss values converging near minimum values of ~0.05 
during the R-CNN training. Total loss values converged near steps 
ranging in 4,500-6,000, although, experienced natural fluctuations. 
Evidently, the Faster RCNN model reveals higher scalability in 

terms of training parameters. In other words, loss values decreased 
drastically while precision inversely increases within a range of 
10,000 global steps. However, the Faster RCNN model is notorious 
for overconsumption of GPU contained RAM. On NVIDIA Cuda 
cores, nearly all accelerators are utilized during the training process 
which minimizes versatility of the model and the potential for 
deployment. The training model accurately localized smaller cells 
and borderline features on the image (i.e. not general-apparent 
details). Following the Python shell testing, it was apparent that the 

Faster RCNN demanded more time for image analysis at ~58 ms. 
Due to the high-scale nature of the R-CNN model, real time analysis 



 

 

is limited to ~2-4 frames per second (FPS), which eliminates 
potential for deployability on small device operating systems such 
as Android and IOS. 

Object Detection API Deployment: Android OS Platforms 

The rationale of this project-investigation is grounded in versatility 

and the universal nature of an pretrained object API neural network 
model. More importantly, after a review of disease burdens in regions 
and countries of South Africa, a standard of accessibility must be 
attained to allow rapid handheld usage. The levels of Tensorflow API 
usage are defined by the interactivity of the application itself. The 
project ultimately moved from a stage of moderate-low complexity (a 
Python shell console that required necessary path directory 
modifications) to a fully automated application that used a preloaded 

frozen_inference_graph.py to recognize novel images. The SSD 
Mobilenet V1 model was the sole candidate in performing real time 
30 FPS rate object detection due to its compressed size and capacity. 
Figure 2.4 reveals the Android application detecting two Syphilis 
cells in a blood-specimen culture: 
 

 
The android application was initially configured by utilizing 
Tensorflow’s open source android directory which enables Machine 
Learning deployment tools on mobile devices. Path definitions in 
the camera detection activity JAR files of the directory were 
modified to ultimately match the location of the SSD Mobilenet 

Frozen Inference graph. 
 

Object Detection Analysis: Faster RCNN v2 vs SSD 

Mobilenet v1 

 
Open CV Image Step 

Count 

Type API Model 

 

15410 Syphilis SSD 
Mobilenet 

V1 

 

15410 Malaria SSD 

Mobilenet 

V1 

 

15410 Syphilis SSD 

Mobilenet 

V1 

 

6265 Malaria Faster R-

CNN 

Inception 
v2 

 

6265 Syphilis Faster R-

CNN 

Inception 

v2 

 

6265 Syphilis Faster R-

CNN 

Inception 

v2 

Data Interpretation and Conclusions: SSD Mobilenet and 

Faster R-CNN Comparisons 

The combined approach of a Faster Regional Based Convolutional 
Neural Network and a Single Shot Detection Mobilenet architecture 
are apparent as they offer unique dimensions of accuracy, efficiency, 
and compatibility in immediate blood-data analysis. Although the 

Faster R-CNN model revealed minimal converging loss values, a 
standard of speed and immediate detection was sacrificed. In other 
words, detection time was extended and required demanding GPU 
performance to prevent crashing and processing overload. The SSD 
Mobilenet architecture provided moderate precision-accuracy while 
providing high speed, less demanding CPU-GPU consumption. With a 
modified batch size of ~5, the SSD Mobilenet model rapidly passed 
through global steps reporting decreasing loss values. More 

importantly SSD Mobilenet created an opportunity for scalability and 
accessible deployment by adapting to the architectures of small 
operating systems such as Android and IOS. 

Future Applications 

The broad constraints of a darkfield-based object detection application 
were sufficed in terms of moderate accuracy and compactibility in the 
SSD Mobilenet model. More importantly, the potential of Android-OS 

device deployment of the SSD Mobilenet architecture enables high 
accessibility and versatility on other cross-platforms. Moreover, the 
compressed nature of the SSD Mobilenet architecture allows precise 
object tracking and more rapid image analysis/processing time. In 
contrast to the Faster R-CNN model, single shot detection offers high 
general scalability. Primary future developments suggest that the SSD 
Mobilenet model may be integrated into a full scale application for 
multiple diagnostic disease detection. Additionally, to equate 

precision and accuracy readings with the Faster R-CNN model, 
continued GPU training is necessary. This project was completed on a 
local network with insufficient graphics support, however, future 
work in a high-performance research setting with necessary 



 

computational-graphics resources is required for considerable 
improvement in detection efficacy. Considering the potential of 
medical visualization in the process of diagnostics reports, cell 
segmentation techniques plan on being applied using an extension of 
the Faster R-CNN architecture known as “Mask-R-CNN” which 
applies regional “masks” and highlights critical areas of the image 

based on borderline features. 
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